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1. Introduction

Throughout this paper, Lie algebras are always finite dimensional over R.
The problem of determining whether an arbitrary Lie algebra admits symplectic structures is difficult 

in general and only few convenient necessary and sufficient conditions are known. The problem is well 
understood only for some specific families of Lie algebras, for instance some subfamilies of filiform Lie 
algebras [6,11], Heisenberg Lie algebras [5], nilpotent Lie algebras associated with graphs [12], free nilpotent 
Lie algebras [3], among others.

Let n = n0 ⊃ n1 ⊃ · · · ⊃ nk−1 ⊃ nk = 0 be a filtration of a nonabelian nilpotent Lie algebra, invariant 
under the action of a reductive subalgebra g of Der(n). We say that this filtration is accurate if it verifies 
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some compatibility condition with respect to closed and exact 2-forms of n (see Definition 3.1). Any such 
filtration gives rise to g-submodules mj ⊂ n∗ (j = 1, . . . , k) that are compatible with the given filtration, 
and a family of projections Pt : Λ2n∗ → mt ∧ mk−t+1 which are associated to the decomposition Λ2n∗ =⊕

1≤i≤j≤k mi ∧mj . Our first result is Theorem 3.3 which shows that when n or R ⊕ n is symplectic and, for 
some t, dim nk−t + dim nt−1 > dim n (it is always true for t = 1), then there is an irreducible g-submodule 
U of H2(n) such that Pt(σ) �= 0 for any σ ∈ Λ2n∗ corresponding to a nonzero cohomology class in U .

This result, and Kostant’s description of the module structure of the cohomology, allow us to determine 
the set of all nilradicals of parabolic subalgebras of split real simple Lie algebras admitting symplectic 
structures as follows. As a first step we obtain in Theorem 4.2 a very explicit description of the set of 
highest weight vectors of H2(n) (here n is the nilradical of the parabolic subalgebra g �n) given by Kostant 
in his description of its g-module structure. Finally, the list of symplectic nilradicals is obtained by applying 
Theorem 3.3 to the lower central series of n and the Levi factor g.

We prove in Theorem 4.7 that if n is one of these nilradicals and either n or R ⊕ n admits a symplectic 
structure, then n belongs to the following list.

1. The abelian Lie algebras.
2. The free 2-step nilpotent Lie algebra generated by 2 or 3 elements.
3. The filiform Lie algebra of dimension 4: [X1, X2] = X3, [X1, X3] = X4.
4. {Xi, Yi, Zij : 1 ≤ i, j ≤ 2}, [Xi, Yj ] = Zij , 1 ≤ i, j ≤ 2.
5. {Xi, Yi, Zij : 1 ≤ i ≤ j ≤ n}, [Xi, Yj ] = [Xj , Yi] = Zij , 1 ≤ i ≤ j ≤ n; n = 2, 3.
6. {Xi, Yi, Zij : 1 ≤ i < j ≤ 3}, [Xi, Yj ] = −[Xj , Yi] = Zij , 1 ≤ i < j ≤ 3.
7. RX �adX

(Rn−1 ⊕ Rn−1) with adX =
( 0 0
I 0

)
.

All these Lie algebras are 2-step nilpotent, except for the 3-step filiform Lie algebra.
The results here extend those in [4] where the author obtains the list of symplectic nilradicals of Borel 

subalgebras of split real simple Lie algebras. The main tool there is a general result about symplectic 
nilpotent Lie algebras involving the spectral sequence arising from the filtration associated to its lower 
central series. This result is contained here, with different notation, as the particular case t = 1 and g = 0
of Corollary 3.5.

Taking into account how difficult is to prove the non-existence of symplectic structures, we think that 
Theorem 3.3 gives an interesting (and hopefully powerful) tool to attack this problem.

2. Symplectic structures on Lie algebras

In this section we briefly recall some basic facts about Lie algebra cohomology and present two useful 
lemmas about symplectic Lie algebras

Let g be a real Lie algebra of dimension m. The Chevalley–Eilenberg complex of g is the differential 
complex

0 −→ R −→ g∗
d1−→ Λ2g∗

d2−→ . . . . . .
dm−1−→ Λmg∗ −→ 0, (1)

where we identify the exterior product Λpg∗ with the space of skew-symmetric p-linear forms on g. Thus 
each differential dp : Λpg∗ −→ Λp+1g∗ is defined by:

dpc (x1, . . . , xp+1) =
∑

(−1)i+j−1c([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xp+1). (2)

1≤i<j≤p+1
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The first differential d1 coincides with the dual mapping of the Lie bracket [ , ] : Λ2g −→ g and d =
⊕

p dp
is a derivation of the exterior algebra Λ∗g∗ such that d2 = 0. The cohomology of (Λ∗g∗, d) is called the Lie 
algebra cohomology of g (with real coefficients) and it is denoted by H∗(g).

A given ω ∈ Λ∗g∗ is said to be closed if dω = 0 and it is said to be exact if ω = dν for some ν ∈ Λ∗g∗. 
In particular, if ω is a 2-form in g, that is ω ∈ Λ2g∗, then ω is closed if and only if (see (2))

ω([U, V ],W ) + ω([V,W ], U) + ω([W,U ], V ) = 0, for all U, V,W ∈ g, (3)

and ω is exact if and only if there is some f ∈ g∗ such that ω(U, V ) = −f([U, V ]) for all U, V ∈ g.
A symplectic structure on g is a closed 2-form ω which is also nondegenerate. It is clear that symplectic 

Lie algebras are necessarily even dimensional. If dim g = m, then a closed 2-form ω is a symplectic structure 
on g if and only if ωm/2 �= 0.

The lower central series of a Lie algebra g is {Cj(g)}, where for all j ≥ 0, Cj(g) is defined by

C0(g) = g, Cj(g) = [g,Cj−1(g)], j ≥ 1.

The upper central series of g is {Cj(g)}, where for all j ≥ 0, Cj(g) is given by

C0(g) = 0, Cj(g) = {X ∈ g : [X, g] ⊂ Cj−1(g)}, j ≥ 1.

We notice that C1(g) = [g, g] is the commutator of g and C1(g) is the center of g.
The following lemma gives an obstruction for a Lie algebra to admit symplectic structures (see [1, 

Lemma 8.1]).

Lemma 2.1. Let g = C0(g) ⊃ C1(g) ⊃ . . . and 0 = C0(g) ⊂ C1(g) ⊂ . . . be, respectively, the upper and lower 
central series of a Lie algebra g. If either g or R ⊕ g is a symplectic Lie algebra then

dim Cj(g) + dim Cj(g) ≤ dim g (4)

for all j ≥ 0.

We now assume that n is a k-step nilpotent Lie algebra, that is Ck(n) = 0 and Ck−1(n) �= 0.
Let X ∈ Ci(n) and Y ∈ Cj(n). If ω = dσ ∈ Λ2n∗ is an exact 2-form and i + j ≥ k − 1, then [X, Y ] ∈

Ci+j+1(n) = 0 and thus

ω(X,Y ) = −σ([X,Y ]) = 0. (5)

On the other hand, if ω ∈ Λ2n∗ is a closed 2-form and i + j ≥ k, then [1, Proposition 8.2]

ω(X,Y ) = 0. (6)

These observations can be expressed as follows. For each j = 1, . . . , k, let mj ⊂ n∗ be subspaces defined 
inductively so that

m1 ⊕m2 ⊕ · · · ⊕mj = {f ∈ n∗ : f |Cj(n) = 0}. (7)

In particular, n∗ = m1 ⊕m2 ⊕ · · · ⊕mk and thus

Λ2n∗ =
⊕

mi ∧mj
1≤i≤j≤k
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where mi ∧ mj denotes the skew-symmetrization of mi ⊗ mj , that is 2f(X, Y ) = f(X, Y ) − f(Y, X) if 
f ∈ mi ⊗mj and X, Y ∈ n.

The following lemma generalizes [2, Lemma 2.8] and is a straightforward consequence of (5) and (6).

Lemma 2.2. Let n be a k-step nilpotent Lie algebra and let mj, 1 ≤ j ≤ k, be as in (7). Then

ker(d : Λ2n∗ → Λ3n∗) ⊂
⊕

i+j≤k+1
1≤i≤j≤k

mi ∧mj (8)

and

image(d : n∗ → Λ2n∗) ⊂
⊕

i+j≤k
1≤i≤j≤k

mi ∧mj . (9)

3. Reductive Lie algebras acting on symplectic nilpotent Lie algebras

In this section, n is a nilpotent Lie algebra and Der(n) is its Lie algebra of derivations.
Let n = n0 � n1 � · · · � nk−1 � nk = 0 be a filtration of n, that is

[ni, nj ] ⊂ ni+j+1, 0 ≤ i, j ≤ k,

and let g be a reductive Lie subalgebra of Der(n), acting reductively on n and preserving the filtration.
As we did with the lower central series, we introduce, for each j = 1, . . . , k, g-submodules mj ⊂ n∗ defined 

inductively so that

m1 ⊕m2 ⊕ · · · ⊕mj = {f ∈ n∗ : f |nj = 0}. (10)

For each t = 1, . . . , �k/2 let

Pt : Λ2n∗ → mt ∧mk−t+1 (11)

be the projection with respect to the decomposition Λ2n∗ =
⊕

1≤i≤j≤k mi ∧ mj . It is clear that Pt is a 
g-module morphism.

Definition 3.1. We say that a filtration n = n0 � n1 � · · · � nk−1 � nk = 0 is accurate if ω(X, Y ) = 0 for all 
X ∈ ni, Y ∈ nj in the following two cases: (i) when ω is an exact 2-form and i + j ≥ k − 1, (ii) when ω is a 
closed 2-form and i + j ≥ k.

Remark 3.2. We notice the following facts.

(1) The lower central series is accurate, see (5) and (6).
(2) There are accurate filtrations other than the lower central series: for instance if n is abelian, the only 

accurate filtrations are the lower central series and n0 = n � n1 � n2 = 0 with dim n1 = 1. Also, if 
n = RT ⊕ 〈X, Y, Z〉, with [X, Y ] = Z, then n = n0 � 〈Z, T 〉 � 〈T 〉 � n3 = 0 is accurate.

(3) If n = n0 � n1 � · · · � nk−1 � nk = 0 is accurate and mj , j = 1, . . . , k, are defined as above, then (8)
and (9) hold.
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(4) If ñ = RT ⊕ n and n = n0 � n1 � · · · � nk−1 � nk = 0 is an accurate filtration of a nonabelian Lie 
algebra n such that n1 = C1(n), then

ñj =
{
RT ⊕ nj , if j = 1, . . . , t;
nj , if j = t + 1, . . . , k

defines an accurate filtration of ñ for all t = 1, . . . , �k/2, of the same length k. Indeed, on the one hand 
it easy to check that ω(X, Y ) = 0 in case (i) of Definition 3.1. On the other hand, assume that ω is a 
closed 2-form in Λ2ñ∗ and let T ∗ ∈ ñ∗ be defined by T ∗(T ) = 1 and T ∗|n = 0. Then ω = T ∗ ∧ ξ + ω0
with ω0 a closed 2-form in Λ2n∗ and ξ ∈ n∗ with ξ|C1(n) = 0 (in particular ξ|nj = 0 for j ≥ 1). Since the 
filtration of n is accurate, it is now straightforward to see that if X ∈ ñi, Y ∈ ñj with i + j ≥ k, then 
ω(X, Y ) = 0.

Theorem 3.3. Let n be a nonabelian nilpotent Lie algebra and let n = n0 � n1 � · · · � nk−1 � nk = 0 be an 
accurate filtration of n invariant under the action of a reductive subalgebra g ⊂ Der(n). Assume that either

a) n is symplectic, or
b) R ⊕ n is symplectic and n1 = C1(n).

Then, for any t = 1, . . . , �k/2 such that

dim nk−t + dim nt−1 > dim n, (12)

(in particular for t = 1) there is an irreducible g-submodule U of H2(n) such that Pt(σ) �= 0 for any σ ∈ Λ2n∗

corresponding to a nonzero cohomology class in U .

Proof. We first assume that n is symplectic and let ω be a symplectic form. Let mj , 1 ≤ j ≤ k, be as in (10). 
Since the filtration is accurate, it follows from Remark 3.2(3) that

ω =
∑

i+j≤k+1
1≤i≤j≤k

ωi,j , ωi,j ∈ mi ∧mj . (13)

Recall that the map ψ : n −→ n∗ defined as ψ(X) = ω(X, · ) is an isomorphism. Let t = 1, . . . , �k/2 be as 
in the hypothesis and let X ∈ nk−t. Then

ψ(X) =
∑

i+j≤k+1
k−t<i≤j≤k

ωi,j(X, · ) −
∑

i+j≤k+1
1≤i≤j≤k, k−t<j

ωi,j( · , X),

since the annihilator of nk−t is m1 ⊕ m2 ⊕ · · · ⊕ mk−t. Since t ≤ k/2, the first sum is empty. In the second 
sum j ≥ k + 1 − t and thus

ψ(X) = −
k∑

j=k+1−t

t∑
i=1

ωi,j( · , X).

If in addition Y ∈ nt−1, ωi,j(Y, X) = 0 for all i ≤ t − 1 and therefore

ψ(X)(Y ) = −
k∑ k+1−j∑

ωi,j(Y,X).

j=k+1−t i=t



6 L. Cagliero, V. del Barco / Differential Geometry and its Applications 46 (2016) 1–13
The only pair (i, j) satisfying t ≤ i ≤ k + 1 − j and k + 1 − t ≤ j ≤ k is (i, j) = (t, k + 1 − t) and therefore

ψ(X)(Y ) = −ωt,k+1−t(Y,X) for all X ∈ nk−t, Y ∈ nt−1. (14)

We will show now that Pt(ω) �= 0. Assume, on the contrary, that ωt,k+1−t = Pt(ω) = 0. Then (14) implies 
that

ω(X, · ) = 0, if t = 1;
ψ(nk−t) ⊂ m1 ⊕m2 ⊕ · · · ⊕mt−1, if t ≥ 2.

The case corresponding to t = 1 is a contradiction since ω is nondegenerate. In the case t ≥ 2, since ψ is 
injective, one would obtain

dim nk−t ≤ dim(m1 + m2 + . . . + mt−1) = dim n− dim nt−1

which is a contradiction to (12). Thus, we have proved that Pt(ω) �= 0.
Let V be the g-submodule of Λ2n∗ generated by ω. Since ω is closed, every element in V is closed. Let

V = V1 ⊕ · · · ⊕ Vr

be its g-module decomposition into irreducible submodules. If ω = ω1 + · · · + ωr, with ωi ∈ Vi, we may 
assume that Pt(ω1) �= 0 and thus

Pt|V1 : V1 → mt ∧mk−t+1

is an injective g-module morphism. Again, every element in V1 is closed.
If σ ∈ V1 and σ �= 0, then Pt(σ) �= 0. Since (see Remark 3.2(3))

image(d : n∗ → Λ2n∗) ∩mt ∧mk−t+1 = 0,

it follows that the cohomology class corresponding to σ is nonzero. Therefore, if π : ker(d : Λ2n∗ → Λ3n∗) →
H2(n) is the canonical projection, then π|V1 is injective and U = π(V1) satisfies the required condition.

We now assume that ñ = RT ⊕ n is symplectic and n1 = C1(n) �= 0. Let t = 1, . . . , �k/2 be as in the 
hypothesis, then it follows from Remark 3.2(4) that the filtration of ñ given by

ñj =
{
RT ⊕ nj , if j = 1, . . . , t;
nj , if j = t + 1, . . . , k

is accurate and it is also preserved by g viewed as a reductive Lie subalgebra of Der(ñ) (acting by zero on 
T ). If T ∗ ∈ ñ∗ is defined by T ∗(T ) = 1 and T ∗|n = 0, then we may choose

m̃j =
{
RT ∗ ⊕mt, if j = t;
mj , if j �= t.

Let

P̃t : Λ2ñ∗ → m̃t ∧ m̃k−t+1 = T ∗ ∧mk−t+1 ⊕ mt ∧mk−t+1.

It follows from (12) that dim ñk−t + dim ñt−1 > dim ñ and hence there is an irreducible g-submodule U of 
H2(ñ) such that P̃t(σ) �= 0 for any σ ∈ Λ2ñ∗ corresponding to a nonzero cohomology class in U . Since
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H2(ñ) = H2(n) ⊕ T ∗ ∧H1(n) � H2(n) ⊕ T ∗ ∧m1

as g-modules and P̃t(T ∗ ∧m1) = 0, it follows that U is a submodule of H2(n), and now Pt(σ) = P̃t(σ) �= 0
for any σ ∈ Λ2n∗ corresponding to a nonzero cohomology class in U . �
Remark 3.4. Theorem 3.1 in [4] is now a consequence of the theorem above. Indeed, the spectral sequence 
limit term E0,2

∞ in [4] corresponds to the image of projection P1 in Theorem 3.3, when considering g as the 
trivial subalgebra of Der(n) and the filtration given by the lower central series of n.

An immediate consequence of Theorem 3.3 and Remark 3.2(1) is the following corollary.

Corollary 3.5. Let n be a nonabelian k-step nilpotent Lie algebra such that either n or R ⊕ n is symplectic 
and let g be a reductive subalgebra of Der(n) (a possible instance is g = 0). Then, for any t = 1, . . . , �k/2
such that

dim Ck−t(n) + dim Ct−1(n) > dim n, (15)

(in particular for t = 1) there is an irreducible g-submodule U of H2(n) such that Pt(σ) �= 0 for any σ ∈ Λ2n∗

corresponding to a nonzero cohomology class in U .

4. Nilradicals of parabolic subalgebras with symplectic structures

In this section we study the existence of symplectic structures on the nilradicals n (or their trivial 
one-dimensional extensions) of parabolic subalgebras p � g1 � n of split real simple Lie algebras. We use 
Corollary 3.5 applied to the reductive Lie algebra g1 viewed as a subalgebra of Der(n).

4.1. Basic facts about parabolic subalgebras

Let g be a split real simple Lie algebra with triangular decomposition g = g− + h + g+ associated to a 
positive root system Δ+ with simple roots Π and let b = h + g+ be the corresponding Borel subalgebra 
of g. Let W be the associated Weyl group of g. Given α ∈ Δ, let sα ∈ W denote the associated reflection 
and, for w ∈ W , let 	(w) be the length of w [8, §10.3]. As usual, if γ ∈ Δ, then Xγ denotes an arbitrary 
root vector in the root space gγ . Given γ ∈ Δ and α ∈ Π let coordα(γ) denote the α-coordinate of γ when 
it is expressed as a linear combination of simple roots. Let γmax denote the unique maximal root of Δ+.

The set of parabolic Lie subalgebras of g containing b is parametrized by the subsets of the set of simple 
roots Π as follows. Given a subset Π0 ⊂ Π, the corresponding parabolic subalgebra of g is p � g1 � n where 
g1 = g

−
1 ⊕ h ⊕ g

+
1 and

Δ+
1 = {γ ∈ Δ+ : coordα(γ) = 0 for all α ∈ Π0},

Δ+
n = {γ ∈ Δ+ : coordα(γ) �= 0 for some α ∈ Π0},

g
+
1 = subspace of g+ spanned by the vectors Xγ with γ ∈ Δ+

1 ,

g
−
1 = subspace of g− spanned by the vectors X−γ with γ ∈ Δ+

1 ,

n = subspace of g+ spanned by the vectors Xγ with γ ∈ Δ+
n .

On the one hand, g1 is reductive and it can be viewed as a Lie subalgebra of Der(n) via adg. Let b1 = h +g
+
1

be the Borel subalgebra of g1 associated to b.
On the other hand, n is nilpotent and its lower central series (which coincides, after transposing the 

indexes, with the upper central series) can be described as follows [10, Theorem 2.12]. Given γ ∈ Δ, let
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o(γ) =
∑
α∈Π0

coordα(γ)

(in particular γ ∈ Δ+
n if and only if o(γ) > 0) and, for i ∈ Z, let

g(i) =
⊕
γ∈Δ

o(γ)=i

gγ . (16)

If n = C0(n) ⊃ C1(n) ⊃ · · · ⊃ Ck−1(n) ⊃ Ck(n) = 0 is the lower central series of n, then

Cj(n) =
k⊕

i=j+1
g(i), k = o(γmax) and Ck−1(n) = g(k) is the center of n. (17)

Remark 4.1. It follows from this description of the lower central series that the nilradical n is abelian if and 
only if Π0 = {α} and coordα(γmax) = 1.

If (·, ·) is the Killing form of g, then n∗ is identified with

n− = subspace of g− spanned by the vectors X−γ with γ ∈ Δ+
n

=
k⊕

i=1
g(−i).

Under this identification the dual action of g1 on n∗ becomes the adjoint action of g1 on n−. Also, if 
j = 1, . . . , k and mj is defined as in (10), then

mj � g(−j). (18)

In particular, if P = P1 is the projection considered in (11), then P becomes

P : Λ2n− → g(−1) ∧ g(−k). (19)

4.2. The 2-cohomology of the nilradicals of parabolic subalgebras

A well known result of Kostant [9] describes the irreducible g1-submodules of H2(n). In fact, up to scalars, 
the set of representatives of the b1-highest weight vectors in H2(n) is:

H2(n)hwv = {X−γ1 ∧X−γ2 ∈ Λ2n− : {γ1, γ2} = wΔ− ∩ Δ+, w ∈ W 1,2} (20)

where

W 1,2 = {w ∈ W : wΔ− ∩ Δ+ ⊂ Δ+
n and 	(w) = 2}.

The following theorem describes H2(n)hwv more precisely.

Theorem 4.2. A set of representatives of the b1-highest weight vectors in H2(n) is

H2(n)hwv = {X−α ∧X−sα(β) : α ∈ Π0, β ∈ Π and sα(β) ∈ Δ+
n }

= {X−α ∧X−β : α, β ∈ Π0, (α, β) = 0} ∪ {X−α ∧X−sα(β) : α ∈ Π0, β ∈ Π, (β, α) < 0}.
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Proof. If w ∈ W and 	(w) = 2, then w = sαsβ for some α, β ∈ Π, α �= β. Taking into account that wΔ−∩Δ+

contains exactly two elements [8, §10.3], a direct computation shows that wΔ− ∩ Δ+ = {α, sα(β)}.
Now w ∈ W 1,2 if and only if wΔ− ∩ Δ+ = {α, sα(β)} ⊂ Δ+

n . Since α and β are simple and

sα(β) = β − 2(β, α)
||α||2 α, (21)

it follows that w ∈ W 1,2 if and only if α ∈ Π0 and, in the case (β, α) = 0, β ∈ Π0. �
4.3. Symplectic nilradicals

Proposition 4.3. Let n be a nonabelian nilradical of the parabolic subalgebra of g associated to Π0. If either 
n or R ⊕ n is symplectic, then there exist α ∈ Π0 and β ∈ Π, such that gsα(β) ⊂ Ck−1(n) and (β, α) < 0.

Proof. If either n or R ⊕n is symplectic, we know from case t = 1 in Corollary 3.5 that there exists a nonzero 
b1-highest weight vector u ∈ H2(n)hwv such that P (σ) �= 0 for any representative σ of u. Let α ∈ Π0 and 
β ∈ Π be as in Theorem 4.2 the roots corresponding to u. Since X−α ∈ g(−1), it follows from (19) that

P (X−α ∧X−sα(β)) �= 0

if and only if X−sα(β) ∈ g(−k), or if and only if gsα(β) ⊂ Ck−1(n). Since n is nonabelian, it follows that k > 1
and hence sα(β) �= β. This shows that (β, α) �= 0 and being both simple roots, we obtain (β, α) < 0. �
Proposition 4.4. Given γ ∈ Δ+

n , the root space gγ is contained in Ck−1(n) if and only if coordα(γ) =
coordα(γmax) for all α ∈ Π0.

Proof. If coordα(γ) = coordα(γmax) for all α ∈ Π0 then it is clear from (17) that gγ is contained in the 
center of n.

Conversely, let γ ∈ Δ+
n be such that gγ ⊂ Ck−1(n) and assume that coordα(γ) < coordα(γmax) for some 

α ∈ Π0. Since o(γmax) = o(γ) = k− 1, there exists some β ∈ Π0 such that coordβ(γ) > coordβ(γmax) which 
is clearly not possible. �
Proposition 4.5. Let n be a nonabelian nilradical of the parabolic subalgebra of g associated to Π0. If either 
n or R ⊕ n is symplectic, then one of the following statements holds

(1) Π0 = {α} and there exists β ∈ Π such that coordα(γmax) = −2 (β,α)
||α||2 .

(2) Π0 = {α, β}, coordβ(γmax) = 1 and coordα(γmax) = −2 (β,α)
||α||2 .

In any case, (β, α) < 0.

Proof. If either n or R ⊕ n is symplectic, then it follows from Propositions 4.3 and 4.4 that there exist 
α ∈ Π0 and β ∈ Π, such that

coordα′(sα(β)) = coordα′(γmax)

for all α′ ∈ Π0. Since

sα(β) = β − 2(β, α)
2 α,
||α||
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and α and β are simple, sα(β) is a linear combination of at most two simple roots. Since coordα′(γmax) ≥ 1
for any simple root α′ it follows that Π0 contains, in addition to α, at most β.

If Π0 = {α} then we must have coordα(γmax) = −2 (β,α)
||α||2 . If instead Π0 = {α, β}, then we must 

have coordβ(γmax) = 1 and coordα(γmax) = −2 (β,α)
||α||2 . Again, since coordα(γmax) ≥ 1, it follows that 

(β, α) < 0. �
The following table shows the Dynkin diagram of each simple Lie algebra and the labels indicate the 

coordinate of the maximal root in the corresponding simple root.

An, n ≥ 1: � � . . . � � �

1 1 1 1 1

Bn, n ≥ 2: � � . . . � � > �

1 2 2 2 2

Cn, n ≥ 3: � � . . . � � < �

2 2 2 2 1

Dn, n ≥ 4: � � . . . � � �

�

1 2 2 2

1

1

E6: � � � � �

�

1 2 3 2

2

1

E7: � � � �

�

� �

2

2

3 4 3 2 1

E8: � � � �

�

� � �

2

3

4 6 5 4 3 2

F4: � � < � �

2 3 4 2

G2: � > �

3 2

All the subsets Π0 ⊂ Π giving rise to symplectic nilradicals are characterized by Remark 4.1 and Propo-
sition 4.5. These sets can be identified by reading the Dynkin diagrams. After a careful inspection of them, 
we obtain the possible Π0 for each family and we list them in Table 1. We assume that Π = {γ1, . . . , γn}
where the numbering of simple roots is as [8, Theorem 11.4] (and is in correspondence with the Dynkin 
diagrams given above).

Note that not every nilpotent Lie algebra arising from a Π0 listed above is necessarily symplectic. The 
rest of the paper is devoted to distinguish which of the candidates in Table 1 give symplectic nilradicals.

Remark 4.6. Note that if g is of type A, D or E and n is the nilradical associated to some Π0 = {α} in 
Table 1, then n is abelian since coordα(γmax) = 1 in any case (see Remark 4.1). Thus either n or R ⊕ n

is always symplectic. The same assertion is valid for g of type B and Π0 = {γ1}, and g of type C and 
Π0 = {γn}.

The next result summarizes the nilradicals admitting symplectic structures.
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Table 1
Π0 ⊂ Π corresponding to abelian nilradicals or satisfying the conditions given in Proposition 4.5.

Split real form of type Π0 = {α} Π0 = {α, β}
An, n ≥ 1 α = γk, 1 ≤ k ≤ n α = γk, β = γk+1, 1 ≤ k ≤ n − 1
Bn, n ≥ 2 α = γ1, γn α = γn, β = γn−1, n = 2
Cn, n ≥ 3 α = γn−1, γn α = γn−1, β = γn

Dn, n ≥ 4 α = γ1, γn−1, γn α = γn−1, β = γn

E6 α = γ1, γ6 ∅
E7 α = γ7 ∅
E8 ∅ ∅
F4 ∅ ∅
G2 α = γ1 ∅

Theorem 4.7. Let n be the nilradical of the parabolic subalgebra of g associated to Π0 and assume that R ⊕ n

or n is symplectic. Then g and Π0 are one of the following:

(1) g is of type A, D or E and Π0 = {α} as in Table 1, resulting n abelian;
(2) g is of type Bn and Π0 = {γ1} or g is of type Cn and Π0 = {γn}, resulting n abelian;
(3) g is of type An and Π0 = {γk, γk+1} where k is either 1 or n − 1 and n ≥ 1, or k = 2 and n = 4;
(4) g is of type Bn and Π0 = {γn} for n = 2 or n = 3;
(5) g is of type B2 and Π0 = {γ1, γ2};
(6) g is of type Cn and Π0 = {γn−1} for n = 3 or n = 4;
(7) g is of type Dn and Π0 = {γn−1, γn} for n = 4.

Proof. Throughout this proof, given a basis B of a Lie algebra, we will denote with upper indexes the 
elements of the dual basis of B.

The first and second statements are direct consequences of Remark 4.6. We consider now the remaining 
cases Π0 = {α} in types B, C and G.

• Bn: Here Π = {ε1 − ε2, . . . , εn−1 − εn, εn}, Π0 = {εn} and thus

Δ+
n = {εi : 1 ≤ i ≤ n} ∪ {εj + εk : 1 ≤ j < k ≤ n}.

This shows that n is the free 2-step nilpotent Lie algebra on n generators nn,2. We have C1(nn,2) = C1(nn,2), 
with dimension n(n −1)/2, and dim nn,2 = n +n(n −1)/2. Since the inequality dim C1(nn,2) +dim C1(nn,2) =
n(n − 1) ≤ dim nn,2 holds only if n ≤ 3, it follows from Lemma 2.1 that neither nn,2 nor R ⊕ nn,2 admit 
symplectic structures for n ≥ 4. For n = 3, n3,2 is six-dimensional and it is symplectic (see for instance [3,5]). 
On the other hand, R ⊕ n1,2 is abelian of dimension 2 and R ⊕ n2,2 is a trivial extension of the Heisenberg 
Lie algebra, both well known symplectic Lie algebras.

• Cn: Here Π = {ε1 − ε2, . . . , εn−1 − εn, 2εn}, Π0 = {εn−1 − εn} and thus

Δ+
n = {εi − εn, εi + εn : 1 ≤ i ≤ n− 1} ∪ {εi + εj , 1 ≤ i ≤ j ≤ n− 1}.

This is a 2-step nilpotent Lie algebra and the sets of roots above correspond to linearly independent ge-
nerators of n/C1(n) and C1(n) = C1(n) respectively. In this case, the inequality dim C1(n) + dim C1(n) =
n(n − 1) ≤ n(n − 1)/2 + n − 1 = dim n holds only if n ≤ 4. Therefore, it follows from Lemma 2.1 that 
neither n nor R ⊕ n admit symplectic structures for n ≥ 5. Excluding odd-dimensional Lie algebras we have 
the next two cases.

If n = 3, then n is the quaternionic Heisenberg Lie algebra, it has dimension 7, with center of dimension 
3 and B = {X1, X2, Y1, Y2} ∪ {Z11, Z12, Z22} is a basis with nonzero brackets

[Xi, Yj ] = [Xj , Yi] = Zij , 1 ≤ i ≤ j ≤ 2
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and

ω = Z12 ∧X1 + Z11 ∧X2 + Z22 ∧ Y 2 + U1 ∧ Y 1

defines a symplectic form in ñ = RU1 ⊕ n.
If n = 4, then n has dimension 12 with center of dimension 6. It admits a basis B = {Xi, Yi : 1 ≤

i ≤ 3} ∪ {Zij : 1 ≤ i ≤ j ≤ 3} with nonzero brackets

[Xi, Yj ] = [Xj , Yi] = Zij , 1 ≤ i ≤ j ≤ 3

and

ω = Z12 ∧X3 + Z13 ∧X2 + Z23 ∧X1 + Z11 ∧ Y 1 + Z22 ∧ Y 3 + Z33 ∧ Y 2

defines a symplectic form in n.

• G2: Here Π = {γ1, γ2}, Π0 = {γ1} and

Δn = {γ1, γ1 + γ2, 2γ1 + γ2, 3γ1 + γ2, 3γ1 + 2γ2}.

It tuns out that n is the free 3-step nilpotent Lie algebra on 2 generators. It is known [7] that R ⊕ n does 
not admit symplectic structures.

It only remains to consider the case Π0 = {α, β}, which occurs in types A, B, C or D.

• An: In this case Π0 = {γk, γk+1} with k = 1, . . . , n − 1 and it is straightforward to see that n is 2-step 
nilpotent, dim n/C1(n) = n and its center is of dimension k(n −k). It follows from Lemma 2.1 that symplectic 
structures may appear only for k = 1, n − 1 (any n ≥ 2) or, k = 2 if n = 4.

If k = 1 or k = n − 1, then n is odd dimensional and isomorphic to RX �adX
(Rn−1 ⊕ Rn−1) with

adX =
(

0 0
I 0

)
,

where I denotes the (n − 1) × (n − 1) identity matrix. One easily proves that R ⊕ n is symplectic for 
all n. If n = 4 and k = 2, then n is of dimension 8 with center of dimension 4. It admits a basis B =
{X1, X2, Y1, Y2} ∪ {Zij : 1 ≤ i, j ≤ 2} with nonzero brackets

[Xi, Yj ] = Zij , 1 ≤ i, j ≤ 2

and

ω = Z11 ∧X1 + Z22 ∧ Y 2 + Z12 ∧X1 + Z21 ∧X2

defines a symplectic form in n.

• B2: In this case n is the nilradical of the Borel subalgebra of g, it is 3-step nilpotent, has dimension 4 and 
it is symplectic (cf. [4]).

• Cn: Here Π = {ε1 − ε2, . . . , εn−1 − εn, 2εn}, Π0 = {εn−1 − εn, 2εn} and

Δ+
n = {2εn, εi − εn : 1 ≤ i ≤ n− 1} ∪ {εi + εn : 1 ≤ i ≤ n− 1} ∪ {εi + εj , 1 ≤ i ≤ j ≤ n− 1}.

This is a 3-step nilpotent Lie algebra, dim C1(n) = (n − 1) + n(n − 1)/2, dim C1(n) = n(n − 1)/2 and 
dim n = n + (n − 1) + n(n − 1)/2. Therefore, n satisfies (4) only for n = 3.
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When n = 3 the Lie algebra n has dimension 8 (thus R ⊕ n is not symplectic), dim C1(n) = 5 and we 
claim that it does not admit symplectic structures. Otherwise, since (15) holds for t = 2, Corollary 3.5
would imply that there is a highest weight vector in g(−2) ∧ g(−2) (see (16) and (18)) corresponding to a 
nonzero cohomology class in H2(n). However, it follows from Theorem 4.2 that the highest weight vectors 
corresponding to a nonzero cohomology class in H2(n) belong to g(−1) ∧ n−. Therefore n does not admit 
symplectic structures.

• Dn: Here Π = {ε1 − ε2, . . . , εn−1 − εn, εn−1 + εn}, Π0 = {εn−1 − εn, εn−1 + εn} and α = εn−1 + εn. In this 
case

Δ+
n = {εi − εn, εi + εn : 1 ≤ i ≤ n− 1} ∪ {εi + εj , 1 ≤ i < j ≤ n− 1}.

These are 2-step nilpotent Lie algebras with dim C1(n) = (n −1)(n −2)/2 and dim n = 2(n −1) +dim C1(n). 
It follows from Lemma 2.1 that neither n nor R ⊕n admit symplectic structures unless n ≤ 5. For n = 5 one 
can prove that any closed 2-form is degenerate. If n = 4, then n has dimension 9 with center of dimension 
3. It admits a basis B = {Xi, Yi : 1 ≤ i ≤ 3} ∪ {Zij : 1 ≤ i < j ≤ 3} with nonzero brackets

[Xi, Yj ] = −[Xj , Yi] = Zij , 1 ≤ i < j ≤ 3

and

ω = Z12 ∧X3 + Z13 ∧X2 + Z23 ∧X1 + Y 1 ∧ Y 2 + Y 3 ∧ U1

defines a symplectic form in ñ = RU1 ⊕ n. �
References

[1] O. Baues, V. Cortés, Symplectic Lie groups I–III, preprint, arXiv:1307.1629 (math.DG), 2013.
[2] C. Benson, C. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (4) (1988) 513–518.
[3] V. del Barco, Symplectic structures on free nilpotent Lie algebras, preprint, arXiv:1111.3280 (math.DG), 2011.
[4] V. del Barco, Symplectic structures on nilmanifolds: an obstruction for their existences, J. Lie Theory 24 (3) (2014) 

889–908.
[5] I. Dotti, P. Tirao, Symplectic structures on Heisenberg-type nilmanifolds, Manuscr. Math. 102 (3) (2000) 383–401.
[6] J. Gómez, A. Jiménez-Merchán, Y. Khakimdjanov, Symplectic structures on the filiform Lie algebras, J. Pure Appl. 

Algebra 156 (1) (2001) 15–31.
[7] M. Goze, A. Bouyakoub, Sur les algèbres de Lie munies d’une forme symplectique, Rend. Semin. Fac. Sci. Univ. Cagliari 

57 (1) (1987) 85–97.
[8] J. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, vol. 9, Springer-

Verlag, New York–Berlin, 1978.
[9] B. Kostant, Lie algebra cohomology and the generalized Borel–Weil theorem, Ann. Math. (2) 74 (1961) 329–387.

[10] B. Kostant, Root systems for Levi factors and Borel–de Siebenthal theory, in: Symmetry and Spaces, in: Progr. Math., 
vol. 278, Birkhäuser Boston, Inc., Boston, MA, 2010, pp. 129–152.

[11] D. Millionschikov, Graded filiform Lie algebras and symplectic nilmanifolds, Geometry, topology, and mathematical physics. 
Selected papers from S.P. Novikov’s seminar held in Moscow, Russia, 2002–2003 (2004) 259–279.

[12] H. Pouseele, P. Tirao, Compact symplectic nilmanifolds associated with graphs, J. Pure Appl. Algebra 213 (9) (2009) 
1788–1794.

http://refhub.elsevier.com/S0926-2245(16)30009-2/bib4243s1
http://refhub.elsevier.com/S0926-2245(16)30009-2/bib42452D474Fs1
http://refhub.elsevier.com/S0926-2245(16)30009-2/bib644231s1
http://refhub.elsevier.com/S0926-2245(16)30009-2/bib644233s1
http://refhub.elsevier.com/S0926-2245(16)30009-2/bib644233s1
http://refhub.elsevier.com/S0926-2245(16)30009-2/bib4454s1
http://refhub.elsevier.com/S0926-2245(16)30009-2/bib474A4Bs1
http://refhub.elsevier.com/S0926-2245(16)30009-2/bib474A4Bs1
http://refhub.elsevier.com/S0926-2245(16)30009-2/bib4742s1
http://refhub.elsevier.com/S0926-2245(16)30009-2/bib4742s1
http://refhub.elsevier.com/S0926-2245(16)30009-2/bib4875s1
http://refhub.elsevier.com/S0926-2245(16)30009-2/bib4875s1
http://refhub.elsevier.com/S0926-2245(16)30009-2/bib4B4Fs1
http://refhub.elsevier.com/S0926-2245(16)30009-2/bib4B6F31s1
http://refhub.elsevier.com/S0926-2245(16)30009-2/bib4B6F31s1
http://refhub.elsevier.com/S0926-2245(16)30009-2/bib504F2D5449s1
http://refhub.elsevier.com/S0926-2245(16)30009-2/bib504F2D5449s1

	Nilradicals of parabolic subalgebras admitting symplectic structures
	1 Introduction
	2 Symplectic structures on Lie algebras
	3 Reductive Lie algebras acting on symplectic nilpotent Lie algebras
	4 Nilradicals of parabolic subalgebras with symplectic structures
	4.1 Basic facts about parabolic subalgebras
	4.2 The 2-cohomology of the nilradicals of parabolic subalgebras
	4.3 Symplectic nilradicals

	References


