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The main idea of this workwas to find predictive quantitative structure–activity relationships (QSAR) for a wide
set of c-Src tyrosine kinase inhibitors, bymeans of resorting to a conformation-independent representation of the
chemical structure. In this way, our attempt was to avoid the availability of X-ray crystallographic structural
information of the target. Therefore, in a set composed of 80 pyrrolo-pyrimidine derivatives, 1179 theoretical
descriptors were simultaneously analyzed through linear regression models obtained with the replacement
method variable subset selection technique. Alternatively, the flexible (activity dependent) descriptor approach
was also applied in this study. The models were validated and tested through the use of an external test set of
compounds, the leave-group-out cross validation method, Y-randomization and applicability domain analysis.
Our results were comparedwith previously published ones based on docking analysis and 3D-QSAR. The obtain-
ed conformation-independent approach was in good agreement with experimental observations.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The c-Src enzyme is the most studied non-receptor class of tyrosine
kinase (TK), that along with the Yes, Lck, Fyn, Lyn, Fgr, Hck, Blk and Yrk
members constitutes the Src (sarcoma) family[1,2]. As participant of
signal transduction chains in cells, c-Src kinase catalyzes the transfer
of phosphate from adenosine triphosphate (ATP) to specific tyrosine
residues of the target substrate [3–5]. The overexpression, deregulation
or mutation of c-Src associated with alterations in its activity have been
observed in various cancer types, such as colon, breast, and pancreatic
types [6,7]. The oncogenic potential of an increased Src activity involves
the control of cell proliferation and the regulation of cytoskeletal-linked
events, such as migration, spreading, and invasion [8–11]. Considerable
evidences also suggest that c-Src kinase inhibition may enhance the
anti-tumor efficacy of hormonal and cytotoxic agents in preclinical
models [12–14].

Several c-Src TK inhibitors have been identified during past
years, which include the following heterogeneous classes: dihydro-
pyrimidoquinolinones [15], pyrazolo-pyrimidines [16], pyrrolo-
pyrimidines [17–20], 4-anilinoquinazolines [21], and others [22].
In particular, pyrrolo-pyrimidines interfere with the c-Src role on
osteoclastic bone resorption and metastatic bone disease [23]. These
inhibitors are ATP-competitive, in contrast to other compounds which
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display a more complex behavior (as substrate competitive or
bisubstrate competitive against either the substrate or ATP) [22].

The increasing efforts for identifying and developing new selective
and potent small-molecule inhibitors of c-Src have focused on the
integration of information generated bydifferentways [14,24]: research
of designing, synthesizing and testing more potent biomolecules has
been generally assisted by molecular modeling techniques. Structure–
activity relationships (SAR) and quantitative structure–activity relation-
ships (QSAR) help to predict the biological activity of new structures
and may reveal useful information on structural modification at several
substitutional positions of c-Src-binding molecules [24–29]. The QSAR
theory is based on the main hypothesis that the biological activity of a
chemical compound is a final result of its molecular structure [30].
This assumption does not offer specific details on the usually complex
mechanism/path of action involved although; however, it is possible
to get insight on the underlying mechanism by means of the QSAR-
based predicted activities.

It is known that 3D-QSAR is a broad term encompassing all QSAR
methods which correlate macroscopic target properties withmolecular
descriptors derived from the spatial three-dimensional molecular
structure [31,32]. However, the application of these methods suffers
from serious drawbacks, some of which are: i) the lack of accurate X-
ray crystal structural information of the drug–target complex, ii) the
binding mode of the drug is unknown or highly promiscuous, iii) the
drugs are not analogs and alignment hypothesis is difficult to establish
[33,34]. In this context, the conformation-independent 1D and 2D
QSAR methods emerge as an alternative approach for developing
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models which include the commonly important features related to
dataset and the specific contributions of each derivative type.

In a recent study, Tintori et al. [26] have reported molecular docking
simulations and a 3D-QSAR analysis on awide set of pyrrolo-pyrimidine
inhibitors, using the 3D structure of c-Src as template for structure-
based alignment and by applying the GRID/GOLPE approach. The
identified model has a good statistical quality and is capable of
predicting the activity in an external test set of compounds; it is also
applied over a set of pyrazolo-pyrimidine derivatives. The gathered in-
formation provides useful insight into the rational design of more
efficient compounds and explicit the interaction types that should be
established by c-Src TK inhibitors. In addition, it has been investigated
the pharmacokinetic features of all inhibitors under study by projecting
the compounds on predefined Volsurf models, allowing for some
important considerations and suggestions to direct the development
of new inhibitors.

In this study we establish QSAR models on the same dataset of
pyrrolo-pyrimidine inhibitors considered in [26], with the purpose of
applying an approach that does not consider the conformational repre-
sentation of the chemical structure [35,36]. The exclusion of 3D struc-
tural aspects also avoids problems associated with ambiguities that
result from an incorrect computational geometry optimization due to
the existence of compounds in various conformational states. Such
kind of problems may also lead to the loss of predictive capability of
the QSAR when applied for the prediction of an external test set of
compounds. Therefore, it is expected that the established model
would be useful for predicting the c-Src TK inhibition whenever the
molecular descriptors involved in it reflect an appropriate parallelism
between the observed activity and the chosen molecular characteriza-
tion. There is no similar QSAR study on the specific dataset of pyrrolo-
pyrimidine inhibitors.

2. Materials and methods

2.1. Experimental dataset

The chemical domain analyzed involved 80 pyrrolo-pyrimidines
(please see Table 1S of Supplementary Tables) [26]. The experimental
c-Src TK inhibitory activity measured as pIC50 = –log10IC50 ranged
from 5.0 to 9.5. The activity values were obtained from the liquid-
phase tyrosine phosphorylation assay, using chicken c-Src and the
synthetic substrate poly-Glu-Tyr [20].

2.2. Molecular descriptor calculation

The compoundswere first drawnwith HyperChem forWindows [37],
and then the.hin files were converted into.sdf by using the Open Babel
2.3.1 software [38]. We computed 931 conformation-independent
molecular descriptors using E-Dragon [39]. This well-known descriptor
database was comprised thirteen descriptor families: Constitutional,
Topological, Walk and Path Count, Connectivity Index, Information
Index, Edge Adjacency Index, Topological Charge Index, Burden
Eigenvalues, Eigenvalue-Based Index, 2D-Autocorrelation, Functional
Group Count, Atom-Centred Fragment, and Molecular Property [40].

In addition, we obtained 248 Transferable Atom Equivalent
(TAE) descriptors using Recon 5.5 [41]. This sort of descriptors was
not provided by E-Dragon,while the robustness of Recon has previously
been demonstrated elsewhere [42,43]. Recon is an algorithm for the
reconstruction of molecular charge densities and charge density-based
electronic properties of molecules, using atomic charge density
fragments precomputed from ab initio wavefunctions. The method is
based on the Quantum Theory of Atoms in Molecules [44]. A library of
atomic charge density fragments has been assembled in a form that
allows for the rapid retrieval of the fragments, followed by rapid
molecular assembly. The.sdf molecular format was employed as
input for the generation of 248 Transferable Atom Equivalent (TAE)
descriptors developed by Breneman et al. [45]. In this way, the total
number of calculated molecular descriptors was 1179 variables.

2.3. Model development

2.3.1. Molecular descriptor selection in MLR
In recent years theoretical and experimental researchers focused

their attention onfinding themost efficient tools for selectingmolecular
descriptors in QSAR studies. A great number of feature selection
methods to search for the best descriptors from a pool of variables is
available, and the replacement method (RM) [46,47], employed here,
was successfully applied elsewhere [48–52]. In brief, the RM has been
an efficient optimization tool which generates multivariable linear
regression (MLR) based models on the training set by searching in a
set having D descriptors for an optimal subset having d b bD ones
with smallest training set standard deviation (Strain) or smallest root
mean square deviation (RMSDtrain). The quality of the results achieved
with this technique approaches that obtained by performing an exact
(combinatorial) full search of molecular descriptors although, of course,
it requires much less computational work. However, in some cases, the
RM canget trapped in a localminimumof S. Although such localminima
provide acceptable models, an improvement of the method has been
developed in the enhanced replacement method (ERM) [53,54]. We
used Matlab 7.12 in all our calculations [55].

2.3.2. The CORAL method
CORAL version 1.5 [56] is a freeware forWindows, where each com-

pound is represented with the SMILES notation (Simplified Molecular
Input Line Entry System), calculated here by converting the.hin
files into.smi with Open Babel (see Table 2S). A CORAL model is a one-
variable linear correlation between a given biological activity and a
flexible (activity dependent) descriptor (DCW). This flexible descriptor
was calculated in this work by choosing a graph representation for
chemical structure on the training set, for which three options were
available: hydrogen-suppressed graph, hydrogen-filled graph and
graph of atomic orbitals. The DCW is a linear combination of special
coefficients, the so-called correlation weights (CW). The CW are
calculated for structural attribute values on the training set, such as
the values taken by the hierarchy of Morgan's extended connectivity
indices of kth order for a given vertex i (kECi, k = 0–3).

The Monte Carlo (MC) simulation method was used as a way for
obtaining the CW, by searching for the highest correlation coefficient
(R) between the biological activity and the DCW descriptor in a number
of different probes (3). TheDCW values dependupon the threshold value
(T) and the number of epochs (Nepochs) used, which are positive integer
parameters of theMonte Carlomethod that should be correctly specified
in order to calculate the DCW values. The T defines rare (noise) SMILES
attributes that do not contribute to the predicted activity, so that all
SMILES attributes that take place in less than T SMILES notations of the
training set are classified as rare instead of as active.More specific details
of the CORAL algorithm are available in the recent literature [57–60].

2.3.3. Model validation
Themost reliablemodel validation consists on using an external test

set of molecules. The same training and test set partition from ref. [26]
was used in present analysis for comparison purposes. The training set
involved 65 pyrrolo-pyrimidines compounds (see Table 1S). These
compounds were selected following the usual guidelines: compounds
belonging to the training set should be representative of the molecular
diversity of all the compounds under study and uniformly span over
the whole range of activity. The remaining compounds (15 pyrrolo-
pyrimidines) were used as external test.

We practiced the cross-validation technique of leave-one-out (loo)
and leave-more-out (ln%o, with n% being the percentile of molecules
removed from the training set). The statistical parameters Rln%o and
Sln%o (correlation coefficient and standard deviation of leave-more-



Fig. 1. Predicted and experimental pIC50 values for training and test set with Eq. (1).
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out) measured the stability of the QSAR upon inclusion/exclusion of
molecules. The number of cases for random data removal analyzed
was 50,000. According to the specialized literature, a necessary but
not sufficient condition for the loo explained variance (Rloo2 ) is to be
greater than 0.5 for a validated model [61].

The Y-randomization procedure [62] was applied in order to verify
that the model is robust. This technique consists on scrambling the
experimental property values in such away that they do not correspond
to the respective compounds. After analyzing 10,000 cases of Y-ran-
domization, the standard deviation obtained (Srand) has to be a poorer
value than the one found by considering the true calibration (S).

2.3.4. Applicability domain analysis
The applicability domain (AD) for the QSAR model was also ex-

plored, as not even a predictive model is expected to reliably predict
the modeled activity for the whole universe of molecules. The AD is a
theoretically defined area that depends on the descriptors and the
experimental activity [63]. Only the molecules falling within this AD
were not consideredmodel extrapolations. One possible way to charac-
terize the AD is based on the leverage approach [64], which allows to
verify whether a new compound can be considered as interpolated
(with reduced uncertainty, reliable prediction) or extrapolated outside
the domain (unreliable prediction). Each compound i has a calculated
leverage value (hi) and there exists a warning leverage value (h⁎);
Table 2S includes the definitions for hi and h⁎. When hi N h⁎ for a test
set compound, then a warning should be given: it means that the
prediction is the result of substantial extrapolation of the model and
could not be treated as reliable.

2.3.5. Degree of contribution of selected descriptors
In order to find out the relative importance of the j-th descriptor

in the linear model, we standardized its regression coefficient (bjs, see
Table 2S). The larger the absolute value of bjs, the greater the importance
of such descriptor [65].

3. Results and discussion

Table 4S summarizes the best MLR models found having 1–10
variables and the meaning of each involved descriptor is supplied by
Table 5S. The results suggest that the best model is given by 5 descrip-
tors obtained with E-Dragon, which has an acceptable predictive
power on the test set. In E-Dragon based descriptors, the RMSDtrain

parameter continues improving beyond such number of 5 variables,
but RMSDtest becomes poorer. We follow the common practice of keep-
ing the model's size as small as possible, in order to avoid any possible
fortuitous correlation. It is also noted from Table 4S that, as d increases,
Recon descriptors have a lesser fit to the training set when compared
with E-Dragon performance, and that the combination of E-Dragon
and Recon descriptors tend to overfit the training set. According to
this, we choose the following structure–activity relationship:

pIC50 ¼ 6:579 IC3‐5:864IC5þ 0:712MATS7m‐229:473 JGI7
þ 1:339nArOH þ 6:685 ð1Þ

Ntrain = 65, d = 5, Ntrain/d = 13, Rtrain2 = 0.71, Strain = 0.61, F =
27.38, Rij max

2 = 0.86, o(2.5 S) = 1, Rloo2 = 0.64, Sloo = 0.67, Rl20%o2 =
0.46, Sl20 % o = 0.83, Srand = 0.90,Ntest = 15, Rtest2 = 0.58, Stest = 0. 87.

Here, F is the Fisher parameter, Rij max denotes the maximum
correlation coefficient between descriptor pairs, o(2.5 S) indicates the
number of outlier compounds having a residual (difference between
experimental and calculated activity) greater than 2.5 times Strain and
lower than three times Strain.

In Eq. (1), the percentage of explained variances are Rtrain2 = 71% and
Rtest
2 = 58%. This model has a predictive performance on the external

test set that compares fairly well with that found by Tintori et al. [26],
with Rtrain

2 = 94 % and Rtest
2 = 71 %. In addition, the root mean square
deviations (RMSD) for the present study are: RMSDtrain = 0.58
and RMSDtest = 0.68, while the ones obtained by using 3D-QSAR are
RMSDtrain = 0.26 and RMSDtest = 0.55. A two-tailed significance test,
t-test for dependent groups or paired t-test [66], reveals that there is
no statistically significant difference between two sets of predicted
response of the external test set and their statistics (mean of the
difference response, XD ¼ 0:087; standard deviation of the difference
responses, SD = 0.201; two-tailed critical and calculated t values at
p = 0.05 with 14 degrees of freedom, tcrit.(14) = 2.145 and tcalc.(14) =
0.430; then tcalc.(14) b tcrit.(14)).

On the order hand, themodel given by Eq. (1) approves the internal
validation process of cross-validation through the exclusion of one
molecule at a time and also by excluding 20% of the observations
(13 molecules). We apply Y-randomization, demonstrating that Strain b
Srand and thus a valid structure–activity relationship is achieved. We
have checked that Eq. (1) accomplishes with the external validation
criteria recommended in [61] to assure predictive capability:

- 1 − R0
2/Rtest2 b 0.1 (0.004) or 1 − R0

' 2/Rtest2 b 0.1 (0.36) and,
- 0.85 ≤ k ≤ 1.15 (0.97) and 0.85 ≤ k' ≤ 1.15 (1.03)
- Rm

2 N 0.5 (0.55)

where R0
2 and R0

' 2 are the coefficients of determination for regressions
through the origin in the test set of the observed versus predicted activ-
ities and the predicted and observed activities respectively; k and k' are
the slopes of regression lines through the origin and Rm

2 is the modified
squared correlation coefficient. These parameters were calculated as
shown in Table 3S.

Fig. 1 plots the predicted pIC50 activity as a function of the experi-
mental values for the training and test sets (numerical data provided
in Table 6S), showing that there exists a tendency for the points to
have a straight line trend. The dispersion plot of residuals (i.e. residuals
as a function of predicted activities) in Fig. 1S reveals that residuals tend
to obey a random pattern around the zero line, suggesting that the
assumption of the MLR technique is fulfilled.

One compoundwith a value of residual greater than 2.5 times Strain is
present in the training set, compound 8. After checking that their exper-
imental pIC50 values and structures are correct, we assume that this
abnormal behavior may be purely attributed to the structural diversity
of the dataset. It has been also identified previously [26] that 8, as well
as 9–11, 34, 75–77 and 79, have a different binding mode within the
ATP binding pocket of the active c-Src TK domain. This could be a possi-
ble explanation of this outlier behavior.

Regarding the descriptors appearing in Eq. (1) there are:

- two Information indices: IC3, Information Content index (neighbour-
hood symmetry of 3-order) and IC5, Information Content index
(neighbourhood symmetry of 5-order). These descriptors, obtained
from the elements of Graph Theory, describe the connectivity and
branching in a molecule.



Fig. 2. Predicted and experimental pIC50 values for training and test set with Eq. (2).
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- two 2D-Autocorrelation descriptors:MATS7m, Moran autocorrelation
of lag 7 weighted by mass and JGI7, Mean topological charge index of
order 7. These indices, derived from weighted matrices in terms of
atomic masses and electronegativities, address the topology of the
structure or parts of it codifying chemical information about atom
type and bond multiplicity.

- one Functional Group Count: nArOH. This descriptor gives local chem-
ical information about the number of aromatic hydroxyls in a
molecule.

The contribution degree for each descriptor (bjs) reveals that
IC3 and IC5 contribute more to the predictions: IC3(1.8), IC5 (1.3),
MATS7m(0.1), JGI7 (0.7), and nArOH(0.6). Analyzing the more relevant
descriptors, as these take positive numerical values, it is concluded
that the sign of each regression coefficient in Eq. (1) affects the predict-
ed activity value. Thus, higher values for IC3, nArOH and lower values for
IC5 and JGI7 would lead to more potent compounds (higher predicted
pIC50 activities).

The descriptors in Eq. (1) embody chemical features that map all
molecules in the training and test sets as heterocyclic compounds
with polarizable hydrophobic substituents and ring aromatic with
hydrogen-bond acceptor. These structural features also were identified
as guidelines for optimization strategies and in SAR studies of related
compounds [17–20]. Thus, the information obtained from the Eq. (1)
QSARmodel may provide the tools for predicting the affinity modifying
of related compounds and for guiding future structural synthesizing
new potent c-Src inhibitors.

On the other hand, the maximum correlation coefficient between
the IC3 and IC5 descriptors is Rij max = 0.93 (see correlation matrix in
Table 7S). We understand that, although there is a high correlation
between such variables, these are not collinear, and each of them
includes different aspects of the molecular structure [67] that succeed
in combining with the remaining variables of Eq. (1). The numerical
values taken by the five descriptors are included in Table 8S.

An analysis of the AD of Eq. (1) reveals that the 15 compounds
included in the test set belong to the AD of the model. The leverage
values are provided in Table 9S.

We compute flexible descriptors as an alternative modeling
methodology in the current QSAR study. After trying different com-
binations of kECj indices (k = 0–3), the best correlation weights
produced by the Monte Carlo simulation (listed in Table 10S) are ob-
tained from a hydrogen-filled graph representation, leading to the
following model:

pIC50 ¼ 0:262DCW−1:377 ð2Þ

Ntrain = 65, d = 1, Ntrain/d = 65, Rtrain
2 = 0.70, Strain = 0.58, F =

149.49,o(2.5 S) = 0, Rloo2 = 0.68, Sloo = 0.60, Rl20%o2 = 0.55, Sl20 % o =
0.72, Srand = 0.96,Ntest = 15, Rtest2 = 0.81, Stest = 0. 54.

The parameters used duringmodel building are T=6(T ranges from
0 to 7) and Nepochs = 30. Table 11S includes an example for calculating
DCW in 1. The DCW descriptor of Eq. (2) considers 3ECj as local graph
invariant, and from a total number of 118 structural attributes
(Table 10S), 56 of them contribute to DCW calculation in this set of
pyrrolo-pyrimidines. Furthermore, higher positive CW values tend to
predict higher pIC50 activities, while higher negative CW values tend
to predict less potent compounds. This CORAL QSAR model has
RMSDtrain = 0.57 and RMSDtest = 0.50, with a predictive capability on
the test set comparable to the published result [26]. Eq. (2) has no out-
liers exceeding 2.5 times the S value (see Figs. 2 and 2S). All the 15 test
set compounds belong to the AD of this model, having h* = 0.0923.
Eq. (2) also satisfies the external validation conditions reported in [61]:

- 1 − R0
2/Rtest2 b 0.1 (2.41 × 10−5) and 1 − R0

' 2/Rtest2 b 0.1 (0.05) and,
- 0.85 ≤ k ≤ 1.15 (0.96) and 0.85 ≤ k' ≤ 1.15 (1.04)
- Rm

2 N 0.5 (0.81)
4. Conclusions

In this work, we investigate the relationship between the chemical
structure of a set of 80 pyrrolo-pyrimidine derivatives and their capabil-
ity to inhibit the c-Src TK activity. The application of linear models
for selecting the most relevant structural parameters results in the
combination IC3, IC5, MATS7m, JGI7, and nArOH Dragon descriptors.
The importance of these variables in modeling the studied property is
validated and tested (Rloo2 = 0.64, Rtest2 = 0.58 and RMSDtest = 0.68).
The acceptable predictive power on the test set is compared to
previously published and more sophisticated 3D-QSAR results.

In addition, we report an alternative linear model with base in the
flexible descriptor definition. The statistical performance of the CORAL
QSAR model is Rloo2 = 0.64, Rtest2 = 0.68 and RMSDtest = 0.50.

The reported models have acceptable predictive power on the test
set. Our results were compared to previously published and more so-
phisticated 3D-QSAR results.

Currently, we are working on the application of these and others
QSAR models based on constitutional or topological approximations as
virtual screening tools to discover novel and potential inhibitors against
c-Src tyrosine kinase from databases and/or virtual chemical libraries.
New results will be published soon elsewhere.
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