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Running title: Discrimination of black and green teas with PTR-ToF-MS

Highlights

 101 teas, both leaves and infusions, of different origins have been analysed by PTR-ToF-MS
 Black and green teas were separated based on VOC emissions
 The volatile profiles of teas are highly affected by type and brewing process
 Multivariate data analyses indicate a possible classification according to geographical origin
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Volatile profiles of 63 black and 38 green teas from different countries were analysed with Proton

Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) both for tea leaves and tea

infusion. The headspace volatile fingerprints were collected and the tea classes and geographical

origins were tracked with pattern recognition techniques. The high mass resolution achieved by ToF

mass  analyser  provided determination of sum formula and tentative identifications  of the mass

peaks.   The  results  provided  successful  separation  of  the  black  and  green  teas  based  on their

headspace  volatile  emissions  both  from  the  dry  tea  leaves  and  their  infusions.  The  volatile

fingerprints were then used to build different classification models for discrimination of black and

green teas according to their  geographical origins.  Two different cross validation methods were

applied and their effectiveness for origin discrimination was discussed. The classification models

showed a separation of black and green teas according to geographical origins the errors being

mostly between neighbouring countries.  

Key words: tea aroma, tea leaf, tea infusion, volatile profiling, headspace volatile fingerprinting,

geographic origin classification 

1 Introduction

In tea production, the leaves of the tea plant Camellia sinensis are used as the same starting material

but the differences in the processing techniques result in a wide range of characteristic teas with

distinct sensory properties. According to the way of processing, teas are usually classified into three

big groups based on their fermentation degrees: non-fermented (green and white), semi-fermented

(oolong) and fully fermented (black tea including pu-erh tea) [1]. There are several tea producing

countries in the world. The main five tea producing countries are  China, India, Kenya, Sri Lanka

and  Turkey [2].  Each  country has  different  regions  with  their  own climate  and  tea  processing

methods which characterize color, appearance and flavor of the final product. For this reason, most
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tea products are marketed with the indication of the production region for product authentication

and valorization.

Aroma compounds play an important role for consumer preferences and perception of tea. Starting

with the fresh tea leaves, which have a greenish and unripe odour, the characteristic tea aroma is

developed during tea leaves processing. The most investigated volatile compounds (VOCs) in tea

mainly consist of non-terpenoid and terpenoid components; the former are products of fatty acid

degradation and provide the fresh green flavour, the latter are mostly monoterpene alcohols which

give a floral sweet aroma [3, 4]. 

Various studies have been conducted in the field of tea aroma research as recently reviewed by Yang

et al. (2013) [5]. In short, gas chromatography-mass spectrometry (GC-MS) is generally used as a

reference method in order to identify and quantify VOCs. The odour characteristics of volatiles

have  been  detected  with  aroma  dilution  and  GC-olfactometry;  and  recently  electronic  nose

techniques have been used for fast analysis of tea aroma. These methods have allowed analysing the

volatile  profiles  of  teas  at  different  fermentation  degrees  and also to  classify green,  black  and

oolong teas according to their geographical origins [6-11]. Among them, GC-MS has turned out to

be  the  most  accurate  and  effective  method  for  identification,  separation  and  quantification  of

volatile compounds; however it requires capturing volatiles by various extraction methods which

are generally time consuming and their efficiency depends on the characteristics and limitations of

the analytical approach (e.g. the absorption and desorption of volatiles from a specific material in

the case of SPME)[12]. 

To link sensory perception of tea with instrumental data, direct and non-destructive instrumental

analysis of volatiles can be considered to be the most appropriate approach because it provides a

direct estimation of the VOCs released of from tea and that reach the human olfactory system. In

this regard, proton transfer reaction-mass spectrometry, PTR-MS, provides an efficient approach as

a direct injection, soft chemical ionization method for the analysis of VOCs at trace levels. The

direct  injection  method requires  no sample pre-treatment  which  allows real-time monitoring  of
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VOCs [13, 14] without making any changes in the volatile composition of samples. The technique

uses H3O+ ions for protonation of VOCs with proton affinities higher than that of water which can

be further analysed by a quadruple or a time-of-flight (ToF) mass analyser [15]. ToF mass analysers

provide high sensitivity that leads to detection of volatiles at ppt levels and high mass resolution

which allows, in most cases, the identification of the sum formula of the observed peaks [13]. 

PTR-MS allows  collecting  the  overall  mass  spectral  fingerprints  of  the  samples  which  can  be

further processed with advanced data analysis tools for successful discrimination and classification

of the food products [16]. To the best of our knowledge, neither a study has been conducted on the

analysis of volatile compounds emitted from various tea types by PTR-MS nor was this method

applied for discrimination of teas from different geographical origins.

With this study, we aim to apply PTR-ToF-MS, for the first time, for aroma profiling of black and

green tea samples, both leaves and brew, from different countries and to investigate the possibility

of origin tracing on the basis of their geographical origins with the aid of chemometric tools.

2 Materials and Methods

2.1 Tea samples

In total, 101 commercially available pure tea samples, without addition of flavouring agents, from

16 different countries (Table 1) were purchased from the market; 63 black teas and 38 green teas.

The samples were stored in their original bags at room temperature before analysis. Trademarks and

producers were kept confidential but the commercial names, origins and other characteristics of the

tea samples are provided in Supplementary material S1.

2.2 Analysis of tea volatiles by PTR-ToF-MS

The volatile compounds of dry tea leaves and their infusions were analysed by PTR-ToF-MS by

direct injection headspace analysis without destructing the original samples. For the analysis of dry

tea leaves, 500 mg tea leaves were weighted into 22-ml glass vials (Supelco, Bellefonte, PA) and 3
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replicates were prepared for each tea sample. Tea brewing was performed by applying a 3 min fixed

infusion time for all tea samples. Deionized hot water (25 ml, 85°C) was used for brewing of tea

leaves (400 mg) in 40 ml amber vials (Supelco, Bellefonte, PA). The liquid infusion was taken right

after brewing by a micropipette and 2 ml of aliquots were transferred into 22-ml glass vials. Each

tea sample was brewed 3 times and each brew was analysed in duplicate.

The  headspace  measurements  were  performed  by  using  a  commercial  PTR-ToF-MS  8000

instrument (Ionicon Analytik GmbH, Innsbruck, Austria). The instrumental conditions in the drift

tube were set as following: drift voltage 550 V, drift temperature 110°C, drift pressure 2.33 mbar

affording an E/N value (electric field strength/gas number density) of 140 Townsend (Td, 1 Td = 10-

17 V.cm2). All the vials containing samples and blank vials (air for tea leaves and hot water for tea

brews) were incubated at 37°C for 30 min before headspace analysis. The headspace mixture was

directly injected into PTR-MS drift tube with a flow rate of 40 sscm via a PEEK tube at 110°C.

Sample injection was performed with a multipurpose autosampler (Gerstel GmbH, Mulheim am

Ruhr, Germany). A different sample was analysed every 5 min. Each sample was measured for 30 s,

at an acquisition rate of one spectrum per second. The measurement order was randomized while

measuring the volatile emissions of tea leaves and tea brews.

2.3 Data processing and analysis

2.3.1 Treatment of mass spectrometric data

Data  processing  of  ToF  spectra  included  dead  time  correction,  internal  calibration  and  peak

extraction  steps  performed according to  a  procedure  described elsewhere  [17]  to  reach a  mass

accuracy (≥0.001 Th) which is sufficient for sum formula determination. The baseline of the mass

spectra was removed after averaging the whole measurement and peak detection and peak area

extraction was performed by using modified Gaussian to fit the data [18]. Whenever a peak was

detected,  the volatile concentrations were calculated directly via the amount of detected ions in

ppbv (part per billion by volume) levels according to the formulas described by Lindinger et al.
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(1998) [13]  by assuming a constant  reaction rate  coefficient  (kR=2×10−9 cm3/s).  For  H3O+ as  a

primary ion, this introduces a systematic error for the absolute concentration for each compound

that is in most cases below 30% and can be accounted for if the actual rate constant is available

[19].

2.3.2 Selection of mass peaks

The direct injection headspace analysis of tea (leaves and infusion) samples resulted in identifying

455 mass peaks in the range 15-300 m/z. After eliminating the interfering ions (O2
+, NO+ and water

clusters)  and  their  isotopologues,  438  mass  peaks  remained  for  further  analysis.  The  signals

belonging to blank vials were subtracted from the whole data set (air from tea leaf emissions, water

from infusion emissions). A concentration threshold of 0.1 ppb was set for further reduction of noise

in  the  data  matrices.  After  this  step  257 mass  peaks  x 303 (i.e.  101 samples,  three  biological

replicates) data points were left to build the matrix containing tea leaf emissions; 162 mass peaks x

606  (i.e.  101  samples,  three  infusions,  two  analytical  replicates)  data  points  were  left  for  tea

infusion  data  matrix.  These  final  data  matrices  were  used  for  univariate  and  multivariate  data

analysis methods.

After mass peak selection and extraction, tentative peak identification was performed by using an

in-house library developed by the authors where the peak annotations were done automatically with

the scripts developed under R programming language [20]. 

2.3.3 Statistical analyses

The  significant  differences  between  tea  types  were  calculated  using  ANOVA (99% confidence

level) and the pairwise comparison was performed with Tukey’s test to highlight these differences

with letter annotations.

As a  first  step,  the  final  data  matrices  were  subjected  to  principal  component  analysis  (PCA).

Secondly, Random Forests (RF), Penalized Discriminant Analysis (PDA), Support Vector Machines
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(SVM) and Discriminant  Partial  Least  Squares  (dPLS) classification  methods  were  applied  for

sample discrimination [21] and their classification power was compared.

Two types of validation methods were tested for each classification method: a simple 6-fold cross

validation  and  Leave-Group-Out  (LGO)  cross-validation.  The  six-fold  cross-validation  was

performed by randomly dividing the whole data set into 6 folds. One of the folds was removed at

each time and used as a test set where the rest of the data (the train set) was used to build the

discriminant  method  and  predict  the  origins  of  samples.  Using  this  cross  validation  method,

analytical or biological replicates of the same tea sample can be at the same time in both the train

and test sets. With the highly flexible classification methods used in this work, this can easily leads

to overfitting the data  and to  produce biased estimates  of  classification errors.  This effect  was

verified in preliminary experiments (not shown) and the method was discarded. In the case of the

more elaborated LGO cross-validation, the analytical and biological replicates of each tea sample

were considered as a group when discriminating tea types and geographical origin. Each time, one

group was removed from the full  dataset and used as a test  set.  Mean classification errors and

confusion matrices were used to evaluate the performance of each classification method. All the

multivariate data analyses were performed by using the scripts and packages developed under R

programming language [20].

3 Results and Discussion

3.1 Volatile profiling of black and green teas and discrimination based on tea type

One-way ANOVA of the mass peaks extracted in black and green tea headspace, showed 135 mass

peaks significantly different (p<0.01 with Bonferroni correction) between emissions of black and

green tea leaves and 125 mass peaks between their infusions. Among the mass peaks extracted, 62

of them were tentatively identified as one or more volatile compounds based on their presence in

7

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

13
14



dry tea leaves and brews reported in literature. The details of the tentatively identified mass peaks

are shown in Table 2 with their average concentrations in black and green tea leaves and infusions. 

The leaves of different tea types showed greater volatile emissions as compared with infusions.

Various terpenes and their fragments dominated the volatile emission of tea leaves, followed by

esters/acids  and  aldehydes/ketones.  In  particular,  green  tea  leaves  emitted  more  terpenes  and

sulphur compounds than black teas. The most abundant volatile compounds in the headspace of

green tea infusions were sulphur compounds, aldehydes/ketones and terpenes. The headspace of

black  tea  infusions  contained  aldehydes/ketones  the  highest;  sulphur  compounds,  terpenes  and

alcohols were other most abundant chemical groups. 

Some distinct differences and similarities can be pointed out between black and green teas: the most

abundant sulphur compound detected in both tea infusions was tentatively identified as dimethyl

sulphide.  It  has  been  reported  that  this  sulphur  compound  improves  the  flavour  of  green  teas

harvested in spring [3]. The information about the season when the green teas were picked was not

available for all the tea samples but for some of the black teas. Interestingly, we observed that the

black teas that had the highest dimethyl sulphide contents were indeed picked during spring (e.g.

sample no 102, 110, and 116 in Supplementary file 1).

We observed that the percentage of total monoterpenes and their fragments in the headspace of

black tea infusions (~20%) was higher than the amount emitted from green tea infusion (~12%).

Terpenes, especially monoterpenes, are responsible for the characteristic floral odour of tea [22].

Important aroma compounds derived from breakdown of carotenoids during black tea processing

like linalool, geraniol, linalool oxide and ionone [3] were also higher in the headspace of black teas

and their  infusions than in green teas.  Most of the monoterpenes and derived compounds were

significantly  lost  during  tea  brewing;  in  particular  linalool  oxide  (m/z 171.133)  in  green  tea

infusions.
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Vanillin was previously reported to be one of the compounds of highest flavour dilution factor (FD)

in black tea infusion [23]. In our study, the peak corresponding to vanillin was negligible in green

tea infusions, but clearly observable in black teas with little effect of brewing. 

When PCA was performed, the first three principal components provided a good separation of black

teas from green teas based on the volatile emissions both from dry leaves and infusions (Figure 1a,

b). The first PCs explain 53.2 and 54.7% variances for the dry tea leaves and infusions, respectively.

This reflects the high variance between black and green tea volatile emissions as well as within each

tea type (black or green) depending on the different production methods and origins.   The release

mechanisms of volatiles might be influenced by matrix characteristics (i.e. leave shape and size) as

teas can be produced in various shapes. For example, the green teas can be shaped like needle,

twisted, flat, round, compressed shape or even as ground powder as a results of fixing and drying

methods. Besides, leaf disruption also occurs in cutting and rolling steps of black tea production

that leads to grading of black teas according to leaf size [22]. 

Figure 2a and 2b show score plots of the first two PCs of tea leaves and tea infusions (loadings of

the  first  two  components  of  tea  leaves  and  infusions  are  provided  in  Supplementary  file  S2).

According to these Figure 2a and 2b, some black tea samples with broken leaves (sample numbers

1, 10, 30, 43, 112, 146-148) were closely located and separated from others. These samples were

characterized by the mass peaks at m/z 59.049, 85.065, 97.065, 99.081, 111.081, 113.096, 115.074,

115.112, 139.113, 141.127 and 143.144 which were mostly attributed to aldehydes and ketones;

mass peaks at m/z 101.096 and 87.080 to alcohols and mass peak at m/z 169.126 to geranic acid in

the headspace of dry tea leaves. In addition, mass peaks; m/z 71.049 (butenal), 77.058 (propandiol),

129.099 (hexenyl formate), 127.112 (methylheptenone) had high loadings in the headspace of tea

infusions with broken leaf shape. Broken and smashed tea may release more catechins than firmly

pressed tea leaves and they may undergo heavier oxidation [24]. Broken leaves also provide a larger

surface area  during fermentation favouring enzymatic (i.e. glycosidases, fatty acid hydroperoxide
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lyase) activity for production of volatile aldehydes [25]. These findings indicate the importance of

leaf shape on volatile compound generation and their extraction during the infusion process. 

PCA showed  a  relatively  good  separation  of  black  and  green  teas  by  using  three  principal

components (Figures 1a-b, 2a-b). To be able to assess the performance of discrimination, we applied

4 classification models by using two different cross validation methods for discrimination of black

and green teas. According to LGO cross validation the average errors for classification black and

green tea leaves were 2.6, 3.9, 1.3 and 3.6 %; the average errors for classification black and green

tea infusions were 0.6, 0.2, 0.0 and 0.5 % obtained by RF, PDA, SVM and dPLS classification

models, respectively. In general, all the classification techniques showed very good classification

efficiency with an average error rate less than 4.0% for differentiating black and green tea volatile

profiles emitted from leaves and infusions. In all cases, the classification errors were lower for tea

infusions than tea leaves.

3.2 Geographical origin discrimination with supervised classification methods

The results described above highlighted significant differences between black and green tea aroma

profiles and successful separation of large number of tea samples according to tea type. However it

would more relevant to demonstrate that the volatile composition of tea might be related to its

geographical origin, as well. For this reason, we applied supervised classification methods on the

black and green tea volatile profiles in order to differentiate them according to their origins. 

To get  a  more  representative  data  set  for  classification  studies,  we selected  origins  (countries)

represented by at  least  4 different teas. Black teas from China, India, Sri Lanka and Nepal (50

samples) were included for classification of black teas; China, India, Japan and Korea (32 samples)

were  selected  for  classification  of  green  teas.  Each  classification  algorithm ended  up  with  an

average classification error and a confusion matrix where the original tea origins were compared

with the origins assigned by the classification method. The classification methods were applied on
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normalized volatile concentrations with LGO cross validation tests. The normalized concentrations

were obtained by normalizing each mass spectrum to unit area as described in [26].

The classification performances obtained by using emissions of the tea leaves and tea infusions

were similar and they provided relatively good separations which were between 30-50%. Due to the

fact that, the tea infusions are the final consumed products, in the following discussion, we will

focus on the classification models tested for black and green tea infusions.

Table 3 shows confusion matrices and the performances of the classification models applied on

black  and  green  tea  infusions.  Among  the  50  black  teas  from 4  countries  tested,  the  lowest

prediction  error  was around 32% obtained by RF;  the  same method also provided the  highest

classification performance for green tea infusions prepared by 32 samples from 4 countries. Among

the black teas, teas from Sri Lanka were classified with lowest errors followed by India, China and

Nepal. In the case of green teas, Chinese teas had the lowest error followed by Japan, India and

Korea.  The  confused  tea  samples  were  mostly  from the  neighbouring  countries.  For  instance,

Korean green teas were confused with Chinese and Japanese green teas but not with Indian green

teas with RF method. This finding is not surprising because political borders are not likely to affect

tea quality while climate, growing conditions, picking method and processing traditions [3, 22, 27]

are the key factors for differentiating tea classes and their characteristics. Unfortunately we were not

able to find better geographical indications for many samples. 

Similar  cases  have  been  reported  in  literature  with  various  classification  performances  when

different tea samples were discriminated according to geographical origin based on their volatile

profiles. Togari, Kobayashi and Aishima (1995) [10] performed the first study on the geographical

origin determination of different tea categories based on their volatile profiles. The study included

GC-MS analysis of 44 tea samples where tea volatiles were extracted by simultaneous dilution and

extraction (SDE) method by mixing the tea samples with hot water. Black teas from India (8), Sri

Lanka (4) and Japan (1) were successfully classified by supervised pattern recognition techniques,

however neither oolong (China (10) and Taiwan (4)) nor green teas (15, from different regions of
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Japan) could be classified according to origin.  Kovács et al.,  (2010) [8] applied electronic nose

technology with electronic tongue and sensory assessment for geographical origin discrimination of

five Sri Lankan teas. When electronic tongue responses of tea infusion headspace was treated with

linear discriminant analysis, 100% correct classification was obtained for middle and low elevation

regions (n=3) however two samples from high elevation showed overlapping. Ye, Zhang and Gu

(2011) [11] analysed volatile profiles of 23 green tea samples produced in two different regions of

China with SPME/GC-MS via extracting the volatiles from tea powder. They could classify the

production areas of tea samples. Lee et al. (2013) [9] analysed 24 green tea samples from 8 different

countries (China (7), India (1), Japan (6), Kenya (2), Korea (4), Sri Lanka (2), Tanzania (1) and

Vietnam (1)) with GC-SPME method nevertheless no relationship has been found between country

of origin and aroma where specific information about the samples other than origin was not known

for the tested tea samples. In another study, 38 tea samples from China (2 oolong, 2 green, 3 black),

Japan (5 green, 3 black, 2 oolong), India (5 black), Sri-Lanka (5 black), and Chinese Taipei (6

oolong, 2 black) were analyzed by GC-MS and they were classified according to their origins by

clustering  methods  [6]. Lastly,  four  varieties  of  oolong  teas  were  analysed  by  olfaction  and

gustation sensing systems, the samples were classified according to producing regions by using the

information  each sensing  system provided.  When all  information  was merged with  data  fusion

techniques, the discrimination power increased compared to individual classification performances

suggesting the possibility to use these systems with multivariate methods for discriminating and

classifying tea samples [7].   

When  our  results  and  the  literature  were  considered  together,  different  tea  types  from various

countries  can  be discriminated  to  some extent  according to  geographical  origin  based  on their

volatile emissions from dry tea leaves or tea infusions. Moreover fermented tea products are better

classified than non-fermented and semi-fermented teas which was also observed from our results

when we compare the classification efficiencies of black and green teas. 
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When black tea infusions from India (Assam (9) and Darjeeling (12)), China (Anhui (3) and Yunnan

(7)), Sri Lanka (all country) and Nepal (all country) were classified according to tea producing

regions a significant improvement on the classification performance was observed providing 15%

average error rate (confusion matrices not shown). The results indicated 4 classes: China Anhui

(class 1); Sri Lanka and India Assam (class 2) Nepal and Darjeeling (class 3) and China Yunnan

(class 4) by showing the geographically close regions in the same group.

Overall,  these  findings  point  out  that  the  regions  might  be  better  differentiators  instead  of  the

country and the regions closely located to each other share more similar properties and they are

likely to create a group. Besides, there might be other factors affecting the volatile composition of

different types of tea in addition to geographical location such as the age of the tea plant, plucking

(fine or coarse), plucking season, tea processing, packaging of tea, conditions during storage and

storage time, which should be taken into consideration. 

4 Conclusions

In this  study,  for  the first  time,  the volatile  profiles  of black and green teas  from 12 different

geographical origins were analysed by PTR-ToF-MS. The volatile compounds of a large sample set

(101 samples, with replicates, both leaves and infusions) were analysed by direct injection of the

headspace without altering the original tea components and destructing the original sample. The

high mass  resolution and sensitivity achieved by the  mass  analyser  enabled  annotation of  sum

formulas  to  the  detected  mass  peaks.  Tentative  identifications  lead  defining  important  aroma

compounds in black and green tea volatile emissions and pointed out the differences among them. 

Black and green teas were correctly classified by the volatile compounds emitted from tea leaves

and their infusions independent from their geographical origins. Classification models were built to

predict the geographical origins of black and green teas. Results provided a good separation of tea

origins;  however countries geographically close to each other were most likely to be confused.

Preliminary analysis indicated that a better discrimination of tea samples might have been achieved
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if teas were classified according to production region rather than just country of origin. This was not

feasible here, since information about production region was available only for a limited number of

samples. 

Our results showed that PTR-ToF-MS fingerprints combined with multivariate statistical techniques

provided successful evaluation of tea products. Considering the very promising results obtained so

far, in discriminating for processing and country, it seems highly warranted to collect significantly

more detailed information about the individual tea samples, for future studies. This may include e.g.

information on production region, producer, harvesting  season, post-harvest treatment and age of

the product.  It  may also be significant to investigate the effect of tea leave shape and infusion

conditions. Finally, it is also important to direct our interest towards the consumer, by analysing the

volatile compounds release from the nosespace and analysed by PTR-ToF-MS, when a tea product

is being consumed, and conducting sensory profiling as well. Combining such a large spectrum of

different data sets might currently seem to be a veritably challenging task; we believe this will need

to be approached in steps towards a more complete understanding of the factors affecting tea aroma

profiles. 
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Figures

Figure 1. 3D PCA score plots of black and green tea leaves (a) and tea infusions (b). Black and

green colours represent black and green teas, respectively. 

Figure 2. 2D PCA score plots of black and green tea leaves and infusions. Black and green colours

represent  black  and  green  teas,  respectively.  Due  to  the  good  repeatability  of  the  analytical

replicates,  PCA was built  via  averaging the replicates.  This  improved the visualization of  each
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sample. The numbers on the points indicate the sample codes given in Supplementary file S1. Table

1. Distribution of tea samples according to tea types and countries of origin

Tea Types

Country (code) Blac
k

Green

Argentina (ARG) 1 -

China (CHI) 13 15

India (IND) 25 4

Indonesia (INDO) 3 -

Japan (JAP) - 9

Kenya (KEN) 2 -

Korea (KOR) 1 4

Nepal (NEP) 4 1

Rwanda (RWA) - 1

Sri Lanka (SRI) 8 1

Tanzania (TNZ) 1 1

Turkey (TUR) 3 -

Vietnam (VIE) 1 2

Zimbabwe (ZIM) 1 -

(Total) 63 38
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Table 2. The average concentrations (ppb) of tentatively identified mass peaks in the headspace of black and green tea leaves and infusions. Peaks were selected on the basis of one-way ANOVA and the relative p-values 
are listed in the right columns.

Average concentration ± standart
deviation (ppbv)

p-value
Average concentration

± standart deviation
(ppbv)

p-value Reference

Measured 
mass

The.  
mass

Sum formula Chemical class Tentative identification
Black tea

leaves
Green tea leaves

Black tea
infusion

Green tea
infusion

33.0336 33.033 CH4OH+ Alcohols Methanol 11756±3992 9555±3826 <0.001 170±82 120±63 <0.001 [28]
45.0333 45.034 C2H4OH+ Aldehydes Acetaldehyde 804±608 265±260 <0.001 416±158 108±58 <0.001 [28]
47.0491 47.049 C2H5OH+ Alcohols Ethanol 138±152 110±360 0.345 6±14 11±18 <0.001 [28]
49.0110 49.011 CH4SH+ Sulphur compounds Methanetiol 0.9±0.5 0.5±0.3 <0.001 0.4±0.5 1.2±1.5 <0.001 [28]
59.0488 59.049 C3H6OH+ Aldeydes/ketones Propanal/acetone 340±479 265±784 0.293 115±99 92±85 0.002 [28]
61.0280 61.028 C2H4O2H+ Esters and acids Acetic acid 804±605 390±848 <0.001 2.3±4.8 6.34±17 <0.001 [29]
63.0260 63.026 C2H6SH+ Sulphur compounds Dimethylsulfide 10±8 12±12 0.191 264±289 275±299 0.675 [28]
69.0333 69.034 C4H4OH+ Furans Furan fragment 7.0±7.4 4.7±6.1 0.004 7.2±7.8 2.0±3.0 <0.001 [30]
69.0697 69.070 C5H8H+ Terpene fragment Isoprene 183±145 220±217 0.067 145±76 35±21 <0.001 n.a.
71.0489 71.049 C4H6OH+ Aldehydes Butenal 19±17 12±8 <0.001 4.6±4.0 2.2±2.3 <0.001 [31]
73.0646 73.065 C4H8OH+ Aldehydes Methylpropanal 206±143 195±565 0.811 292±159 43±26 <0.001 [29]
75.0438 75.044 C3H6O2H+ Esters and acids Propionic acid 96±103 42±42 <0.001 9.7±6.1 4.5±2.6 <0.001 [28]
79.0536 79.054 C6H6H+ Aromatic hydrocarbons Benzene 40±18 26±22 <0.001 5.3±7.3 4.1±7.7 0.043 [29]
81.0697 81.070 C6H8H+ Terpene fragment Cyclohexadiene (Terpene fragment) 612±905 423±461 0.035 29±24 9±12 <0.001 [28]
83.0854 83.086 C6H10H+ Terpene fragment Cyclohexene (Terpene fragment) 175±166 60±70 <0.001 71±63 19±23 <0.001 [28]
85.0646 85.065 C5H8OH+ Aldehydes/Ketones Pentenal/pentenone 32±33 37±37 0.229 12±9 7.5±7.6 <0.001 [24, 29, 32]
87.0431 87.044 C4H6O2H+ Ketones Butanedione 19±16 6.4±4.6 <0.001 2.7±3.1 1.3±0.7 <0.001 [29]
87.0802 87.080 C5H10OH+ Alcohols Pentenol 55±37 62±157 0.549 165±89 23±14 <0.001 [24, 29]
91.0559 91.058 C4H10SH+ Sulphur compounds Diethylsulphide/butanethiol (fragment) 7.9±3.6 4.4±2.7 <0.001 0.9±0.9 0.3±0.5 <0.001 [33]
93.0365 93.037 C3H8OSH+ Sulphur compounds Methylsulfanylethanol 8.6±3.7 5.6±2.6 <0.001 1.7±1.2 0.4±0.6 <0.001 n.a.
93.0698 93.070 C7H8H+ Aromatic hydrocarbons Toluene 55±88 34±34 0.014 5.9±7.5 2.2±2.3 <0.001 [28, 29, 32]
95.0173 95.016 C2H6O2SH+ Sulphur compounds Dimethyl sulfone (methylsulfonylmethane) 2.4±0.9 1.3±0.7 <0.001 0.2±0.3 n.d. <0.001 n.a.
95.0478 95.049 C6H6OH+ Phenols Phenol 6.5±4.8 3.8±2.1 <0.001 0.3±0.4 0.4±0.4 0.188 [34]
95.0854 95.086 C7H10H+ Terpenes Methylcyclohexadiene (α-terpinene fragment) 87±121 64±61 0.051 4.2±3.2 2.6±2.2 <0.001 [33]
96.0814 96.081 C6H9NH+ Heterocyclic compounds Ethylpyrrole 7.1±8.2 5.9±4.4 0.144 2.1±1.8 2.5±1.6 0.002 [32]
97.0282 97.028 C5H4O2H+ Aldehydes Furfural 13±12 2.9±1.9 <0.001 1.8±2.7 0.4±0.7 <0.001 [32, 33]
97.0647 97.065 C6H8OH+ Aldehydes/Furans Hexadienal/ethylfuran 19±23 19±24 0.797 25±26 8.3±8.6 <0.001 [24, 32]
99.0803 99.080 C6H10OH+ Aldehydes Hexenal/methylpentenone 19±16 15±9 0.009 21±22 4.6±2.8 <0.001 [24, 29]
101.0960 101.096 C6H12OH+ Alcohols Hexenol 24±28 10±13 <0.001 13±11 3.7±4.5 <0.001 [32, 33]
103.0755 103.075 C5H10O2H+ Esters and acids Methylbutanoic acid 12±9 11±11 0.414 1.1±1.4 0.7±1.1 0.002 [23]
105.0343 105.037 C4H8OSH+ Sulphur compounds Methional 2.0±0.8 0.4±0.4 <0.001 0.2±0.2 n.d. <0.001 [30]
105.0689 105.070 C8H8H+ Aromatic hydrocarbons Styrene/ethylbenzene/vinylbenzene 13±5 1.4±0.8 <0.001 1.0±0.7 0.1±0.3 <0.001 [9]
107.0488 107.049 C7H6OH+ Aldehydes Benzaldehyde 33±15 13±9 <0.001 9.4±5.9 1.8±1.8 <0.001 [24, 29, 33, 35]
107.0855 107.086 C8H10H+ Aromatic hydrocarbons Xylene/ethylbenzene 58±43 43±37 0.002 9 ±16 8±15 0.398 [24, 35]
109.0658 109.065 C7H8OH+ Phenols Benzyl alcohol (cresol) 3.2±1.9 1.8±1.3 <0.001 0.5±0.3 0.2±0.2 <0.001 [24, 29, 33]
109.1013 109.101 C8H12H+ Hydrocarbons Cyclooctadiene 25±29 21±17 0.154 4.0±3.5 2.3±2.2 <0.001 [29]
111.0466 111.044 C6H6O2H+ Furans Acetyl furan 3.8±3.5 2.2±1.6 <0.001 0.3±0.7 0.2±0.4 0.028 [24, 33]
111.0805 111.080 C7H10OH+ Aldehydes Heptadienal 17±20 20±24 0.213 7.3±7.2 6.4±7.4 0.120 [24, 36]
113.0960 113.096 C7H12OH+ Aldehydes Heptenal 3.3±2.5 2.6±2.2 0.010 1.6±1.3 0.7±0.7 <0.001 [24, 29, 32]
115.0738 115.074 C6H10O2H+ Ketones Caprolactone 2.5±1.7 1.2±1.0 <0.001 0.2±0.1 0.1±0.1 <0.001 [29]
115.1119 115.112 C7H14OH+ Ketones Heptanone 10±10 5.5±5.9 <0.001 3.6±2.9 1.2±1.1 <0.001 [28]
121.0291 121.028 C7H4O2H+ Terpenes cyclohexadienone (fragment) 0.8±0.4 n.d. <0.001 0.2±0.3 n.d. <0.001 [24, 29, 33]
121.0648 121.065 C8H8OH+ Aldehydes Methylbenzaldehyde - coumaran 2.5±1.2 1.1±0.6 <0.001 2.3±1.3 0.5±0.6 <0.001 [24, 32, 35]
121.1004 121.101 C9H12H+ Aromatic hydrocarbons Methylethylbenzene 8.7±6.9 7.6±6.1 0.134 0.8±0.4 0.5±0.5 <0.001 [29]
123.1170 123.117 C9H14H+ Terpenes Santene 5.6±2.3 5.9±2.3 0.242 1.2±0.5 0.7±0.4 <0.001 n.a.
127.1116 127.112 C8H14OH+ Ketones Octenone/methylheptenone 9±11 7.3±6.2 0.030 2.6±2.3 1.2±1.1 <0.001 [24, 29]
129.0901 129.091 C7H12O2H+ Esters and acids Hexenyl formate 1.7±1.1 0.8±1.1 <0.001 0.4±0.3 n.d. <0.001 [32]
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129.1276 129.127 C8H16OH+ Ketones Octanone/Dimethylcyclohexanol 2.9±2.7 2.1±1.8 0.002 1.2±1.1 0.4±0.3 <0.001 [32, 33]
131.1069 131.107 C7H14O2H+ Esters and acids Heptanoic acid/hexyl formate 9.9±9.4 8.2±11.0 0.138 2.3±2.1 1.1±1.7 <0.001 [24, 32, 33]
135.1170 135.117 C10H14H+ Aromatic hydrocarbons Methylpropylbenzene 12±14 6.2±4.9 <0.001 1.0±1.0 0.4±0.4 <0.001 [29]
136.1212 136.112 C9H13NH+ Heterocyclic compounds Butyl-pyridine/ethyl-propylpyridine 3.7±4.9 2.3±2.3 0.005 0.2±0.2 n.d. <0.001 n.a.
137.1321 137.133 C10H16H+ Terpenes Various monoterpenes 368±548 252±277 0.033 13±14 5.6±7.5 <0.001 [29, 32, 33, 36]
139.1124 139.112 C9H14OH+ Aldehydes Nonadienal 27±16 19±12 <0.001 2.8±1.5 1.3±0.9 <0.001 [29, 33, 36]
141.1271 141.127 C9H16OH+ Aldehydes Nonenal 3.2±1.5 2.5±1.2 <0.001 0.9±0.6 0.5±0.3 <0.001 [29, 36]
143.1435 143.143 C9H18OH+ Ketones/Aldehydes Nonanone/nonanal 0.9±0.9 0.6±0.4 0.002 0.8±0.8 0.3±0.3 <0.001 [24, 29]
151.1114 151.112 C10H14OH+ Terpenes Carvacrol/ safranal 1.0±0.4 0.9±0.5 0.365 0.3±0.13 0.2±0.1 <0.001 [24, 33, 36]
153.0550 153.055 C8H8O3H+ Aldehydes Vanillin, methyl salicylate 6.1±4.0 n.d <0.001 4.2±3.4 n.d. <0.001 [33, 36, 37]
153.1272 153.127 C10H16OH+ Aldehydes Decadienal 29±26 4.4±2.9 <0.001 2.9±1.9 0.6±0.5 <0.001 [36]
155.1430 155.143 C10H18OH+ Alcohols Linalool/ geraniol 2.1±1.5 1.1±1.5 <0.001 0.6±0.4 0.2±0.3 <0.001 [29, 33, 35, 36]
171.1332 171.138 C10H18O2H+ Terpenes Linalool oxide 2.9±2.6 0.2±0.1 <0.001 0.2±0.2 n.d. <0.001 [24, 29, 36]
193.1587 193.159 C13H20OH+ Terpenes Β-ionone 0.4±0.2 0.3±0.2 0.141 0.2±0.2 0.2±0.2 0.626 [29, 33, 35, 36]
195.0879 195.088 C8H10N4O2H+ Ketones Caffeine n.d. 0.2±0.1 <0.001 0.2±0.1 n.d. <0.001 [29]

n.a.: Not available, n.d. : Not detected
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Table 3. Confusion matrices showing the origin separation of black and green tea infusions for leave-group-out cross validation obtained by random

forests (RF), penalized discriminant analysis (PDA), support vector machine (SVM) and discriminant partial least squares (dPLS) classification models

Classification
method Black tea

Average Error 
rate (%) Green tea

Average Error 
rate (%)

RF Chi Ind Sri Nep Chi Ind Jap Kor
Chi 58 19 0 1

32.4

Chi 74 6 4 0

39.6
Ind 9 146 0 1 Ind 15 0 9 0
Sri 0 24 0 0 Jap 10 3 42 5
Nep 12 35 0 1 Kor 16 0 8 0

PDA Chi Ind Sri Nep Chi Ind Jap Kor
Chi 55 11 4 8

36.5

Chi 69 2 10 3

45.3
Ind 2 108 30 16 Ind 5 5 14 0
Sri 0 19 5 0 Jap 17 0 28 15
Nep 0 24 0 24 Kor 5 0 16 3

SVM Chi Ind Sri Nep Chi Ind Jap Kor
Chi 57 16 1 4

37.5

Chi 62 5 14 3

42.2
Ind 4 105 22 35 Ind 7 14 3 0
Sri 0 18 6 0 Jap 17 0 31 12
Nep 1 26 0 21 Kor 8 0 12 4

dPLS Chi Ind Sri Nep Chi Ind Jap Kor
Chi 44 12 7 15

43.3

Chi 67 0 12 5

48.4
Ind 2 101 29 24 Ind 7 4 13 0
Sri 0 19 5 0 Jap 17 0 24 19
Nep 0 27 0 21 Kor 6 0 14 4
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