
European Journal of Pharmaceutical Sciences 62 (2014) 171–179
Contents lists available at ScienceDirect

European Journal of Pharmaceutical Sciences

journal homepage: www.elsevier .com/ locate/e jps
QSAR models for thiophene and imidazopyridine derivatives inhibitors
of the Polo-Like Kinase 1
http://dx.doi.org/10.1016/j.ejps.2014.05.029
0928-0987/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +54 0383154698975.
E-mail address: ncomelli75@gmail.com (N.C. Comelli).
Nieves C. Comelli a,⇑, Pablo R. Duchowicz b, Eduardo A. Castro b

a Facultad de Ciencias Agrarias, Universidad Nacional de Catamarca, Av. Belgrano y Maestro Quiroga, 4700 Catamarca, Argentina
b Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas INIFTA (UNLP, CCT La Plata-CONICET), Diag. 113 y 64, C.C. 16, Sucursal 4, 1900 La Plata, Argentina

a r t i c l e i n f o a b s t r a c t
Article history:
Received 28 January 2014
Received in revised form 27 May 2014
Accepted 28 May 2014
Available online 6 June 2014

Keywords:
Chemoinformatics
Multivariate linear regression analysis
Polo-Like Kinase 1 (PLK1) inhibitors
Molecular modeling
Thiophene and imidazopyridines
derivatives
The inhibitory activity of 103 thiophene and 33 imidazopyridine derivatives against Polo-Like Kinase 1
(PLK1) expressed as pIC50 (�log IC50) was predicted by QSAR modeling. Multivariate linear regression
(MLR) was employed to model the relationship between 0D and 3D molecular descriptors and biological
activities of molecules using the replacement method (MR) as variable selection tool.

The 136 compounds were separated into several training and test sets. Two splitting approaches, dis-
tribution of biological data and structural diversity, and the statistical experimental design procedure D-
optimal distance were applied to the dataset. The significance of the training set models was confirmed
by statistically higher values of the internal leave one out cross-validated coefficient of determination
(Q2) and external predictive coefficient of determination for the test set ðR2

testÞ.
The model developed from a training set, obtained with the D-optimal distance protocol and using 3D

descriptor space along with activity values, separated chemical features that allowed to distinguish high
and low pIC50 values reasonably well. Then, we verified that such model was sufficient to reliably and
accurately predict the activity of external diverse structures.

The model robustness was properly characterized by means of standard procedures and their applica-
bility domain (AD) was analyzed by leverage method.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Polo-Like Kinases (PLKs) are important regulators of cell cycle
progression and mitosis. They are an evolutionary conserved fam-
ily of serine/threonine kinases characterized by an amino-terminal
kinase domain and a C-terminal region composed of polo boxes.
There are four identified Polo-Like Kinases, PLK1, PLK2 (SNK),
PLK3 (PRK/FNK) and PLK4 (SAK), which have similar but non-
overlapping functions in the cell cycle progression (Harris et al.,
2012; Song et al., 2012). Particularly, PLK1 is the most investigated
member of the family as an anticancer drug target because it is
overexpressed in several human tumor types and inhibition of its
activity results in a potent antitumor effect both in vitro and
in vivo (Chopra et al., 2010; Degenhardt and Lampkin, 2010;
Rudolph et al., 2009; Zhang et al., 2009).

In recent years much attention was focused to the research of
small molecule PLK1 inhibitors. To date, eleven kinase inhibitors
were approved by the Food and Drug Administration (FDA) for
the treatment of cancer, and there are continuous efforts to get
more candidates (Bohari et al., 2011; Chahrour et al., 2012; Liu
and Gray, 2006; Strebhardt and Ullrich, 2006).

Most kinase inhibitors discovered to date are ATP competitive.
Other kinase inhibitors were identified by interacting with a
hydrophobic pocket directly adjacent to the ATP binding site or
by binding to a hydrophobic pocket remote from the ATP binding
site (Zhang et al., 2009).

In recent publications, two series of ATP-competitive PLK1
inhibitors formed by 103 thiophene benzimidazole (TP) and 33
imidazopyridine (IP) analogs were described (Emmitte et al.,
2009a,b; Rheault et al., 2010; Sato et al., 2009). These compounds
were developed from the compound in Fig. 1 which was character-
ized as a potent inhibitor of PLK1 and a useful tool for further
investigation on the biological functions of PLK1 (Lansing et al.,
2007).

From 5-(5,6-dimetoxy-1H-benzimidazol-1-yl)-3-{(2-trifluo-
romethylbenzyl)oxy} thiophene-2-carboxamide, the new 136
PLK1 inhibitors were prepared by introducing of chemical modifi-
cations such as the methylation of the benzylic carbon with
(R)-configuration and the incorporation of functional groups on
the aryl and heteroaryl groups with a relatively wide range of size,
polarizability, hydrophobicity, and lipophilicity.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejps.2014.05.029&domain=pdf
http://dx.doi.org/10.1016/j.ejps.2014.05.029
mailto:ncomelli75@gmail.com
http://dx.doi.org/10.1016/j.ejps.2014.05.029
http://www.sciencedirect.com/science/journal/09280987
http://www.elsevier.com/locate/ejps
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Fig. 1. 5-(5,6-Dimetoxy-1H-benzimidazol-1-yl)-3-{[2-trifluoromethylbenzyl]oxy}
thiophene-2-carboxamide molecule.
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Structure–activity relationship (SAR) studies assisted by dock-
ing simulations have provided useful insight into the structural
requirements for inhibitory activity of TP and IP against PLK1
(Emmitte et al., 2009a,b; Rheault et al., 2010; Sato et al., 2009).
Moreover, some quantitative structure–activity relationship
(QSAR) methods have been applied in order to get a better under-
standing of the chemical features that influenced their activity and
improve further design of new PLK1 inhibitors. Particularly, in sil-
ico models were developed using the comparative molecular field
analysis (CoMFA) and comparative molecular similarity indices
analysis (CoMSIA) (Cao, 2012).

QSAR studies consist of relating the biological activities of a ser-
ies of compounds with appropriate molecular descriptors (Bohari
et al., 2011; Cronin, 2010). Such relationships may be used to pre-
dict the activity/property of new compounds and to design virtual
compound libraries. By their widely accepted predictive and diag-
nostic power, QSAR models promise considerable savings in time,
money, and a reduction in use of experimental animals when com-
pared with conventional testing strategies.

Since the application of QSAR methodology on PLK1 inhibitors
has received little attention and, to the best of our knowledge, only
Cao’s paper published QSAR models for the inhibitory activity of
103 TP analogs and 33 IP derivatives, herein we report QSAR anal-
ysis based on the curated dataset of 103 TP and 33 IP derivatives
since we detected some errors in previously published data.

More specifically, we construct models for each class of
compounds and hybrid models including compounds from two
classes. Conditions evaluated to create hybrid models are: (i) Data-
set is comprised of structurally-related molecules with a common
3-(benzyloxy)thiophene scaffold hopping and shared action mech-
anism; (ii) even though, biological data of TP and IP analogs were
determined by different protocols, we found that both techniques
measure the similarly inhibitory effects. The consistency of data
was observed comparing the pIC50 values of 5-(1H-benzimidazol-
1-yl)-3-{2-trifluoromethylbenzyloxy}-thiophene-2-carboxamide
identified as compound 16 (Emmitte et al., 2009b) and compound
1 in (Sato et al., 2009). Since the pIC50 difference among the com-
pounds (0.368 log unit) is within the mean experimental error
(0.5340 6 e 6 0.6366 log unit), we recognize that the basic para-
digm of QSAR methods can be applied without difficulty to the
curated dataset of 136 compounds in (Cao, 2012).

Statistical parameters of the models based on different theoret-
ical molecular descriptors were sensitive to the selection of the
training and test set using a rational splitting method. The model
developed from a training set obtained with the D-optimal dis-
tance protocol and using 3D descriptor space along with activity
values gave good predictions and afforded rationale for the search
of novel leads as PLK1 inhibitors.

2. Materials and methods

2.1. Experimental dataset

The experimental PLK1 inhibitory activity measured as pIC50 =
�log 10IC50 of 136 PLK1 kinase inhibitors were obtained from the
literature (Emmitte et al., 2009a,b; Rheault et al., 2010; Sato
et al., 2009). These compounds were categorized into two struc-
tural classes: a dataset of 103 thiophene (TP) analogs and 33
imidazopyridine (IP) derivatives (see Table S1 in the Supporting
Information). The inhibitory activities were determined in enzy-
matic and tumor cell lines assays as were described in (Lansing
et al., 2007; Sato et al., 2009).
2.2. Modeling and molecular descriptors calculation

We retained the R-configuration for the benzylic carbon atom
on all the molecular structures except in the compound 4 where
the chirality of the sp3 C-atom was changed to S-configuration
(see Table 1S). The initial conformations of the compounds were
drawn with the aid of the ‘‘Model Build’’ modulus of the Hyper-
Chem 7.5 program for Windows (HyperChem Release 7.5 for
Windows, 2002) and pre-optimized using molecular mechanics
force fields (MM+). Then, the molecular geometries were refined
using semi-empirical quantum method Austin Method 1 (AM1)
and the Polack–Ribiere algorithm also implemented in Hyperchem
until an energy gradient smaller than 0.1 kcal mol�1 Å�1. Finally,
the .hin files of the found geometries were converted into .smile
by using the Open Babel 2.3.1 software (O’Boyle et al., 2011). This
molecular format was employed as input for the generation of all
molecular descriptors.

As modeling input variables, we used a wide set of theoretical
molecular descriptors that takes into account different structural
features -constitutional (0D), mono-dimensional (1D), bi-dimen-
sional (2D) and three-dimensional (3D)- for capturing and magni-
fying distinct aspects of chemical structures. Thus, a total of 2594
molecular descriptors including molecular properties (such as
logP, molar refractivity, number of rotatable bonds, H-donors,
H-acceptors, and topological surface area), constitutional descrip-
tors, topological descriptors, connectivity indices, autocorrelation
descriptors, charge descriptors and molecular fragments were cal-
culated. The descriptor typology is as follows: (a) 248 transferable
atom equivalent (TAE) descriptors using RECON 5.5 (Recon 5.5,
2002), (b) 694 3D-descriptors available in the Online Chemical
Modeling Environment (OCHEM): Inductive, MERA, MERSY, Spec-
trophores and MOPAC descriptors (Sushko et al., 2011), and (c)
931 conformation-independent molecular plus 721 3D-descriptors
using E-Dragon (E-Dragon 1.0, 2005). The list of these molecular
descriptors, their meaning, and the calculation procedures were
provided with literature references by the RECON 5.5, E-DRAGON
1.0 packages and the online web OCHEM platform. For more
details, see the related publications (Breneman and Rhem, 1997;
Breneman et al., 1995; Bultinck et al., 2003; Consonni and
Todeschini, 2010; Cherkasov, 2005; Todeschini and Consonni,
2009).

Prior to the development of QSAR models, descriptors were
normalized using the following formula,
Xn
ij ¼

Xij � Xj;min

Xj;max � Xj;min
where Xij and Xn
ij are the non-normalized and normalized j-th

(j = 1,. . . ,k) descriptor values for compound i (i = 1,. . . ,n), and Xj,min

and Xj,max are the minimum and maximum values for the j-th
descriptor. Thus, for all descriptors, minðXn

ijÞ ¼ 0 and maxðXn
ijÞ ¼ 1.

This procedure is a good practice, especially when the predictor
variables have different scale ranges. In this way, all the variables
are treated as if they were of equal importance, regardless of their
scale of measurement.
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2.3. Model development

2.3.1. Molecular descriptors selection
Here the replacement method (RM) (Duchowicz et al., 2005,

2006) was used to search, via multivariate linear regressions
(MLRs), the molecular descriptors responsible for the activity of
136 PLK1 inhibitors. This method, successfully applied elsewhere
(Duchowicz et al., 2008; Goodarzi et al., 2009; Pasquale et al.,
2012; Pomilio et al., 2010; Talevi et al., 2011), is considered an effi-
cient optimization tool which generates models on a training set
by searching in a set having D descriptors for an optimal subset
having d� D ones with smallest training set standard deviation
(Strain) or smallest root mean square deviation (RMSDtrain). The
quality of the results achieved with this technique approaches that
obtained by performing an exact (combinatorial) full search of
molecular descriptors although with a much shorter CPU time
(Mercader et al., 2010, 2011).

For the selection of the most relevant descriptors, we consid-
ered independently seven descriptors pools containing (a) 248
Recon descriptors; (b) 694 3D OCHEM descriptors; (c) 721 3D-Dra-
gon descriptors; (d) 931 (0D–2D)-Dragon descriptors; and (f) their
combinations: (i) 1179 descriptors by merging the a and d classes,
(ii) 1415 descriptors relating the b and c classes and, (iii) the pool
formed by 2594 descriptors. In this way, we try to capture the most
relevant variables in modeling the response of the training set
since we have no a priori knowledge of which descriptors, and
which particular combinations with others are related to the stud-
ied response and are able to be used in models for prediction aims.
2.3.2. Training and test set selection
One of the most important characteristics of a QSAR model is its

predictive power. This can be defined as the ability of a model to
accurately predict the biological activity of compounds that were
not used for model development.

A QSAR model’s predictive ability depends largely on the nature
of the training set used to establish the structure–activity relation-
ship (Martin et al., 2012). In order to obtain a model of high statis-
tical rigor and predictive power, a dataset should be adequately
split into the training and test sets. This division must satisfy the
following conditions (Golbraikh et al., 2003; Martin et al., 2012):
(i) the training set chemicals must be structurally diverse enough
to cover the whole descriptor space of the overall data set, and
(ii) the compounds in the training and test sets should be close
to each other.

In this work the search of validated and predictive QSAR models
was initiated by ordering the chemicals as in (Cao, 2012) and with
the partition into a training and test set proposed there. Then, the
model development process for each class of inhibitors was fol-
lowed by using 78 TP and 26 IP as training set and the developed
models were validated using the remaining compounds (25 TP
and 7 IP) as test set. Meanwhile, hybrid models from two classes
compounds were built and validated with 104 (78 P and 26 IP)
and 32 (25 TP and 7 IP) compounds respectively.

As regards the above-mentioned partition, such division cannot
guarantee that the training set compounds represent the entire
calculated descriptor space in this work. Then we use the statistical
Experimental Design procedure, D-optimal distance (Marengo and
Todeschini, 1992; Todeschini et al., 2012), to develop several train-
ing and test sets.

Briefly, D-optimal distance protocol selects samples through a
fast exchange algorithm where, in each cycle, substitution provides
the maximum increase in the minimum distance between cur-
rently selected compounds. This algorithm provides a final distri-
bution of the most dissimilar compounds selected from the set of
allowed candidates which are used as a training set to develop
models. Once the models are established, predictions are made
for the remaining molecules under study (test set).

The D-optimal distance methodology was widely used for
developing predictive QSAR model (Gramatica, 2013). The resul-
tant classification ensure that the similarity principle can be
employed for the activity prediction of the test set and satisfies
the condition of closeness between the test set points to the train-
ing set points.

For the purpose of this paper, the sampling was performed with
each descriptor set described in Section 2.3.1 including the activity
values. Consequently, from the original dataset, seven partitions in
training and test set -each one with 104 (training set) and 32 (test
set) molecules- were selected. The compounds selected as test
compounds are listed in Table 2S.

2.3.3. Model validation
The statistical qualities and validity of the built MLR equations

were judged by means of (Roy, 2007; Todeschini et al., 2009): (a)
internal validation or cross-validation (CV) by leave-one-out
(LOO) and leave-some-out (LSO) procedure; (b) using the test
set; (c) data randomization or Y-scrambling and; (d) examining if
the following conditions are satisfied (Golbraikh and Tropsha,
2002; Martin et al., 2012):

Q 2 > 0:5

R2
test > 0:6

ðR2
test � R2

0Þ
R2

test

< 0:1 and 0:9 6 k 6 1:1

or
ðR2

test � R020 Þ
R2

test

< 0:1 and 0:9 6 k0 6 1:1

jR2
0 � R020 j < 0:3

and

R2
m > 0:5

where Q2 is the leave one out correlation coefficient for the training
set, R2

test is the square of the Pearson’s correlation coefficient (coef-
ficient of determination) between the observed and predicted
inhibitory activity for the test set, R2

0 and R020 are coefficients of
determination for trend lines through the origin between the
observed and predicted and predicted and observed pIC50 values
for the test sets and k and k0 are the corresponding slopes. More-
over, we examined the difference between R2

test and R2
0 denoted as

R2
m in (Roy and Roy, 2007).

Regarding the application of Y-randomization, after the analysis
of 100 cases of repetitive randomization of the response data (Y) of
the compounds in the several training sets without making any
change in the descriptor matrix, the statistical reliability was cor-
roborated by noting that random models have significantly higher
standard deviation (Srand) than the original models (S).

All parameters taken as indicators of predictive capacity of the
models reported in this work appear defined along with their cor-
respondent equations in Table 3S.

2.3.4. Applicability domain analysis
Since a structure–activity model is defined and limited by the

nature and quality of the data used in the training set for model
development, a QSAR model is only valid within its respective
response and chemical structure space (applicability domain,
DA). This region is defined by the nature of the chemicals in the
training set, and can be characterized in various ways (Netzeva
et al., 2005).

In this work, we use the leverage approach (Atkinson, 1991;
Gramatica, 2007, 2013) for the applicability domain definition.
The Williams plot of standardized cross-validated residuals (ri)
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vs. leverage values (h) was used for an immediate and simple
graphical detection of both the response outliers -i.e., compounds
with cross-validated standardized residuals greater than 3 stan-
dard deviation units, ri > 3s- and structurally influential chemicals
in a model (h > h�). In this plot, the applicability domain is estab-
lished inside a squared area with ri = ± 3s and a leverage threshold
h� (with h� = 3p/n, where p is the number of model variables plus
one, and n is the number of the molecules used to calculate the
model).

From the leverage values, a compound is considered outside the
applicability domain (outlier) when h > h� and ri > 3s. Conversely,
when a compound has a leverage value lower than the critical
one, the probability of accordance between the predicted and the
actual values is as high as that for the training set chemicals. The
same is true for a chemical with h > h� in the training set and
ri < 3s. Such compound is a structurally influential chemical in
the model.
2.3.5. Degree of contribution of selected descriptors
In order to find out the relative importance of the j-th descriptor

in the linear model, we standardized its regression coefficient (bs
j ,

see Table 3S). The larger the absolute value of bs
j , the greater the

importance of such descriptor (Draper and Smith, 1981).
For all calculations in this work we used algorithms written in

the language of technical computing Matlab 7.12 (Matlab, 2011).
3. Results and discussion

3.1. QSAR models from training set by considering distribution of
biological data and structural diversity

From the training and test sets proposed previously (Cao, 2012),
we have constructed twenty-one types of models using RM
approach: seven separate models for each class of inhibitors
(fourteen models in total) and seven hybrid models including com-
pounds from two classes.
Table 1
Statistical quality of the developed models using training and test set proposed in (Cao, 20
compounds including 104 compounds (78 thiophene and 26 imidazopyridine) as training s
number of descriptors in the selected model.

D d R2
train

Strain RMSDtrain R2
test

(A)
248 5 0.60 0.53 0.51 0.38
694 5 0.75 0.42 0.40 0.41
721 5 0.70 0.46 0.44 0.43
931 2 0.54 0.56 0.54 0.35
1179 5 0.72 0.45 0.43 0.47
1415 5 0.76 0.41 0.39 0.45
2594 5 0.78 0.39 0.37 0.47

(B)
248 3 0.79 0.33 0.31 0.81
694 4 0.89 0.24 0.22 0.80
721 3 0.89 0.24 0.22 0.75
931 3 0.88 0.25 0.23 0.85
1179 3 0.89 0.24 0.22 0.69
1415 3 0.92 0.20 0.18 0.66
2594 3 0.92 0.19 0.18 0.58

(C)
248 4 0.50 0.60 0.58 0.46
694 5 0.66 0.49 0.48 0.58
721 4 0.63 0.52 0.50 0.62
931 5 0.68 0.48 0.47 0.45
1179 5 0.71 0.46 0.43 0.42
1415 5 0.73 0.45 0.44 0.59
2594 5 0.76 0.42 0.41 0.49
In Table 1A–C we present the linear regressions by group of
descriptors with minimum Strain/RMSDtrain and Stest/RMSDtest values
obtained by removing 1–8 variables. Following the common prac-
tice of keeping a relatively small number of descriptors in the
model, we consider it to be an acceptable model if it is a solution
with R2

test > 0:6 and Q2 > 0.5.
According to our calculations (see Table 1A–C), the best MLR

models have two to five parameters. For the models of TP analogs
in Table 1A, while the internal validation is always within an
acceptable statistical range (Q2 > 0.5), the test set selected does
not produce good external validation statistics ðR2

test < 0:6Þ. In
contrast, the models generated for the IP molecules provided con-
sistently high values of Q2 and R2

test (i.e. 0.70 6 Q2
6 0.86 and

0:66 6 R2
test < 0:85). However, we consider that the predictive

capacity of such models is questionable due to the small dataset
used to obtain the models and the remarkable difference in the
Strain/RMSDtrain and Stest/RMSDtest values. As regards to the hybrid
QSAR models in Table 1C, these do not display satisfactory predic-
tive ability despite the higher diversity and larger number of com-
pounds included in the calculations. In fact, R2

test is not always
acceptable in all the models (R2

test < 0:6 in most models) and the
Strain/RMSDtrain and Stest/RMSDtest values are not of the same quality.

The results in Table 1A–C emphasize that the data in the train-
ing and test set are non-homogeneous. In fact, we understand that
the predictive capacity of the reported linear models is fairly low
due to the use of test data with members which are not well
represented in the training set. Likewise, QSAR models in Table 1
have limitations associated with chemical diversity of the training
set: such selection does not ensure that all chemical classes in the
original dataset are well represented. So, despite of the certain
predictive capacity over compounds into of the training set
ðR2

train;Q
2 > 0:50Þ, selection of insufficiently representative test

set reveals that the resulting models may not be satisfactorily prac-
tical for the search of related structures with similar biological
activity from large chemical databases.

One way to accomplish a representative training set is through
multiple designs including selection on the basis of relevant
12) for: (A) thiophene analogs, (B) imidazopyridines analogs and (C) from two classes
et. Here, D represents the set of descriptors explored during the modeling and d is the

Stest RMSDtest R2
ij;max

Q2 Sloo

0.66 0.57 0.50 0.53 0.58
0.86 0.75 0.29 0.69 0.46
0.69 0.60 0.23 0.62 0.51
0.65 0.61 0.07 0.71 0.58
0.71 0.62 0.80 0.66 0.49
0.62 0.54 0.31 0.72 0.44
0.71 0.62 0.18 0.74 0.42

0.90 0.59 0.32 0.7 0.39
0.81 0.43 0.65 0.83 0.31
0.80 0.52 0.26 0.83 0.31
0.49 0.32 0.70 0.77 0.36
0.87 0.57 0.29 0.81 0.31
0.90 0.59 0.27 0.86 0.26
1.02 0.67 0.45 0.89 0.25

0.67 0.62 0.37 0.45 0.63
0.63 0.57 0.06 0.62 0.53
0.55 0.50 0.46 0.60 0.54
0.70 0.63 0.52 0.62 0.52
0.72 0.52 0.28 0.66 0.50
0.58 0.65 0.34 0.69 0.48
0.65 0.59 0.15 0.72 0.45
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molecular descriptors and structural similarity. So, the dataset
under study was divided into a training set with 104 compounds
and a test set with 32 compounds using all the available structural
information as described in Section 2.3.2. The compounds selected
as test set are listed in Table 2S.

3.2. QSAR models from training and test sets obtained with the
D-optimal distance protocol

The best models built with the diverse training and test sets and
by removing 1–8 variables from each D set are summarized in
Table 2. Such models were defined from four to five descriptors.
A higher or lower number of variables did not have any significant
effect on the accuracy of the developed models.

According to our calculations, the model generated from the
training set select in descriptor space including 694 3D OCHEM
and 721 3D-Dragon had consistently high values of R2

test and Q2

(see Table 2, D ¼ 1415;R2
test ¼ 0:71;Q 2 ¼ 0:69). Others slightly infe-

rior validated models were obtained with training and test sets
selected from 3D OCHEM space and from the set with all available
structural information (i.e. D = 694, R2

test ¼ 0:63, Q2 = 0.58 and
D = 2594, R2

test ¼ 0:68, Q2 = 0.67).
Direct comparison of the models in Tables 1 and 2 to corrobo-

rate our initial assumption about the limited structural variability
of the compounds included in the training set in (Cao, 2012) with a
direct impact in the predictive capacity of the final models. In this
context, better prediction of the pIC50 values with D = 1415 in both
training and test set in Table 2 reveals the importance of the 3D
data to formulate informative QSAR equations. Other structural
features important for the inhibitory activity appear in the model
combining all types of available descriptors (D = 2594). Conversely,
it is worth noting the relatively low statistical significance and pre-
dictive power of the QSAR formulations applying 0D–2D descrip-
tors (i.e. D = 248, 931, 1179). In such case, we consider that
linear regression is not sufficient to describe the data, and that
training non-linear models may be useful.

From Table 2, the model that exhibits the best balance between
the statistical parameters obtained on the training and the test set
was,

pIC50 ¼ 3:598RDF0:5m� 1:558Mor02p� 2:179E2v
� 3:115ASyV2þ 3:954Small RSI Mol� 2:334 ð1Þ

Ntrain ¼ 104; d ¼ 5; Ntrain=d ¼ 21; R2
train ¼ 0:73;

Strain ¼ 0:45; F ¼ 53:23; R2
ijmax ¼ 0:56;

R2
loo ¼ 0:69; Sloo ¼ 0:48; R2

l20%o ¼ 0:63; Sl20%o ¼ 0:53;

Srand ¼ 0:79;

Ntest ¼ 32; R2
test ¼ 0:71; Stest ¼ 0:47:

where F and R2
ijmax are the Fisher parameters and the maximum

correlation coefficient between descriptor pairs. The large F value
and the small R2

ijmax are indicative of the model statistical signifi-
cance and the trivial degree of multicollinearity among the chosen
subset of descriptors.
Table 2
Best QSAR found with the replacement method and representative training and test sets s

D d R2
train

Strain RMSDtrain R2
test

Stest RMSDtest R2
ij;max

248 5 0.50 0.64 0.62 0.63 0.44 0.40 0.98
694 5 0.64 0.53 0.51 0.63 0.47 0.42 0.64
721 4 0.66 0.51 0.49 0.57 0.59 0.54 0.46
931 4 0.63 0.52 0.51 0.46 0.65 0.59 0.66
1179 5 0.67 0.51 0.49 0.33 0.60 0.54 0.61
1415 5 0.73 0.45 0.44 0.71 0.47 0.42 0.31
2594 5 0.71 0.46 0.52 0.61 0.66 0.64 0.16

The final model chosen for QSAR analysis is highlighted in bold font.
The model given by Eq. (1) involves five descriptors that explain
73% of the experimental variance ðR2

trainÞ. This is considered a valid
structure–activity relationship since it approves the internal vali-
dation process of cross-validation through the exclusion of one
molecule at a time and also by excluding 20% of the observations
(21 molecules). Other facts that suggest that the reported model
is properly validated are:

– Strain < Srand

– ðR2
test�R2

0Þ
R2

test
¼ 0:008

– ðR2
test�R020 Þ
R2

test
¼ 0:3

– k = 1.01
– k0 = 0.99
– jR2

0 � R020 j ¼ 0:21

– R2
m ¼ 0:65

The meaning of the variables in Eq. (1) and of all models reported
in this work appears in Table 4S. Meanwhile, Table 5S displays the
activities predicted by Eq. (1) along with the numerical values for
the best molecular descriptors of pIC50 inhibitory activities.

More considerations on the predictive power of the chosen
model were summarized in Fig. 2 and Fig. 1S in Supplementary
Material.

Particularly, Fig. 2 shows the regression line contrasting the
predicted and experimental pIC50 values and Fig. 1S reveals the dis-
persion plot of residuals. The alignment of the points in a straight
line in Fig. 2 and the fact that residuals tend to follow a random
pattern around the zero line in Fig. 1S reveals that the assumption
of the MLR technique is fulfilled (i.e. confirm the fine correlation
between selected descriptors and the modeled property).

On the other hand, Fig. 3 shows the Williams plot of the model
for TP and IP as PLK1 inhibitors. Here, no compound has been
identified as outlier and just two compounds in the training set
(molecules 61 and 68) are predicted as slightly influential. Such
molecules, structurally somewhat distant from the other chemicals
(with substituted amide and ester group in the 2-position of the
thiophene), are considered ‘‘good leverage points’’ since the infor-
mation that they encode contribute to make the model more
precise.

The aforementioned concepts arise after checking the structural
similarity of the test chemical 67 outside the applicability domain
with the influential chemicals. At that point, we determined that
the predicted response for this molecule is reliable and that split-
ting by D-optimal design allows to obtain a model with completely
interpolated predictions.

As regards the introduced descriptors in Eq. (1), these were eas-
ily accessible from the x, y, z coordinates of the molecule atoms and
other quantities derived from the coordinates (interatomic dis-
tances or distances from a specified origin, molecular volume, elec-
tronegativity and covalent radii). They reflect aspects related to the
molecular size, shape and the steric interactions quantification.
Particularly:
elected in different descriptors spaces.

Q2 Sloo Descriptors

0.43 0.68 Del(Rho)NA10, SIEPMax, PIP3, FDRNA10, FPIP5
0.58 0.57 Spectrosph.Part_4, ASYV2, SYMC6X, SYMS4Z, SmallestRsIMol
0.63 0.53 RDF110v, RDF035p, Mor17e, HATS8u
0.59 0.55 IC3, BEHm7, GGI9, C-042
0.59 0.56 piPC08, GATS2m, BELv1, nArCONH2, Energy
0.69 0.48 RDF035m, Mor02pE2v, ASYV2, SmallestRsIMol
0.68 0.48 BIC5, SIEPMin, RDF075m, RDF035p, ASYV2



Fig. 2. Experimental pIC50 for PLK1 as function of predicted pIC50 according to Eq.
(1).

h*

67 61
68 

Fig. 3. Williams plot for the externally validated QSAR model of TP and IP inhibitors
against PLK1.
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– RDF035m is the radial distribution function on a spherical
volume of radius 3.5 angstroms weighted by atomic masses.
This descriptor, based on the geometrical interatomic distance,
provides valuable information about interatomic distances in a
molecule.

– ASyV2, is a measure of the asymmetry of molecular volume
along the second principal inertia axis. It is built, using 3D rep-
resentation of molecules in the framework of Model of Effective
Radii of Atoms (Sushko et al., 2011) in such a way as to capture
molecular information regarding atom distribution in invariant
reference frames.

– Small_RSI_Mol inform the smallest value of atomic steric influ-
ence in a molecule. It is an inductive reactivity index which
quantifies steric effects of a single atom onto a group of atoms
through the basic and readily accessible parameters of bound
atoms: electronegativities, covalent radii, and intramolecular
distances.

– E2v is the 2nd component accessibility directional WHIM index
weighted by atomic van der Waals volumes. This and other
similar descriptors are statistical indices calculated on the
projections of the atoms along the principal inertial axes. They
estimate dispersion and distribution of molecular properties
around the geometric center. Particularly, E2v is related to the
quantity of unfilled space per projected atom and has been
called density (or emptiness).

– 3D-MoRSE signal 2 weighted by atomic polarizabilities
(Mor02p) is one of the 3D-MoRSE descriptors that can be calcu-
lated by summing atomic properties viewed by a different
angular scattering function at 32 equidistant values in the range
1–31 Å�1. These codes have great potential for representation of
molecular structure since they reflect the three-dimensional
arrangement of the atoms, molecular size and shape.
Standardized coefficient values ðbs
j Þ in decreasing order of sig-

nificance are reported below:

RDF035mð0:79Þ;ASyV2ð0:54Þ;Small RSI Molð0:43Þ;E2vð0:35Þ;Mor02pð0:20Þ

This trend reveals that the RDF035m, ASyV2 and Small_RSI_Mol
variables were the most informative to the model.

It is worth to highlight that only RDF035m and Small_RSI_Mol
contribute positively on the pIC50 values. Thus, higher values for
RDF035m, Small_RSI_Mol and lower values for ASyV2, would lead
to more potent compounds (higher predicted pIC50 activities), that
is to say, bulky substituents in lateral positions of 3-(benzyloxy)
thiophene scaffold. In fact, this is observed in compounds with
the substitution pattern: pyridine, pyrimidine and pyrazole ring
with straight-chain alkyl and hydrophilic groups.

In contrast, RDF035m and Small_RSI_Mol diminish, while ASyV2
increases in compounds with imidazole and aminothiazole substit-
uents replacing the benzimidazole moiety. Likewise, this trend was
observed in derivatives with small substituents and substituted
amides, ester, cyano and thioamide groups in the 2-position of
the thiophene.

We understand that these results are consistent with the
preliminary SAR observations described in the literature
(Emmitte et al., 2009a,b; Rheault et al., 2010; Sato et al., 2009).
Then, we propose that a potent inhibitor of PLK1 is that whose
structure presents a subtle balance between steric, hydrophobic
and electrostatic factors which play an important role in stacking
interactions with PLK1.

3.3. Prediction of anticancer activity for an external data set

A reliable and truly predictive QSAR model should be able to
accurately predict activities of new compounds in external sets.
To this end, the model in Eq. (1) validated with the test sets was
used to predict the activity of seven compounds (Table 3)
(Murugan et al., 2011; Sato et al., 2009), which were not available
prior to our QSAR study of the 136 derivatives dataset.

Thus, we have decided to test the developed model with two
imidazopyridines cited in (Sato et al., 2009) and omitted without
explanation in (Cao, 2012), a thiophene benzimidazole (GSK
461364A), two dihydropteridinone derivative (BI 2536 and BI
6727), a benzy styryl sulfone (ON01910) and an isoxazolopyri-
dines. Such external set, formed by three compounds with similar
core structure to the training set (congeneric, imidazopyridines
and GSK161364A) and four novel compounds structurally diverse
to the training set (BI 2536, BI 6727, ON01910 and isoxazolopyri-
dines), displayed moderate to high activity (6.5229 6 pIC50

6 9.0970; Table 3). These compounds were intentionally selected
since they have a range of activity paralleling those used in the
training and test set during the model building and because we
recognized in them electrostatic, steric and hydrophobic factors
that can give approximately the same contribution in the interac-
tion with PLK1 as in the analysis for TP and IP derivatives.

Table 3 lists the predicted activity values for the external data
set along with their leverage values (hi) and standardized residuals
(ri). According to our calculations, Eq. (1) predicted high and low
pIC50 values reasonably well and all compounds (congeneric and
novels) were inside the applicability domain of the training set.
In fact, the leverage values of the compounds are lower than the
critical value (h� = 0.173) and ri < 3. Then, all chemicals are cor-
rectly predicted and the capability of detecting novel structures
confirms our assumption about the structural factors that mediate
the inhibitory activity over PLK1.

These results demonstrate that the developed model for inhib-
itory activity was adequate and can be considered an effective tool
for new ‘in silico’ inhibitors discovery.



Table 3
Plk1 kinase inhibitors selected as external test set.

Molecule Exp. pIC50 Pred. pIC50 hi ri

8.1550 7.5465 0.036 1.36

6.5229 7.5234 0.036 �2.23

8.6990 8.3011 0.053 0.89

9.0970 8.5112 0.085 1.30

9.0605 8.4220 0.151 1.42

8.0222 8.3749 0.079 �0.79

7.2924 6.7508 0.176 1.20
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4. Conclusion

The inhibitory activity of 103 thiophene benzimidazole (TP) and
33 imidazopyridine (IP) derivatives against Polo-Like Kinase 1
(PLK1) was quantitatively analyzed in terms of a wide set of chemo-
metric descriptors. Before modeling, a procedure of chemical data
curation was applied to enable the development of reliable and pre-
dictive QSAR models. Our analysis suggested that QSAR methods can
be applied any difficulty on the entire dataset of 136 compounds.

Two methodologies were used to split the original chemical
data set into training and test sets, and the consequences on the
models performance were analyzed.
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A model with an optimistic predictive performance was
obtained with the training set selected using D-optimal design
and the 3D descriptor space along with activity values.

The model was applied to predict pIC50 for seven related com-
pounds which were not included in model building.

The predictive ability of the combination of variables RDF035m,
ASyV2, Small_RSI_Mol, E2v, and Mor02p, ðR2

test ¼ 0:71; Q2 ¼ 0:69Þ,
highlighted the importance of the molecular size and shape, and
the steric interactions in modeling the studied property.

From a detailed examination of the correlations found, we rec-
ognized that a potent inhibitor of PLK1 is described as a structure
with a subtle balance between steric, hydrophobic and electro-
static factors which could play an important role in the binding
affinity to the PLK1 active site. Similar results were also identified
as guidelines for optimization strategies in previous SAR studies.
Then, the proposed model can be utilized to design and predict
new potent compounds as PLK1 inhibitor candidates, and to dis-
cover compounds with novel scaffolds that can act as PLK1 inhib-
itors via similar mechanisms.
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