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a b s t r a c t

We present a new dissimilarity, which combines connectivity and density information. Usually, connectiv-

ity and density are conceived as mutually exclusive concepts; however, we discuss a novel procedure to

merge both information sources. Once we have calculated the new dissimilarity, we apply MDS in order

to find a low dimensional vector space representation. The new data representation can be used for clus-

tering and data visualization, which is not pursued in this paper. Instead we use clustering to estimate

the gain from our approach consisting of dissimilarity + MDS. Hence, we analyze the partitions’ quality

obtained by clustering high dimensional data with various well known clustering algorithms based on

density, connectivity and message passing, as well as simple algorithms like k-means and Hierarchical

Clustering (HC). The quality gap between the partitions found by k-means and HC alone compared to k-

means and HC using our new low dimensional vector space representation is remarkable. Moreover, our

tests using high dimensional gene expression and image data confirm these results and show a steady

performance, which surpasses spectral clustering and other algorithms relevant to our work.

© 2016 Elsevier Ltd. All rights reserved.
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. Introduction

Clustering algorithms can be used to uncover unknown rela-

ions existing in a set of unlabeled data. These algorithms can

e divided into families according to their characteristics, for

xample there are partitional and hierarchical algorithms (Jain,

urty, & Flynn, 1999; Xu & Wunsch II, 2005). Similarly, hierar-

hical algorithms can be divided into agglomerative and divisive

ethods. Thus, we could make a taxonomy to categorize all

lustering methods. This classification of algorithms into “families”

hows a particular approach to clustering, one requiring many

ifferent algorithms for different kinds of data. On the contrary,

e aspire to solve many clustering tasks using a reduced number

f simple algorithms. Moreover, our main goal is to use the most

imple algorithms available. As a result, we direct our interest

nto clustering methods involving kernels (Dhillon, Guan, & Kulis,

004; Mika et al., 1999) or more general representations based

n dissimilarity matrix (Pekalska & Duin, 2008; Pekalska, Paclik,

Duin, 2002; Schölkopf, 2001). These types of methods are able

o simplify the clustering procedure by using a low dimensional

ector representation derived from the kernel or dissimilarity

atrix. There is a rich bibliography describing both groups of
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ethods including also a crossover area discussing the relation

etween kernels and dissimilarities, i.e. a formal discussion ex-

laining when a dissimilarity can be treated as a kernel and how

o proceed when it cannot (Pekalska & Duin, 2008; Schölkopf,

001; Williams, 2002). The dissimilarity proposed in this work

oes not qualify as a Mercer Kernel, hence, its decomposition

eads to a non-Euclidean space. To find an Euclidean representa-

ion approximating the original data we only consider the positive

pectra of the dissimilarity. Moreover, we only use a small subset

f the eigenvectors of the centered dissimilarity. However, we can

ccurately represent datasets formed by arbitrary shaped clusters

r high dimensional noisy data, even if the clusters do not have

pherical shape or Gaussian distribution.

As we stated above, our motivation is to reduce the complex-

ty of a clustering problem by improving the representation of the

ata. We have pursued this goal in a previous work and, as a re-

ult, we developed a penalized metric (Bayá & Granitto, 2011) that

ermitted us to cluster with a simple algorithm data having ar-

itrary shapes and high dimensionality. However, this metric could

ot overcome many of the limitations from methods based on con-

ectivity. The solution proposed in the present paper aims at: (i)

nding a lower dimensional representation of the original data and

ii) overcoming some of the limitations known to exist in connec-

ivity approaches (Bayá & Granitto, 2011). Thus, we build a new

issimilarity combining connectivity and density information as an

mprovement to methods based solely on connectivity. Next, we

pply MDS to the dissimilarity to find a new representation of the
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original data. The representation found by MDS allows us to use

any clustering algorithm without restricting us to those relying on

dissimilarity matrix. Finally, we use a simple clustering algorithm

to find groups in the new representation and compare the quality

of them with other similar algorithms.

This manuscript has the following structure: Section 2 first con-

siders previous works related to our ideas and goals. It also de-

scribes our two dissimilarity variants, the merging strategy and

other related matters. Section 3 discusses first how to set up the

parameters of our dissimilarity and then it shows the results of our

experiments on real data. Finally, Section 4 presents some conclu-

sions and considers ideas for future work.

2. Finding a new data representation

2.1. Related work

The idea of developing a method able to model the complex

relations between the patterns of a dataset is not new. There are

many dimensionality reduction methods (Belkin & Niyogi, 2003;

Roweis & Saul, 2000; Tenenbaum, De Silva, & Langford, 2000), ker-

nel methods (Mika et al., 1999) and spectral methods (Luxburg,

2007; Nadler & Galun, 2007) trying to accomplish this. Dimen-

sionality reduction target is to find a new representation using

fewer dimensions that preserves the relations existing in the orig-

inal data. The outcome from these methods can be used for visu-

alization, clustering or classification. However, applying clustering

or classification after dimensionality reduction might not have al-

ways the desired effect. Preserving the ties between the new rep-

resentation and the original data might not always be helpful to

find “good” partitions. For example, Principal Components Analysis

(James, Witten, Hastie, & Tibshirani, 2014) finds a representation

preserving ties by retaining the components with highest stan-

dard deviation, however, the components dividing data into groups

might not be those with highest standard deviation. Analogously,

the cost function used by ISOMAP (Tenenbaum et al., 2000) or LLE

(Roweis & Saul, 2000) to find a lower data representation does not

emphasize in preserving the natural differences within the data.

Our dissimilarity, on the contrary, is specially designed for clus-

tering rather than visualization, hence, it emphasizes natural dif-

ferences within the data. Therefore, after applying MDS we find a

representation making the subsequent clustering step easier.

In a previous work we developed a distance called PKNNG

(Bayá & Granitto, 2011), which we successfully used to cluster

arbitrary shaped clusters, high dimensional noisy data and data

embedded in a manifold. However, we were restricted to combine

it with a small subset of clustering algorithms since PKNNG

transformed the original data into a dissimilarity matrix. This

dissimilarity is based on a graph of neighbors, hence, it relies

only on connectivity. The components from the neighbor graph

are connected by penalized edges joining the closest components

with a single edge. Finally, the geodesic distance is calculated

between all pairs using Dijkstra’s algorithm. Since PKNNG relies

on connectivity there are cases that are too complicated or not

possible to solve, for example, a pair of overlapped spherical

clusters with Gaussian distribution. We explore the use of density

information as a possible solution to some of the limitations of

PKNNG. There is a similarity known as Evidence Accumulation by

multiple Clustering (EAC) (Fred & Jain, 2005), which is used for

clustering. However, there is a range of values for which EAC does

not behave as a good similarity because it fragments the infor-

mation to the point of rendering it useless. Fred and Jain (2005)

discuss this issue in great detail. Yet, we have found out that frag-

mented information provides us with interesting insight about the

density among neighbors. Our method aggregates this information

to PKNNG in an effort to overcome previous limitations.
Our dissimilarity is used in combination with Classical MDS

o find a more simple representation of the original data. There

re several methods that have already explored this topic, for

nstance, Xu, Hancock, and Wilson (2014) used Ricci flows to

emove artifacts rendering dissimilarity non-Euclidean. Later they

ested their corrected dissimilarity in classification problems.

olving classification problems in vector spaces derived from

issimilarities has been properly introduced by Pękalska and Duin

Pekalska & Duin, 2008; Pekalska et al., 2002). There are some

esults under particular circumstances showing that classification

sing dissimilarity based feature spaces can be better than the

nes obtained based on kernels (Kim & Duin, 2010). However, it

hould be noted that the data supporting this conclusion is re-

uced. There are other contributions related to our work pursuing

isualization rather than clustering. Isomap (Tenenbaum et al.,

000) aims to find a lower dimensional representation from a

ataset by using connectivity, connections through the shortest

ath and geodesic distance. Both Isomap and PKNNG share some

eatures, however, the penalization scheme from PKNNG opposes

o the idea of preserving geometrical relations. Instead, PKNNG

s intended for clustering, hence it penalizes non-neighboring

istances. There are methods pursuing the objective of ISOMAP

ut using different strategies to achieve it, among the most

elevant visualization/dimensionality reduction methods we can

ame: Local Liner Embedding (LLE) (Roweis & Saul, 2000), Lapla-

ian Eigenmaps (Belkin & Niyogi, 2003) and stochastic neighbor

mbedding (SNE) (Hinton & Roweis, 2003).

Our objective is to construct a dissimilarity with discriminative

roperties by aggregating two sources of information: density and

onnectivity. The discriminative properties emphasize the dissim-

larity between non-neighboring samples in order to simplify the

earch for clusters. We use three methods as basic blocks to build

ur function. The first two blocks are used to measure density by

ne of two methods: (1) EAC, which is a method based on ensem-

les of k-means (Forgy, 1965) and (2) a method based on k nearest

eighbors (Mitchell, 1997) (k-nn). The k-nn ensembles mimics the

ehavior of EAC but using an unsupervised k-nn algorithm instead.

s a result, the first and second block originate each a dissimilar-

ty variant, which estimates density in a different way. The third

uilding block is the PKNNG distance. Finally, after having our dis-

imilarity we apply classical MDS (Cox & Cox, 2000) to find a lower

imensional data representation, which we use to find clusters.

ig. 1 shows a diagram of the proposed pipeline and Section 2.3

rovides a thorough description of our approach.

.2. Finding a low dimensional data representation

Assuming there is a generic dissimilarity (D ∈ Rn×n) we would

ike to find a new vector space representation based on D. We de-

ne S = D2 and H = I − 1
n 11T

, where S is a squared dissimilarity

atrix (si j = d2
i j

), I is the identity matrix, 1 is a n × 1 vector of

nes and H is the centering matrix. We use these elements to find

new vector representation X:

B = −HSH
2

= V�V T = XXT ,
(1)

here � is a diagonal matrix containing the eigenvalues of B and V

s an orthogonal eigenvectors matrix. When B is not a semidefinite

atrix there will be negative eigenvalues in �. A discussion about

his issue and the full derivation of the previous equation can be

ound in Pekalska et al. (2002), Williams (2002) and Schölkopf

2001). Mercer’s Theorem (Cristianini and Shawe-Taylor, 2000, Sec-

ion 3.3.1) relates the eigenvalues from � to squared norms in the

ew space representation having V as a base. Hence, the existence

f negative eigenvalues amounts to negative squared distances,

hich contradicts Euclidean geometry. We solve this problem by
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Fig. 1. The diagram depicts the PK-D pipeline. A full description of PK-D can be found in Section 2.3. The low dimensional data representation found at the end of the

pipeline is used for clustering. The results section compares the clustering quality of PK-D + MDS and clustering vs. the quality of other clustering methods.
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Fig. 2. Datasets: (a) Spirals without noise, (b) Spirals with noise. MDS representa-

tions of the Spirals: (c) 2D representation of the Spirals without noise using PKNNG.

(d) 2D representation of the Spirals with noise using PKNNG. (e) 2D representation

of the Spirals with noise using PKNNG + k-means ensembles. (f) 2D representation

of the Spirals with noise using PKNNG + k-nn ensembles. The parameters used to

find these representations are discussed in Section 3.1. (For interpretation of the

references to color in this figure, the reader is referred to the web version of this

article.)
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estricting the eigenvectors from V to the k eigenvectors with

ositive eigenvalues. Then, we find our representation as:

k = Vk�
1
2

k
, (2)

here Vk ∈ Rn×k, �k ∈ Rk×k and all eigenvalues (λi ∈ �k) are

ositive (λi > 0). The actual number (q) of eigenvectors required

o find clusters with our dissimilarities is much smaller than the

umber of positive eigenvectors k (q � k). Section 3 tells how to

et the number of eigenvectors (q).

The PKNNG dissimilarity has a penalization strategy to weight

istances, hence, the dissimilarity between samples in the same

eighborhood are small but this value increases dramatically for

oints laying far apart. This kind of response makes easy to find ar-

itrary shaped structures, where clusters are separated by a small

istance. The key is that the area separating the clusters has no

amples within, thus, there are no neighboring relation between

lusters. For example, let us consider the two dimensional repre-

entation shown by Fig. 2c. This representation is based on the

oise-free Spirals from Fig. 2a. This representation from Fig. 2c re-

ults from the use of PKNNG as dissimilarity D in Eq. (1), where

= D2. Now, let us consider the spirals with noise shown by

ig. 2b. The analog representation corresponding to the use of

KNNG and MDS is illustrated by Fig. 2d. We can see that for

method solely based on connectivity it is much more difficult

o provide a representation with good discriminative capability.

herefore, we introduce the use of density information to alleviate

he influence of the noise but also as a general improvement to is-

ues related to connectivity methods. Fig. 2e and f show each one

two dimensional representation of the noisy spirals. Each panel

llustrates the response to a different density estimation method.

y contrasting Fig. 2d–f we can say that adding density informa-

ion to PKNNG reduces the damaging impact of noise. However,

stimating the density of the data is not a trivial task nor it is to

nd a proper way to aggregate it to the pairwise distance.

.3. Aggregating density and connectivity information

We have directed our attention first to EAC as a candidate to

stimate the density of the data. This similarity can be used to

luster data using a simple hierarchical algorithm, because it pro-

uces a simple representation of any complicated cluster shape or

on-Gaussian distribution. The idea proposed by Fred and Jain was

o build an ensemble using many k-means partitions, which they

sed to derive a similarity. Clustering ensembles attracted much

ttention and a lot of work has been done on the subject (Vega-

ons & Ruiz-Shulcloper, 2011). We use the ensemble algorithm

ith a different setting in order to gather local information. We

im to find small neighborhoods of samples to estimate density.

elow we present a brief description of EAC and k-nn ensembles.

EAC builds a similarity matrix T from a dataset X ⊂ Rn and

clustering algorithm. We follow Fred and Jain in the use of k-
eans as partitioning algorithm, hence, we cluster the dataset M

imes with it. Each clustering result tells us which samples of X are

rouped together. After the clustering step, EAC translates the clus-

ering information into pairwise relations. The translation is done

y counting how many times do a pair of samples (xi, xj ∈ X) ap-

ear together in the same cluster. Repeating M times the clustering

et us estimate the probability using a frequentist approach. Thus,

he probability of any two points xi and xj appearing together can

e measured by ti j = Ni j

M , where Nij counts the number of times

hat xi and xj are in the same cluster. All matrix entries (tij) of T

eet the following conditions: 0 ≤ tij ≤ 1; ti j = t ji and tii = 1. As a

esult, Matrix T can be seen as an adjacency matrix, where tij tells

he degree of connection of a pair of vertices.

Inspired by EAC we considered a similar but much faster

ethod, which is based on the k-nn algorithm. This algorithm has

unique solution for a dataset X and a value k. Thus, to gather
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useful density information we need to subsample the dataset X.

Removing a random fraction f of the data, where 0 ≤ f ≤ 1, lets

us find many variants of X that are both different to themselves

and to the original dataset. Hence, we may find different groups

of neighbors when k-nn is applied repeatedly M times. Mimicking

EAC we create a matrix T′ analog to T. The value of an element (i,

j) of T′ is found by t ′
i j

= N′
i j

M′
i j

, where N′
i j

counts the number of times

that xi and xj are mutual neighbors and M′
i j

counts the total num-

ber of times that xi and xj appear simultaneously (N′
i j

≤ M′
i j

≤ M).

Hence, when two samples (xi and xj) appear in a subsample of X

a unit is added to M′
i j

and to N′
i j

only if the two samples are mu-

tual neighbors. Thus, 0 ≤ t ′
i j

≤ 1; t′
i j

= t′
ji

and t ′
ii

= 1. Matrix T′ is an

adjacency matrix too, where each element t ′
i j

tells the degree of

connection of a vertex pair.

Next, we merge the Euclidean distance matrix (Deuc) associ-

ated with X and the density information gathered by T and T′.
With these elements we define DL = Deuc

T , where an element (i,

j) from DL can be written as dL
i j

= deuc
i j

ti j
, i.e. elementwise matrices

division. Analogously, D′L is the elementwise division of Deuc and

T′ (D′L = Deuc

T ′ ). It is important to limit the maximum value of dL
i j
,

otherwise dL
i j

→ ∞ when tij → 0. We achieve this by bounding the

minimum tij, thus, all elements tij with values lower than α are set

to α. This rule penalizes non-local points 1
α folds in terms of the

Euclidean distance. We apply this thresholding to D′L too. Fig. 1

shows the pipeline described above for both PK-D variants.

We use both versions (DL and D′L) of the Euclidean distance

with local information as input to PKNNG. Finally, we arrive to the

result we were looking for: a dissimilarity considering connectiv-

ity, achieved by PKNNG, and local density, achieved either by k-

means ensembles or by k-nn ensembles. We use the notation PK-D

I to refer to the dissimilarity using local density estimated by k-

means ensembles and PK-D II to refer to the one estimated with

k-nn ensembles. Now, we reconsider the Spirals Dataset with noise

from Fig. 2b. There are two low dimensional representations, one

illustrated by Fig. 2e (PK-D I) and the other by Fig. 2f (PK-D II).

The structures corresponding to each cluster (black, red and green)

are not compact in any of the two representations, however, the

added density information makes it easier to partition the data

with k-means. The section presenting our experimental results re-

visits these examples and supports our claim.

2.4. Ensembles matrix: a closer look

Below we discuss a few details about the ensembles matrices,

in order to describe how the matrices are constructed and the

meaning of their components. The objective of this subsection is

to clarify the density information encoding used by the adjacency

matrices T and T′.
A single k-means iteration results in the samples of X being

tagged with a label, where the tagging process is controlled by the

algorithm optimization rule. We assume that when the number of

clusters K given to k-means is greater than the number of clus-

ters existing in X, we are finding neighborhoods or high density

areas rather than clusters. Thus, the value of K is related to the

size of the neighborhood, as it gets bigger when the size of the

neighborhoods becomes smaller and so does the number of sam-

ples in those areas. After assigning each sample to a cluster we im-

pose the condition of neighbors to the samples inside each cluster,

therefore, we increment their counter Nij by one. At the end of the

process Nij counts how many times were (i, j) together. Hence,
Ni j

M

is a normalized frequency bounded by (0, 1). By using Nij we can

find the weighted mean number of neighbors of any sample (i). For
xample, N̄i = ∑
j

Ni j

M = ∑
j ti j is the sample (i) weighted mean

umber of neighbors. In the same fashion, we can derive N̄′
i
=

j

N′
i j

M′
i j

in spite of the more complex relation introduced by M′
i j

.

xpanding N̄′
i

notation:

¯′
i
=

∑

j

t ′
i j =

∑
j N′

i j∑
j M′

i j

=
∑

j N′
i j

M∑
j M′

i j

M

= 〈N′
i
〉

〈M′
i
〉 , (3)

here 〈N′
i
〉 is the mean value of N′

i j
and 〈M′

i
〉 is the mean value of

′
i j

.

There is also a link between adjacency matrices T and T′ and

robabilities. An entry from T or T′ represents the strength bonding

ample (i and j). Thus, we can find the probability that a sample

xj ∈ X) selects another sample (xi ∈ X) as its neighbor, i.e. p(i|j),

y p(i| j) = ti j∑
j ti j

and p′(i| j) = t′
i j∑
j t′

i j

. Using matrix notation we can

rite the later as P = T · D−1, where p(i|j) is element (i, j) from P

nd D is a diagonal matrix having N̄i = ∑
k tik as elements of its

iagonal, i.e. dkk = ∑
k tik. We can find P′ in the same fashion.

Matrices T and T′ and their respective normalizations P and P′
re known to be used by Spectral Clustering. Luxburg (2007) shows

hat adjacency matrices T and T′ are related to the unnormalized

aplacian and the matrices of conditional probabilities P and P′
re a particular normalization that can be interpreted as a random

alk.

. Experimental results

In this section we present the results of clustering our new vec-

or space representation obtained by: (i) calculating the dissimi-

arities PK-D I or PK-D II, (ii) applying MDS and selecting a small

roup of principal directions. We also include a group of algo-

ithms ranging from complex methods like Spectral Clustering and

ffinity Propagation to more simple but commonly used methods

ike k-means and Hierarchical Clustering. We consider simple algo-

ithms to contrast the performance given by clustering the original

ata and the representation derived from PK-D. We are also in-

luding complex algorithms to establish the general impact of our

issimilarity.

.1. Toy data

Dissimilarities PK-D I and II are formed by two elements DL, D′L
nd PKNNG. We use this subsection to show the difference in per-

ormance between the blocks forming PK-D and PK-D working as a

hole. The Toy Datasets used in this part are illustrated by Fig. 3.

he results from our experiments are shown by Figs. 4 and 5. In

ur first experiment we followed the sequence: (i) find a lower

ata representation using one of DL, D′L, PKNNG, PK-D I, PK-D II

nd the original data; (ii) clustering using k-means or Hierarchical

lustering with Ward linkage (HC-w) and (iii) comparing the clus-

ering labels with the true class labels using the Adjusted Rand

ndex (Hubert & Arabie, 1985) (ARI). Thus, the figure presenting

ur results is divided in two: left column presents the results of k-

eans and right column presents the results of HC-w. Each panel

hows in the x-axis the name of a dissimilarity with an extra suffix

.a) or (.b), where (.a) was added to those clustered with k-means

nd (.b) to those clustered with HC-w. We use this naming conven-

ion throughout the paper. The y-axis has ARI value corresponding

o a partition found by one of the two clustering algorithms. The

rst element of the x-axis is named either as k-means or HC-w

nd it corresponds to the clustering algorithm applied to the orig-

nal data. Our experiment consists of: applying dissimilarity first,

hen MDS, and finally clustering the two principal directions. The
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Fig. 3. Toy data. (a) Uniform circles, (b) Spirals with noise and (c) Rings with noise.

The noisy version of the Spirals shown by panel (b) and the noise free dataset differ

in the blue painted triangles, i.e. the samples representing noise.
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rocedure was done 30 times and the results are shown using box-

lots in Fig. 4.

The results from Fig. 5 correspond to our second set of exper-

ments. On one hand, the left column shows the value of the ARI

s. the number of neighbors used in PKNNG while the parameters

f the ensembles are fixed. On the other hand, the right column

hows the value of the ARI vs. the parameters of the ensembles
ig. 4. Distribution of ARI values for the original data and five representations. Left colum

he first element from each panel was notated as k-means or HC-w and it reports the c

ame of each dissimilarity in the x-axis has an extra suffix (.a) or (.b) informing the cluste

hroughout the paper.
hile the parameter of PKNNG is fixed. The panels from the right

olumn use a double x-axis, from top to bottom the first one is

alibrated in number of clusters for the k-means ensembles and

he second in number of neighbors for the k-nn ensembles. Finally,

heir y-axis is calibrated using the ARI. The panels from the left

ave the x-axis calibrated in number of neighbors used as a vari-

ble in PKNNG and the y-axis is calibrated using the ARI. These

esults are the outcome of averaging 10 runs of the following se-

uence: applying the dissimilarity, applying MDS and clustering a

ower data representation with two principal directions.

The results of Fig. 4 show a consistent improvement in PK-D

erformance respect to its components DL, D′L and PKNNG. There

s a single case in Fig. 4b, where PK-D II.b scores are lower than
′L.b. Yet, this kind of results are not unexpected, since under cer-

ain conditions one of the two methods might hinder the overall

erformance of the dissimilarity. In this example, the choice of the

lustering algorithm influences negatively the clustering outcome

s it can be seen by contrasting PK-D II.a and PK-D II.b. Therefore,

e can conclude that PK-D works better than its separate compo-

ents, despite a single adverse result.

The second set of experiments are related to the stability re-

pect to the parameters of PKNNG and DL or D′L. Except for the

ariability shown by Fig. 5e there are no noticeable performance

oss for the range of parameters studied. Hence, we set for the re-

aining experiments the value k used by PKNNG to 17 and the

alue of K used by the k-means ensembles to N/10, where N is the

umber of samples in the dataset. There could be examples where

/10 leads to a low average number of samples per clusters, lower
n shows clustering with k-means and right column shows clustering with HC-w.

lustering result of the corresponding algorithm when applied to the raw data. The

ring algorithm: (.a) for k-means and (.b) for HC-w. We use this naming convention
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Fig. 5. PK-D I and PK-D II settings. We include both clustering algorithms (a) k-means and (b) HC-w to evaluate the changes in clustering quality for various setups. In the

left column we show ARI values (y-axis) vs. number of neighbors (x-axis) used by PKNNG. In the right column we show ARI values (y-axis) vs. number of clusters used to

build the k-means ensembles (top x-axis) and number of neighbors used to build the k-nn ensembles (bottom x-axis).

Table 1

Main features of the real datasets. Nine datasets described by four main features:

type of data (oligonucleotide, Grayscale or RGB), number of samples (n), number

of classes (Classes), dimensionality (p), number of clusters used for k-means en-

sembles in PK-D I (PK-D I), value of k used for k-nn unsupervised ensembles in

PK-D II (PK-D II) and ensembles size (ES), which is equal for both variants. The

number of neighbors used by PKNNG was set to 17 for all datasets. ∗Each COIL

image is vectorized considering the three RGB channels to a (128 × 128 × 3) vec-

tor.

Dataset Type n Classes p PK-D I PK-D II ES

CNS Oligo 42 5 989 10 3 500

LEU Oligo 248 4 1000 20 3 500

AML-ALL Oligo 38 3 999 6 3 500

BPLC Oligo 103 4 1000 15 3 500

LUNG Oligo 197 4 1000 20 3 500

Olivetti Gray 400 40 500 100 5 200

Leaves Gray 866 3 100 100 7 200

MNIST Gray 2000 10 784 200 7 200

COIL RGB 1440 20 49,152∗ 200 2 200

t

d

v

o

t

t

u

than 5. In the event of N/10 being too low, we recommend raising

it to N/5. The parameters required for the k-nn ensembles are the

number of neighbors and f. We use 5 neighbors unless we state

otherwise and set f to 0.85 as we did in the above examples. Fi-

nally, α is set to 0.1. As we explained in Section 2.3, it limits the

lower similarity value for both k-means ensembles and k-nn en-

sembles.

3.2. Real data

We consider two domains of application: Biological and Image

data. Testing each variant of our dissimilarity requires applying

PK-D I and II to the original data; decomposing the dissimilarity

matrix with MDS and clustering a lower data representation with

a simple algorithm (k-means or HC-w). Next, we compared the

quality of our clustering results and the results of other methods.

We repeated the clustering algorithm 30 times and measured its

quality with the ARI. All datasets were clustered using k-means,

HC-w, average linkage (HC-av), affinity propagation (Aff), Spectral

Clustering with RBF (SC-RBF) and Nearest Neighbor Graph (SC-

NN) as similarity. We used scikit-learn (Pedregosa et al., 2011)

implementation of all clustering algorithms and quality measure

(ARI) and present our results using boxplots. For all the competing

algorithms we performed an exhaustive search to find the config-

uration leading to the best clustering quality, i.e. highest cRand.

As we did for the toy data, we combine PK-D I and II with k-

means or HC-w. Hence, we code the type of dissimilarity and clus-
ering algorithm with the following notation: PK-D I refers to the

issimilarity variant using k-means ensembles and PK-D II to the

ariant using k-nn ensembles. In both cases we use fixed values

f k either as the number of clusters for k-means examples or as

he value k used for the unsupervised k-nn ensembles, and we set

he value α to 0.1. On the other hand, the number of neighbors

sed by PKNNG was set to 17 for all datasets. Table 1 condenses
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he most important information about the data, which includes the

arameter settings for each dataset. Additionally, we use the suf-

xes (a) and (b), as we did in the Toy data subsection. Each suf-

x indicates the clustering algorithm: (a) k-means or (b) HC-w.

or example, the notation PK-D I.a refers to the dissimilarity vari-

nt using k-means ensembles and k-means for clustering. Finally,

e selected lower data representation with a dimensionality equal

o the number of eigenvectors used by Spectral Clustering. We

nd this to be the most simple and fair setting to compare both

ethods.

For the sake of completeness we have included in an addi-

ional file an expanded version of our experiments. This version

ncludes two Density-Based algorithms: DBSCAN (Ester, Kriegel,

ander, & Xu, 1996) and an automated clustering method by

ander, Qin, Lu, Niu, and Kovarsky (2003) based on OPTICS

Ankerst, Breunig, Kriegel, & Sander, 1999). Both algorithms

re used to cluster the original high dimensional datasets and

he low vector space representations PK-D I and PK-D II. We

lose this section with a discussion concerning all clustering

ethods.

.2.1. Biological data

Each one of the sets: ALL-ALT, LEU, CNS, BPLC and LUNG (Broad

nstitute, 1999) have been preprocessed by one or more bioin-

ormatics methods aimed to select a number of significant genes

Monti, Tamayo, Mesirov, & Golub, 2003). Each of these sets cor-

espond to a different type of cancer or tissue (BPLC). The cluster-

ng results are aimed to find if the genes selected can uncover the

ypes of cancer or tissues hidden within the genetic data. Table 1

ondenses the most important information about the data. For our

ests we have used a publicly available version of the Biological

atasets with the significant genes already selected as described by

onti et al. (2003). The files are available at Broad Institute (1999)

ancer section. Before clustering all datasets were normalized to

ero mean and unit standard deviation by row and then by col-

mn (Kluger, Basri, Chang, & Gerstein, 2003).

.2.2. Image data

We used three publicly available and well known datasets:

NIST digits (Lecun & Cortes, 1998); Olivetti faces (AT&T Labs,

992) and COIL (Nene, Nayar, & Murase, 1996). We have also

sed the Leaves dataset, which is a non-public set coming from

n agricultural study by Larese et al. (2014). In the case of

NIST digits (MNIST), we randomly selected a subset of 200

igits per class due to the size of the whole set. For the

ame reason we selected the first 20 classes from COIL-100

COIL). In both datasets the images were vectorized, thus each

ow of the dataset corresponds to an image and each column

o a pixel. No other preprocessing was applied to these two

ets.

The remaining examples, Olivetti faces and Leaves dataset, were

reprocessed before the clustering phase using bag of words (BoW)

Fei-Fei & Perona, 2005). Our BoW procedure involved first using

IFT (Lowe, 2004) to detect and compute points of interest (poi)

n each image. The number of poi in each image is variable. Then,

e created two temporary representations, one for Olivetti and an-

ther for Leaves dataset, consisting in all the images’ poi together,

.e. we concatenated the poi from each image in order to extract a

ictionary of “graphical terms”. The concatenation of poi is a sim-

le matrix concatenation since all poi have the same length, i.e.

he length of a SIFT descriptor. The dictionaries are found by clus-

ering the temporary representations with k-means. The dictionary

ize, i.e. the number of clusters used by k-means, was of 500 words

or Olivetti and of 100 for the Leaves dataset. Once the dictionaries

re determined we transform each image into a vector by associ-

ting a dictionary term with a position in the vector. So, we use
ach bin of the vector to count the number of times a term ap-

ears. Hence, according to Euclidean distance we assign each poi

o its closest term and add one to the vector position associated

ith the term. Thus, if a point of interest poii is assigned to a word

epresented by Cluster10, we add one to position 10 in the vector.

inally, we apply clustering to this new BoW representation with-

ut any further preprocessing. We used the OpenCV 2.4 SIFT im-

lementation with default parameters to generate each temporary

epresentation. Table 1 condenses the most important information

bout the data and Fig. 7 shows a diagram of the BoW preprocess-

ng method.

.2.3. Real data results

Fig. 6 illustrates our experimental results on biological data.

here are two aspects that have a negative impact in the clustering

uality: (i) the density variability within each cluster and (ii) the

igh dimensionality of the data. Both factors make these examples

o be challenging clustering tasks. As a result, we have found that

n some examples it is difficult to set the value of K required for

he ensembles methods. In the case of k-means ensembles, mostly

e used a value near K = N
10 as a rule of thumb. However, on oc-

asions this value can be too near to the actual number of clusters,

r the number of samples in the dataset could be too small. Thus,

or BPLC, AML-ALL and CNS we had to change K = N
10 to a num-

er near K = N
5 . In our tests there are two sources of variability:

i) the ensembles methods and (ii) the clustering algorithms. The

ffect of ensemble variability is shown by the high variability of

K-D II.b in BPLC and CNS. This variability cannot be attributed to

C-w because it is a deterministic algorithm. The cause is related

o f, the parameter used in PK-D II to sample the data. We can

ummarize this effect as follows: the subsampling procedure leads

o an ensemble that reduces the separation between clusters, how-

ver, this effect depends on the clustering algorithm too. This be-

omes clear as we contrast the PK-D II.a and PK-D II.b results in

PLC and CNS. In both cases PK-D II.a has higher median and less

nterquartile distance. Also, the ensembles variability is related to

ts size, Fred and Jain (2005) studied this parameter thoroughly for

-means ensembles. We have set the size of the ensemble to 500

o avoid variations due to low size. The second effect, variability

f the clustering algorithms, can be found in k-means and it can

nly be noticed in ALL-ALT. We can see that results for PK-D I.b

HC-w clustering) have less interquartile distance than for PK-D I.a

k-means clustering), thus, different results under the same data

oint to the clustering algorithm.

Most image data examples (Leaves, MNIST and COIL) show in-

eresting results (Fig. 8). In those cases affinity propagation and

pectral clustering can only perform as well as k-means and HC-

. On the other hand, PK-D I shows that it can match clusters to

lasses more accurately, thus, letting us infer that PK-D I is finding

he natural structure within the data. In a lesser degree we can say

he same from PK-D II. Finally, Leaves dataset shows that meth-

ds relying on connectivity, either ensembles of unsupervised k-nn

PK-D II) or SC, are not successful to associate clusters to classes. In

he remaining example, Olivetti faces, there is a marginal improve-

ent of PK-D II over the rest of the methods.

For the sake of completeness we have included an additional

le with expanded tests results. These experiments include two al-

orithms based on density: DBSCAN (Ester et al., 1996), noted as

BS, and an automated clustering method by Sander et al. (2003)

ased on OPTICS (Ankerst et al., 1999). Common knowledge indi-

ates that as dimensionality increases estimating density becomes

ore challenging, classical texts like Mitchell (1997) discuss this

act. Thus, we expect that an algorithm based on density probably

ould not perform well. Our suspicions, except for two cases (BCLP

nd COIL), were confirmed. Results from the additional file, see

igs 1–4, show that only DBSCAN has an acceptable performance.
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Fig. 6. Biological dataset. On each panel we show the result of one dataset. The y-axis holds the ARI values of the clustering algorithms named in the x-axis.

Fig. 7. BoW preprocessing. The diagram shows the BoW preprocessing pipeline used for Olivetti faces and Leaves dataset. See Section 3.2.2 for a description of the process.
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We complete our test by applying both DBSCAN and OPTICS to PK-

D I and PK-D II. In almost all datasets PK-D improves the clustering

quality of DBSCAN and OPTICS alone; however the results of PK-D

+ OPTICS and PK-D + DBSCAN are not as good as those from PK-D +

k-means and PK-D + HC-w. Nonetheless, we have found two unfa-

vorable cases: COIL, where PK-D I + OPTICS (PK-D I.c) and PK-D I +
BSCAN (PK-D I.d) did not work and Olivetti, where only PK-D I +

PTICS (PK-D I.c) did work. COIL and Olivetti have the vector rep-

esentations with highest dimensionality, 20 and 40 dimensions,

espectively. Yet, DBSCAN alone worked well on COIL but not in

ombination with PK-D I, which strongly suggests that data den-

ity is being distorted by the PK-D.
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Fig. 8. Image dataset. On each panel we show the results for one dataset. The y-axis holds the ARI values of the clustering algorithms named in the x-axis.
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. Discussion and concluding remarks

In this paper we presented a new dissimilarity based on con-

ectivity and density. To this end we introduced a new procedure

o aggregate connectivity and density information. This procedure

llowed us to mix PKNNG, a connectivity method, with k-means

nsembles and k-nn ensembles. We showed on toy data that the

ombination of connectivity and density was more resilient to

oise since it increased clustering quality respect to clustering

sing connectivity and density alone. We did also show that our

pproach PK-D + MDS boosted clustering quality, i.e. the same

lustering algorithm without PK-D + MDS had poorer results.

oreover, PK-D + MDS combined with k-means and HC-w sur-

assed Spectral Clustering with RBF and NN dissimilarities and

ther well known algorithms based solely on density like DBSCAN

nd OPTICS. Also, we showed that combining DBSCAN and OPTICS

ith PK-D + MDS has better results than using DBSCAN and

PTICS alone. However, these results are not as good as using

K-D + MDS combined with k-means or HC-w. The reason behind

uch improvement in clustering quality is that our procedure

K-D + MDS performs a non-linear dimensionality reduction.

he operations done to obtain DL, D′L are non-linear and so it

s PKNNG. Thus, PK-D + MDS output is able to retain the most

elevant components even if the data is not linearly separable.

s a result, clustering algorithms respond better to PK-D + MDS

han to the original data. Spectral Clustering also divides a low

imensional representation, yet the most common similarity do

ot consider both density and connectivity, therefore, on many

est cases it fails to divide the data according to the classes.

There is a constant interest in enhancing clustering methods

o tackle new and more challenging problems. Chen (2015) pro-

osed improving density clustering by using a search based on

ear neighbor influence, an idea partly inspired by near neighbors.

imilar to Chen (2015) we did explore the use of neighbors to es-

imate data density. However, our work has a different direction.

irst, because we merge density and connectivity, and second be-

ause our approach, PK-D + MDS, can use any clustering algorithm

o search for clusters. The notion of simplifying a clustering prob-

em by using an appropriate dimensionality reduction method is
ot new and has shown interesting results in the past (Song, Yang,

iadat, & Pechenizkiy, 2013). Thus, it is not uncommon to find sim-

larities with other authors. For example, Inkaya (2015b) developed

new similarity for spectral clustering by using density and con-

ectivity information. Contrary to PK-D this method has no param-

ters, which is highly positive, however, the author reports some

ssues with noisy data. Also, we have found that density and con-

ectivity information was successfully used for classification tasks

Inkaya, 2015a).

We have tested two variants of PK-D, each resulting from a

ifferent density estimation procedure and four clustering algo-

ithms. All together we have shown that PK-D + MDS boosted

lustering quality. Yet, we did not discuss how to choose the “best”

K-D variant and clustering algorithm. This could be the greatest

eakness of our approach. Yet, selecting these parameters is a

lustering validation problem, and since PK-D + MDS can lead to

on-Gaussian data distributions the problem is not an easy one.

n the past, we had addressed the problem of validating arbitrary

haped partitions (Baya & Granitto, 2013). However, the current

roblem requires to compare solutions in order to select a pa-

ameter configuration, PK-D variant and clustering algorithm. This

roblem cannot be solved by our validation procedure. We leave

s future work to develop an automated procedure to select the

est PK-D settings, clustering algorithm and number of clusters

eading to the “best” data partition. This problem is still one of the

ost interesting and difficult unsolved problems in clustering.

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.eswa.2015.12.037.
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