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Abstract In recent years, the importance of analyzing
the effect of genetic variations on the plant phenotypes

has raised much attention. In this paper, we describe a

procedure which can be useful to discover representa-

tive leaf vein patterns for each species or variety under

analysis. We consider three legumes, namely red bean,
white bean and soybean. Soybean specimens are also

divided in three cultivars. In total there are five leaf

vein image classes. In order to find the discriminative

patterns, we detect SIFT (Self-Invariant Feature Trans-
form) keypoints in the segmented vein images. The Bag

of Words model is built using SIFT descriptors, and

classification is performed resorting to Support Vector

Machines with a Gaussian kernel. Classification accu-

racies outperform recent results available in the litera-
ture and manual classification, showing the advantages

of the procedure. The Bag of Words model is useful

for vein patterns characterization and provides a means

to highlight the most representative patterns for each
species and variety.

Keywords Plant phenotyping · Leaf vein characteri-

zation · Legume species and varieties classification

1 Introduction

In recent years, the importance of analyzing the ef-

fect of genetic variations on the plant phenotypes has

raised much attention [17]. Moreover, last year an en-

tire special workshop was organized in conjunction with
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the European Conference on Computer Vision (ECCV
2014) dedicated exclusively to the research on computer

vision applied to plant phenotyping 1. Plant phenotyp-

ing is aimed at the characterization and quantitative

description of complex plant traits, including, among

many others, leaf characteristics.

From a biological perspective, recent studies in the

literature show correlations between venation networks

and leaf properties (for example, drought and damage

tolerance) [22,23]. Under this hypothesis, it is feasible
to think that genetic plant adaptation aimed at endur-

ing the species and varieties to the environmental con-

ditions, are reflected in their leaf vein patterns up to

some degree. This occurs even when the leaves present
similar appearance in shape, color and size.

In the case of some legumes, such as soybean, the

experts are interested in determining if there exist dif-

ferences in the venation of the different cultivars that
they handle. They cannot identify them visually, and

aim to investigate them using computational and image

analysis tools. The process of identification is difficult to

be treated manually since humans find small differences
among the cultivars, and highly variable characteristics

within each one. The process is also subjective and not

repeatable, which is why a computational procedure is

needed. Classification algorithms offer a means to au-

tomatically separate the classes and highlight relevant
features if the differences in venation are present.

In the current literature, leaf feature information

has been included in automatic plant classification pro-

cesses. Classification can be performed as long as the
features for each class are separable up to some de-

gree. Different approaches include analyzing the shape

1 Computer Vision Problems on Plant Phenotyping
(CVPPP), Zurich, September 12, 2014, http://www.plant-
phenotyping.org/CVPPP2014.
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of the leaves [12,1,4,7,5], the color and the texture [21]

or the combination of the three former traits [10,2,26].

The importance of considering vein information, in con-

junction with other features [20,8] or solely [14,16], has

also been proposed in recent works. The reported re-
sults indicate that even when the leaves share a simi-

lar appearance in shape, size, color and texture, as it

happens when dealing with several varieties within the

same species, some differences in the veins can be estab-
lished and classification can be attempted, even though

it remains as a difficult problem [13,15].

In the work by Larese et al. [13], the authors pro-
posed a method based on single classifiers and multi-

scale morphological vein and areole features to eval-

uate the automatic recognition of soybean varieties.

The species identification and the varieties identifica-

tion were treated as two separate problems. Varieties
identification is challenging since the differences in ve-

nation between the classes are not identifiable by hu-

mans. However, it is reasonable to expect some venation

differences caused by variety adaptation (e.g., draught
tolerance). Unlike previous works, the authors showed

that it is possible to find some vein differences between

the varieties. Resorting to Recursive Feature Elimina-

tion (RFE) [11] in combination with several automatic

classifiers, they estimated the importance of the traits
in order to find the most relevant ones for the char-

acterization of each class. However, the accuracies re-

ported using single classifiers in the recognition were

not very high. This may be due to the existence of sub-
tle differences between the cultivars, showing the need

to improve the procedure.

More recently [15], the authors focused on the prob-
lem of classifying leaves where the classes correspond-

ing to the species and varieties were mixed up in a

single classification task. The goal was to perform the

leaf identification both for very different leaves, such
as from different species, as well as leaves with simi-

lar appearance (leaf shape, size, color, texture), such

as from different varieties from the same species. The

authors proposed to employ hybrid consensus learning

to perform classification using multiscale morphologi-
cal and areole features, outperforming the accuracies of

previous works and human classification. Better classi-

fication methods could lead to an improved identifica-

tion of the most informative distinctive features, which
could be related to genotype differences.

In this paper, we describe a procedure which can be

useful to discover representative leaf vein patterns for
each species or variety under analysis. Similarly to pre-

vious works in the literature, we consider three legumes,

namely red bean, white bean and soybean. Soybean

specimens are also divided in three cultivars. In total

there are five leaf vein image classes.

Unlike recent works in the literature [13,15] which
limited their analysis to a central vein patch from the

leaf, we propose to use the entire venation image in-

stead for further processing. We extract local vein fea-

tures from the whole leaf pursuing to find characteristic

patterns for each species/variety, adding potential in-
formation from other locations around the center. We

still exclude the leaf contour and leaf shape dependence.

In order to find the discriminative patterns, we de-
tect SIFT (Self-Invariant Feature Transform) keypoints

in the segmented vein images. Then, we build the Bag

of Words (BoW) model using SIFT descriptors, and we

perform classification resorting to Support Vector Ma-
chines (SVM) [25] with a Gaussian kernel.

SIFT [19] is a state-of-the-art method able to iden-

tify and describe image keypoints (saliencies) under a

wide range of illumination variations, traslation, scale
and rotation, using a localized set of gradient orienta-

tion histograms.

As the number of detected SIFT keypoints is differ-
ent for each image, we use the BoW model [9] to build

a fix-sized image descriptor which stores the vein pat-

terns occurrences. In this work we show how it can be

useful for vein patterns characterization, and how we
used it to highlight the most representative patterns

for each species and variety.

Our classification accuracies outperform recent re-
sults available in the literature and manual classifica-

tion, showing the advantages of the whole procedure.

Better accuracies indicate that the method is able to

find more differences in the vein patterns between the

classes. This can be used as an exploratory tool to inves-
tigate the nature of these differences in the leaf venation

of the different species/varieties.

The contribution of this paper is two-fold. Firstly,
the proposed classification framework outperforms the

state-of-the-art results on the same dataset, specially

for the more difficult (minority) classes, augmenting the

benefit over manual classification. Secondly, the method

provides a means to detect frequent vein patterns rep-
resentative for each species and variety under study.

The rest of the paper is organized as follows. In

Section 2 we describe the dataset used in this work.
The vein segmentation procedure is detailed in Sec-

tion 3. We explain the feature extraction and classifica-

tion steps in Sections 4 and 5, respectively. We present

and discuss the experimental results as long as the com-
parison of the performances for the different algorithms

in Section 6. Finally, we draw some conclusions in Sec-

tion 7.
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2 Legume image dataset

The image dataset is composed by 866 color leaf images

provided by Instituto Nacional de Tecnoloǵıa Agrope-

cuaria (INTA, Oliveros, Argentina). It consists of 272

images of red bean leaves, 172 images of white bean

leaves (Phaseolus Vulgaris) and 422 images of soybean
leaves (Glycine max (L) Merr). The soybean images

are divided into three cultivars: 198 from cultivar #1,

176 from cultivar #2 and 48 from cultivar #3. They

correspond to the images of the two first foliage leaves
(pre-formed in the seed) of each specimen after 12 days

of seedling grow. First foliage leaves were selected since

their characteristics are less influenced by the environ-

ment. The leaves were acquired using a standard flatbed

scanner (Hewlett Packard Scanjet-G 3110) at a res-
olution of 200 pixels per inch, and the images were

stored as 24-bit uncompressed TIFF images. The abax-

ial surfaces of the leaves were scanned since veins ap-

pear stronger on this side. All the leaves lay in the same
vertical position, thus avoiding significant rotation in-

fluences.

Figure 1 shows some typical exemplars from each

one of the species and varieties which form the dataset.

The reader should notice that the differences between
individuals from some of the classes do not compensate

for the high variability also present between individ-

uals within the same class. Considering the complete

dataset, this application problem is characterized by
relatively small differences among different classes and

highly variable characteristics within each class.

3 Vein segmentation

We segmented the leaf images following the approach

described in the work by Larese et al. [16]. We worked

with the grayscale image for each leaf. We discarded
color information since we are interested in detecting

vein patterns associated to vein morphology only. The

leaf segmentation is based on the computation of the

Unconstrained Hit-or-Miss Transform (UHMT)[24]. The
UHMT is an extension of the Hit-or-Miss Transform

(HMT) for gray scale images. It extracts all the pixels

matching a certain foreground and background neigh-

boring configuration. A composite structuring element

B is employed, which is a disjoint set formed by one
structuring element that specifies the foreground config-

uration, Bfg, and one structuring element for the back-

ground setting, Bbg. The origin of the composite struc-

turing element matches the foreground. For this pur-
pose, we used the same structuring elements described

in the work by Larese et al. [16].

The UHMT is defined as

UHMTB(Y )(y) = max
{

εBfg
(Y )(y)− δBbg

(Y )(y), 0
}

,

(1)

where Y is a gray scale image with set of pixels y

and B is a composite structuring element. It can be

computed as the difference between an erosion with

Bfg, εBfg
(Y )(y), and a dilation with Bbg, δBbg

(Y )(y),

if δBbg
(Y )(y) < εBfg

(Y )(y). Otherwise it equals 0.
We computed the UHMT on five leaf scale images

(at 60%, 70%, 80%, 90% and 100% of the original im-

age size). Each UHMT image highlights a different level

of vein detail. Next, we added the five UHMTs (re-

sized to the original size) to form the combined UHMT.
This combined image highlights both small and large

veins. Finally, to obtain the segmented veins we applied

contrast enhancement techniques (adaptive histogram

equalization) and umbralization (adaptive threshold-
ing). The segmented veins corresponding to the leaves

shown in Fig. 1 are depicted in Fig. 2.

The major difference from previous works in the lit-

erature [16] is that we did not crop a central vein patch,

but used the entire venation image instead for further
processing. The reason for this is the advantage pro-

vided by SIFT to extract local vein features from the

whole leaf region. This decision aims to avoid the lo-

cation restriction used in previous works, which was
limited to finding differences and patterns only in the

central part of the leaf, thus ignoring potential informa-

tion in other locations around the center. In this work

we extend the analysis to the whole leaf, while still ex-

cluding the leaf contour and keeping the feature inde-
pendence with respect to the leaf shape, as explained

in the next section.

4 Feature extraction

4.1 Scale Invariant Feature Transform (SIFT) for vein

saliencies detection and feature extraction

In order to discard keypoints associated to the leaf con-

tour and shape information, we need to skip the key-

points lying near the contour. For this purpose, we cre-

ate a binary mask by eroding a binary image of the leaf
with a square 25 × 25-pixel sized structuring element

(less than approximately the 10% of the image size).

This mask is used to limit the keypoints detection to

the inner part of the leaf blade.

We use SIFT [19] to perform the venation keypoints
detection and feature representation on the segmented

vein images, since it is robust to illumination changes,

scale, rotation, small shifts and affine transformations
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4 Mónica G. Larese, Pablo M. Granitto

Fig. 1 Sample leaves from each class. First row: Soybean (cultivar #1). Second row: Soybean (cultivar #2). Third row:
Soybean (cultivar #3). Fourth row: Red bean. Fifth row: White bean.

by means of the usage of local sets of gradient orien-

tations. SIFT has been successfully applied on binary

images in the recent literature [18]. As described in the

work by Lowe [19], SIFT is composed of four main steps,
as follows.

1. Scale-space extrema detection: The method builds

a scale-space by convolving a variable-scale Gaus-

sian with the original input image, and computes

the Difference of Gaussian (DoG) as an approxi-

mation of the Laplacian of Gaussian filter for blob
detection. After that, local extrema are searched in

both spatial and scale spaces to detect the potential

keypoints.

2. Keypoint localization: At this stage, unreliable key-
points are removed. For this purpose, keypoints hav-

ing low intensity values and keypoints corresponding

to edges are discarded.

3. Orientation assignment: In order to make the de-

scriptor invariant to rotation, for each keypoint the

method computes the orientation histogram using

the local gradient magnitudes and directions at the
points around it. A regular grid of 16×16 points over

the region is used for sampling purposes. The points

are weighted by the corresponding gradient magni-

tude and a circular Gaussian function. In this way,
the pixels closer to the center of the region (esti-

mated location of the keypoint) have higher weights.

The keypoint orientation is selected as the most fre-

quent value from the orientation histogram.

4. Keypoint descriptor: The gradient orientation is com-
puted for each sampled point, and with these val-

ues a 4 × 4 grid of gradient orientation histograms

with 8 orientation bins each is constructed. The con-

tribution of the gradient information to the spa-
tial/orientation histogram is smoothly distributed
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Finding local leaf vein patterns for legume characterization and classification 5

Fig. 2 Sample venation images from each class. First row: Soybean (cultivar #1). Second row: Soybean (cultivar #2). Third
row: Soybean (cultivar #3). Fourth row: Red bean. Fifth row: White bean.

among the adjoining bins using trilinear interpola-

tion. Finally, SIFT concatenates the histogram en-

tries as a vector of 4 × 4 × 8 = 128 features. The

vector is normalized to unit length in order to cor-
rect for illumination changes.

4.2 Building the vein pattern dictionary via a Bag of

Words (BoW) model

The number of saliencies detected on each vein image

is different, thus the number of SIFT feature vectors is
variable for each one. In order to summarize the vein

image information the BoW model is employed [9]. For

this purpose, the SIFT local descriptors are clustered

into a fixed number of clusters (vocabulary words which
determine the vocabulary size), and a normalized his-

togram of occurrences is constructed. In this way, the

variable number of SIFT feature vectors per image is

summarized by their word counts. The goal is to assign

similar SIFT feature vectors to the same cluster, which

correspond to local patches which are visually similar.

We constructed the BoW model using the SIFT fea-

ture vectors from the training images. Even though we
cluster SIFT local descriptors into vocabulary words,

there is a direct connection between the feature descrip-

tors and the keypoints or saliencies from where they

were extracted. For this reason, in the following text

we sometimes refer to the SIFT local patches instead
of feature descriptors.

In this work we tried five different vocabulary sizes,

namely 10, 50, 100, 200 and 1000 words, and compared

the performance obtained in each case. We did not con-

sider dictionary sizes greater than 1000 words (as in
object detection applications) since we are using binary

images, and thus the pixel configurations are simpler.

We used K-means as the clustering algorithm given its
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6 Mónica G. Larese, Pablo M. Granitto

simplicity and since it is one of the most popular algo-

rithms for constructing visual vocabularies [6].

5 Classification

Leaf classification was performed resorting to Support
Vector Machines (SVMs). This selection is based on

the comparably good performance achieved by SVMs

against other state-of-the-art automatic classifiers re-

ported in previous works [16,13] on the same applica-
tion problem.

Support Vector Machines (SVM) [25] is a state-of-

the-art classifier which assumes that applying an appro-
priate nonlinear mapping of the data into a sufficiently

high dimensional space, two classes can be separated

by an optimum hyperplane. This decision hyperplane

is chosen in such a way that the distance between the

nearest patterns of different classes (i.e., the margin) is
maximized.

Given a dataset D = {(xi, yi)}, formed by pairs of

features-label examples, with xi ∈ R
d, yi ∈ {−1, 1}

and i = 1, . . . , n, consider the case where the training

examples can be linearly separated. In this case, the

two classes can be separated by one of many possible

hyperplanes given by:

f(xi) = wTxi + b = 0, (2)

where w ∈ R
d and b ∈ R. A support vector classifier se-

lects the hyperplane which maximizes the margin. This

optimization problem can be posed as

min
w,b

||w||, subject to yi(w
Txi + b) ≥ 1. (3)

If the classes are not completely separable (there is over-

lap in feature space), some patterns might be allowed

to be on the opposite side of the margin by introducing

the slack variables ξ = {ξ1, ξ2, . . . , ξn}, and converting

the minimization problem in Eq. (3) into:

min
w,b

1

2
||w||2 + C

n
∑

i=1

ξi,

subject to

{

ξi ≥ 0;
yi(w

Tx+ b) ≥ (1 − ξi), ∀i,
(4)

where C is a regularization constant which controls the

trade-off between the complexity of the classifier and

the number of allowed misclassifications.

If the decision surface is required to be nonlinear, a

kernel function can be used to map the original features

into a high dimensional space, where they can be sep-

arated by a linear boundary. The kernel κ is related to

the transform θ following κ(xi,xj) = θ(xi)θ(xi). In this

case, the problem can be stated as f(xi) = wT θ(xi)+b,

and an optimization problem similar to Eq. (4) can be
derived.

In this work, we considered the Gaussian kernel:

κ(xi,xj) = exp

(

||xi − xj ||
2

2σ2

)

. (5)

Both the standard deviation σ for the Gaussian ker-

nel and the regularization parameter C were optimized

using inner validation during the training.
SVM is a binary classifier. In order to extend its use

to the present multiclass problem, we used the one-vs-

one strategy. In this strategy, k(k−1)/2 binary classifi-

cation problems are formulated between all pairs of the
k classes. The final result is obtained using a max-wins

criterion: the example is preliminary assigned to one of

two classes by each binary classifier, the corresponding

class adds a vote, and the pattern is finally classified

into the class with the maximum number of votes.
For all the experiments, we computed the average

classification accuracy after performing 10 runs of 5-fold

cross validation.

6 Experimental results

Figure 3 shows some examples of the local patches de-

tected by SIFT for a soybean leaf, a red bean leaf and

a white bean leaf. As it can be noticed from this fig-
ure, the keypoints (centers of the colored circles) are

spreaded all over the leaves except for the border of

the blade, thus avoiding the influence of the different

leaf shapes. The size of each circle represents the ex-

tension of the region of interest according to the Gaus-
sian pyramid in SIFT detection, whereas the radial line

inside each circle indicates the orientation of the gradi-

ent. Different number of patches are obtained for each

image, even for those from the same species/variety.
In Table 1 we report the mean ± standard error

of the total accuracies obtained from the 10 runs of 5-

fold cross validation, resulting from the usage of the

framework based on the combination of SIFT, BoW

and SVM, and the five different numbers of words (clus-
ters). The total accuracy per fold is computed as the

total number of correctly classified leaves in the fold

(from all the classes) divided by the total number of

examples in the fold. In addition, the lower part of Ta-
ble 1 presents previous results reported in the recent

literature [15] for reference. These results are based on

the extraction of morphological vein and areole features
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(a) (b) (c)

Fig. 3 SIFT keypoint detection on sample vein images. (a) Soybean. (b) Red bean. (c) White bean. Each color circle stands
for the size of the region of interest corresponding to the keypoint located at its center. The radial line indicates the orientation
of the gradient.

(MF) and ensembles classification (HCE and WHCE).

MF in combination with SVM is also included.

Table 2 depicts the mean ± standard error of the

per class accuracies obtained from the 10 runs of 5-

fold cross validation. The per class accuracies per fold

are computed as the total number of correctly classi-

fied leaves for each class in the fold divided by the total
number of leaves from that class in the fold. As before,

previous results in the literature are presented for ref-

erence. The manual average classification performances

and standard errors reported in [15] are also included.
In this case, five human experts were asked to manu-

ally classify the leaf veins. It is worth noticing that the

experts solved two easier problems. Instead of classify-

ing the leaves into 5 classes, they performed the clas-

sification into 3 classes, namely red bean, white bean
and soybean. In a second independent experiment, they

classified only soybean leaves into the three possible

cultivars. Manual classification accuracies are a refer-

ence baseline that measures how detectable the vein
differences are for human beings. The standard error of

manual classification reflects the variability across the

experts.

It can be noticed from the results in Table 1 that

when 100 words or more are used, the mean accuracy is

over 90%. Increasing the number of words from 200 to

1000 does not provide any benefit in terms of the mean
total accuracy. On the contrary, this accuracy is 1%

reduced when using a high-sized dictionary. This is due

to the low performance achieved with a dictionary of

1000 words in the recognition of leaves from Soybean

#3. This can be observed in Table 2, where there is

a consistent improvement of the per class accuracies

along with the increase of the dictionary size, reaching

its best performance for 1000 words, except for a big
drop for Soybean #3 (the minority class). This fact

impacts negatively in the total accuracy depicted in

Table 1, making 1000 words not appropriate for our

problem since the recognition of the minority class is
very poor (even lower than for manual classification).

It is also clear from Tables 1 and 2 that the frame-
work used in this paper highly improves the class iden-

tification, indicating that better discriminative differ-

ences are found in the features corresponding to each

species/variety. SIFT + BoW + SVM outperforms the

previous results and the manual classification for all the
cases when the dictionary size is at least of 100 words

big. The only exception is for the identification of Soy-

bean #3 using 1000 words, as previously discussed. Spe-

cially, the dictionary with 100 words has a very good
performance in detecting this cultivar, while achieving

also high accuracies for the rest of the species and soy-

bean varieties.

In Fig. 4 we show the average Bag of Words descrip-

tors for each one of the five classes using a dictionary of

100 words. It is worth noticing that the same procedure

can be applied for a different dictionary size (larger or
smaller), allowing to increase or reduce the resolution in

vein pattern discrimination. We chose 100 words since

it represents a relative manageable number of vein pat-
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8 Mónica G. Larese, Pablo M. Granitto

Table 1 Total accuracy (mean±SE) for the five-class species and varieties classification problem.

Algorithm Total accuracy
(mean±SE%)

SIFT + BoW + SVM

10 words 84.66 ± 0.40
50 words 89.16 ± 0.33

100 words 90.39 ± 0.31
200 words 91.49 ± 0.24

1000 words 90.49 ± 0.23

MF + HCE [15] 72.45 ± 0.42
MF + WHCE [15] 72.97 ± 0.44

MF + SVM [15] 71.05 ± 0.41

Table 2 Per class accuracy (mean±SE) for the five-class species and varieties classification problem.

Algorithm Per class Accuracy (mean±SE%)

RBean WBean SBean#1 SBean#2 SBean#3
(272 images) (172 images) (198 images) (176 images) (48 images)

SIFT + BoW + SVM
10 words 77.46 ± 0.95 82.21 ± 0.98 69.26 ± 1.11 43.64 ± 1.11 50.71 ± 1.96
50 words 84.82 ± 0.76 88.01 ± 0.86 72.37 ± 1.02 58.74 ± 1.14 58.11 ± 2.34

100 words 90.60 ± 0.60 93.31 ± 0.65 73.89 ± 0.83 65.59 ± 1.28 51.98 ± 2.29
200 words 93.86 ± 0.46 95.87 ± 0.54 74.34 ± 0.75 68.05 ± 1.32 47.96 ± 2.60

1000 words 97.10 ± 0.27 98.32 ± 0.30 79.28 ± 1.00 74.14 ± 0.93 28.02 ± 1.93

MF + HCE [15] 89.89 ± 0.55 86.97 ± 0.90 59.79 ± 1.05 53.13 ± 1.15 44.56 ± 2.33
MF + WHCE [15] 90.26 ± 0.54 87.26 ± 0.85 61.86 ± 1.07 53.58 ± 1.16 40.60 ± 2.08

MF + SVM [15] 89.86 ± 0.60 82.96 ± 0.91 67.31 ± 1.16 51.41 ± 1.32 9.16 ± 1.37

Manual classification [15] 83.28 ± 3.71 70.82 ± 13.15 44.95 ± 2.00 42.78 ± 5.37 43.98 ± 6.97

terns and a good classification performance at the same

time, as previously shown in Tables 1 and 2.

As a reference, we also plot in Fig. 4 two dashed

lines at the 10% and 90% of the maximum value, rep-

resenting thresholds for analyzing the most and least

frequent vein patterns occurring at each class. From the
figure it can be noticed that the most frequent patterns

are the ones corresponding to words 31, 70, 78 and 90

for white bean, 4 and 70 for red bean, and 24 for the

three soybean cultivars. Cultivar #3 also has high oc-

currences of patches from cluster 77. The five classes
have few patches from cluster 40, and soybean cultivar

#1 also from word 48. This information is summarized

in Table 3, where some word examples are included for

descriptive purposes. Cluster 40 is not included in the
table since it corresponds to an infrequent pattern for

all the classes of interest. The local patches shown in

Table 3 have different sizes and orientations since SIFT

can detect similar configurations invariantly to scale,

rotation and traslation.

In order to show in context the characteristic vi-

sual words for each class, we exemplify in Figures 5
to 7 portions of white bean, red bean and soybean

leaf veins with the different vein patterns from Table 3

highlighted in different colors. We used training images

for this purpose. For each leaf class, the most frequent

words were selected on the basis of the statistical infor-

mation provided by the average Bag of Words profiles

shown in Fig. 4, i.e., the clusters having a frequency of
over 90%. Next, from these clusters we collected some

example patches previously extracted by SIFT and cor-

responding to the same training images. These patches

were clustered according to the BoW model during the
training phase in order to construct the feature vector

(BoW profile) for each image. In Figures 5 to 7 we plot

these vein patterns in their true coordinates, colored

according to their corresponding cluster.

The information provided in Table 3 and Figures 4
to 7 could be analyzed in conjunction in an attempt to

infer the meaning of each cluster, and in this way help to

describe in more detail the vein characteristics of each

species and variety, similarities and differences between

them. As a means to exemplify this idea, and based
on the analyzed examples, we could hypothesize that

words 24 and 78 seem to be describing characteristics

related to inner parts of the veins, such as their width

and shape. On the other hand, words 31 and 70 could
be more related to configurations between neighboring

veins. Word 90 would seem to be associated to vein

loop patterns. Word 77 may be related to branching
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Fig. 4 Average Bag of Words for each one of the five plant species and varieties, including the 10% and 90% of the maximum
value (dashed lines) for a dictionary size of 100 words. First row: White bean. Second row: Red bean. Third row: Soybean
cultivar #1. Fourth row: Soybean cultivar #2. Fifth row: Soybean cultivar #3.
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patterns, while word 4 seems to be describing terminal

or border patterns in the veins.

A deeper analysis of the vein patterns is out of the

scope of this paper. On the contrary, our goal is to em-

phasize the potential of the tools employed in this work.
The relevance of the proposed framework resides in its

potential to help the specialists find local keypoint pat-

terns within the leaf venation. These local patterns are

those which better allow to discriminate between the
species and varieties. For example, the specialist could

be provided with different filters to plot in the context

of a selected image all the patterns associated to a cer-

tain cluster, or from all the most frequent clusters. The

correlation with the location of the patterns inside the
leaf could also be studied, for example, in order to see

if they are homogeneously distributed or concentrated

at certain regions (left/right sides, center/border areas,

top/bottom, etc.).
The brief analysis presented here could be extended

in many ways. Just to mention a few ideas, different

thresholds could be considered in the profiles in Fig. 4 in

order to expand the analysis to other words. Moreover,

the most discriminative patterns could be described by
computing different measures on them in order to bet-

ter understand their properties. As an exploratory tool,

the kind of analysis to be performed depends on the

specialists stated objectives.

7 Conclusions

In this paper we show how the combination of SIFT,

BoW and SVM can be used to detect relevant vein
patterns which characterize different species and vari-

eties. The classification accuracies obtained by means

of this procedure outperform previous results in the lit-

erature and manual expert classification. Better classi-

fication accuracies indicate that the automatic classi-
fier is able to detect more vein differences between the

classes. These differences are representations of local

patches spreaded all over the blade (except for the leaf

contour), extracted by SIFT and represented by BoW.
Characteristic patterns can be detected by analyz-

ing the class profiles obtained by BoW. The most fre-

quent vein patches seem to be related to different con-

figurations of vein patterns, such as loops, branching

and vein width and shape. A deeper analysis of the vein
patterns is out of the scope of this work, since we aim

to show how the employed state-of-the-art tools can be

exploited for vein characterization purposes. However,

the study can be extended depending on the demand
of Biology specialists inquiries.

Future work can be directed in several ways. One

direction may be to compare the vein patches obtained

by SIFT with other state-of-the-art feature detectors

and descriptors, such as SURF (Speeded-Up Robust

Features) [3]. Another interesting pending task consists

in studying the connections or topological relationships

between the discovered relevant vein patterns.
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Table 3 Examples of characteristic vein patterns found by the proposed procedure for each species and variety, using a
dictionary size of 100 words. ↑ represents that the pattern occurs very frequently; ↓ indicates the almost absence of the
pattern. White pixels belong to segmented veins.

White bean

Cluster 31 ↑ Cluster 70 ↑ Cluster 78 ↑ Cluster 90 ↑

Red bean

Cluster 4 ↑ Cluster 70 ↑

Soybean #1

Cluster 24 ↑ Cluster 48 ↓

Soybean #2

Cluster 24 ↑

Soybean #3

Cluster 24 ↑ Cluster 77 ↑

(a) (b)

Fig. 5 Some examples of the most frequent vein patterns found in white bean leaves using a dictionary size of 100 words,
shown in leaf vein context. Each pattern is highlighted using a different color: words 31 (red), 70 (blue), 78 (mustard) and 90
(cyan).
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(a) (b)

Fig. 6 Some examples of the most frequent vein patterns found in red bean leaves using a dictionary size of 100 words, shown
in leaf vein context. Each pattern is highlighted using a different color: words 4 (red) and 70 (blue).

(a) (b)

Fig. 7 Some examples of the most frequent vein patterns found in soybean cultivar #3 leaves using a dictionary size of 100
words, shown in leaf vein context. Each pattern is highlighted using a different color: words 24 (red) and 77 (blue).
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