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Abstract

Gene expression is subject to stochastic variation which leads to fluctuations in the rate of protein production. Recently, a
study in yeast at a genomic scale showed that, in some cases, gene expression variability alters phenotypes while, in other
cases, these remain unchanged despite fluctuations in the expression of other genes. These studies suggested that noise in
gene expression is a physiologically relevant trait and, to prevent harmful stochastic variation in the expression levels of
some genes, it can be subject to minimisation. However, the mechanisms for noise minimisation are still unclear. In the
present work, we analysed how noise expression depends on the architecture of the cis-regulatory system, in particular on
the number of regulatory binding sites. Using analytical calculations and stochastic simulations, we found that the
fluctuation level in noise expression decreased with the number of regulatory sites when regulatory transcription factors
interacted with only one other bound transcription factor. In contrast, we observed that there was an optimal number of
binding sites when transcription factors interacted with many bound transcription factors. This finding suggested a new
mechanism for preventing large fluctuations in the expression of genes which are sensitive to the concentration of
regulators.
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Introduction

Living organisms sense and respond to environmental clues in

order to obtain energy resources and overcome stressful condi-

tions. This is achieved by employing gene regulatory networks,

also called gene circuits. Each circuit acts as an input-output

device which is designed to be activated by a specific signal and to

elicit the required response. The dose-response curve of a given

genetic circuit can be described by a continuous function, also

called the regulatory function, which relates to the intensity of the

input signal and the magnitude of the output response. Two

important aspects of the regulatory function include its sensitivity

(linked to the steepness of the function) and the apparent

dissociation constant (Kd , equivalent to the stimulus intensity

required to obtain half the response). In gene expression, a critical

feature of the output response is its inherent variability. Given the

small number of molecules involved in the biochemical processing

of signaling (gene transcription [1], chromatin remodeling [2],

formation of transcription reinitiation complexes [2,3] and protein

translation [4]), this results in variable protein concentrations

across cell populations. This phenotypic variation can affect

survival [3,5,6,7,8,9], differentiation [10,11,12,13,14,15,16] and

also increases evolvability [17]. Thus, biochemical circuits must

have evolved to maximise the overall performance of the

organism. Sometimes, the evolutionary optimisation process can

be constrained to obtain a robust system (i.e., insensitive to the

precise values of biochemical parameters). In other cases,

biochemical circuits need fine-tuned intracellular parameters

and, consequently, inherent biochemical noise must be minimised.

Several studies have suggested the existence of optimisation

criteria in the design of some regulatory systems

[18,19,20,21,22,23]. Of course, this requires one or more

functionality criteria operating on the course of evolution. Among

these, cost-benefit (the trade-off between the metabolic costs of

protein synthesis and the benefits of protein function [24,25]),

maximisation of information transmission [21,20,26] and mini-

misation of biochemical noise [20,27,28], have been mentioned as

functionality criteria for an optimal design.

In particular, the latter has been addressed for multistage

signaling cascades in which several genes are involved [29].

Nonetheless, the existence of such a criterion operating as a design

principle at single-gene level has not yet been explored. On the

other hand, there have been recent advances in identifying and

characterising a variety of mechanisms involved in the regulation

of gene expression [30,31,32]. Nevertheless, the way in which the

complex architecture of a cis-regulatory systems (CRS), (binding

sites (BSs), transcription factors (TFs), cooperativity mechanisms,

DNA-loops) orchestrates the required response is still unknown.

Moreover, the evolutionary criteria operating over the latter must

also be considered.

In order to achieve a clearer understanding of the principles

guiding the design of complex CRS, we previously studied a

stochastic model for a single TF capable of binding cooperatively

to three regulatory BSs [33,34]. In these papers, we described two

different cooperative binding mechanisms (CBM): the recruitment

mechanism, which increases the ability for new TF recruitment,

and the stabilisation mechanism, which increases the stability of
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the TF-DNA bond. We also reported that, at single-gene level, the

sensitivity of the output response can be due to multiple regulatory

BSs for TFs that act cooperatively [33]. Moreover, we showed that

cooperative interactions between TFs increase the intrinsic

fluctuations associated with transcription in a mechanism depen-

dent manner [33,34]. In such papers our study was limited to CRS

with three BSs, where each TF interacts with all the TFs which are

bound to DNA.

If the design principles of regulatory systems are subject to

criteria that maximise sensitivity and minimise noise, our previous

results suggested that there could be a trade-off between the

number of BSs and the intensity of the cooperative interaction.

Thus, the primary purpose of this paper was to explore the

existence of this trade-off and, for this, it was necessary to

generalise our previous model [33] to consider a variable number

of BSs, where each TF could interact with one, two, or more TFs

bound to DNA. To study this complex model we developed a

small-noise approximation (SNA) framework, introduced in [35],

which enables the analysis of arbitrarily complex CRS acting in a

small-noise regime.

Our results showed that an increase in the number of BSs can

either decrease or increase expression noise depending on the

cooperativity intensity and the number of effective TF interactions.

Furthermore, we found a scenario where there is an optimal trade-

off between cooperativity intensity (a factor that increases noise)

and the number of BSs (a factor that decreases noise). The

significance of this finding is at least two-fold: from an evolutionary

point of view, it represents an alternative functionality criterion

mechanism based on noise minimisation, and it also contributes a

design principle for synthetic biology projects.

Methods

Modeling cis-regulatory systems
In order to analyse the effects of tandem BS architecture on

transcriptional regulation, we generalised the model used in [33].

Thus, the proposed CRS includes N regulatory sites for the same

TF. Figure 1 illustrates an example of a CRS that includes three

regulatory binding sites, showing the different transitions between

states. The states s~1,2, . . . ,Nz1 represent, respectively, states

with zero, one, and N sites occupied by TFs. The states s§Nz2
correspond to the transcriptional complex formation, where all

components required for transcription are assembled on the CRS.

For simplicity, we consider that TFs do not bind or unbind after

the formation of the transcriptional complex. Once the core

transcription apparatus is formed, the synthesis of one mRNA

copy begins. TFs can bind to regulatory sites with a probability

which is proportional to the TF concentration c following the law

of mass action for elementary reactions. TF unbinding events

depend only on the kinetic constants. Thus, the elements of the

transition matrix T̂T are ts,sz1~cks,sz1 and tsz1,s~ksz1,s for

s~1,2, . . . ,N, where ks,r are the kinetic rates.

If we consider cooperative interactions between TFs, kinetic

rates are not independent because previous binding alters the

actual binding or unbinding process. Known relationships

between the system’s kinetics and thermodynamic properties

(principle of detailed balance) allow us to write the kinetic rates,

ks,sz1 and ksz1,s with s~1,2, . . . ,N, in terms of three parameters

[33]: the binding rate p, the unbinding rate q, and E which

represents the cooperativity intensity, i.e., (E~e{
DGI
RT , where DGI is

the free energy of the interaction. Beyond this simplification, this

relationship also allows the identification of two CBMs [33]. The

first, the recruitment mechanism, occurs when the presence of

already bound TFs alter DNA affinities increasing binding rates

ks,sz1, which generates a greater ability for new TF recruitment

for DNA binding (sketched in Fig. S1A). The second CBM, the

stabilisation mechanism, acts when TF interaction diminishes the

unbinding rate ksz1,s, increasing the stability of the TF-DNA

interaction (sketched in Fig. S1B). Thus, following [33], we can

write

ks,sz1~fs Eð Þ Nz1{sð Þp

ksz1,s~sq, ð1Þ

for the first mechanism, while for the second mechanism we

have

ks,sz1~ Nz1{sð Þp,

ksz1,s~f {1
s Eð Þsq, ð2Þ

where fs Eð Þ establishes how the cooperative interaction of the

state s affects the kinetic rates of the new binding or unbinding

processes. In previous work we considered the special case of a

CRS with three sites, where each TF interacted with all TFs

already bound to DNA, and all interactions had the same DGI

[33,34]. In this case, fs can be written as fs Eð Þ~Es{1 for all s.

However, due to the spatial distribution of the BSs along the

regulatory region, scenarios with a lower number of TF

interactions can occur. Even though the CRS model does not

include any spatial details, we can emulate several alternative CRS

configurations by considering different fs:

(i) each TF interacts with only one bound TF, that is fs Eð Þ~E
for sw1;

(ii) each TF interacts with two bound TFs, that is f2 Eð Þ~E and

fs Eð Þ~E2 for sw2;

(iii) each TF interacts with three bound TFs, that is f2 Eð Þ~E,
f3 Eð Þ~E2 and fs Eð Þ~E3 for sw3.

(iv) each TF interacts with all bound TFs, that is fs Eð Þ~Es{1

for all s. Of course, f1 Eð Þ~1 for all cases, since there is no

bound TF to interact in the state s~1. Figure 2 illustrates

three regulatory systems, with the same occupancy level,

where the number of TF interactions increases from one to

three.

Small-noise approximation
As other authors [36,35,33], we use the master equation

approach to derive the response of a cell population to an

inductive signal. The state of our system will be specified by two

stochastic variables: the chemical state of the CRS s, and the

number of transcripts m, where m is a positive integer and s is

either 1, . . . ,N . The probability to find the system in the state

(s,m), at any time t, can be written as a vector

Pm tð Þ~ P1,m tð Þ,P2,m tð Þ, . . . ,PN tð Þð Þ. The time evolution for this

probability is governed by the following master equation:

Noise Minimisation
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_PPs,m~as Ps,m{1{Ps,mð Þzc (mz1)Ps,mz1{mPs,m½ �z

XN
r~1

ts,rPr,m :
ð3Þ

where ts,r is the transition probability per time unit from state r
to state s. The first two terms correspond to the production and

degradation of mRNA, respectively. The model assumes that

mRNA is synthesised at rate as which depends on the state s,

whereas it is degraded linearly with rate c. The last term on the

right hand side of the equation (3) describes CRS dynamics.

An exact analytical description has been obtained previously for

a steady state with N~3 [33], but that is not possible for Nw3
without incorporating some approximations. In this sense,

following Kepler and Elston [35], we apply two different

approximations to Eq. (3): (i) when the number of transcripts is

large, a diffusion approximation is used; (ii) when the CRS

transition rates are large compared to the rate of production and

degradation of transcripts, an SNA is possible. We now define an

appropriately scaled continuous and dimensionless variable

x~
m

SmT�
, where SmT� is the mean number of transcripts in

the steady state. This allows us to introduce the transformation

Ps,m(t)~

ð(mz1=2)=SmT�

(m{1=2)=SmT�
%s(x,t) dx, ð4Þ

which defines the probability density function %s(x,t). Conse-

quently, Eq. (3) is transformed into an evolution equation for rs.

The use of a second order diffusion approximation and then of a

first order SNA, leads to an equation for marginal density

r~
X

s
%s,

Figure 1. Sketch of the cis-regulatory system. For simplicity, we consider a diagram of the promoter region that includes only three regulatory
BSs (green boxes) where TF proteins can bind (red molecules). The states on the top layer s~1,2, . . . ,Nz1 represent states with zero, one, and N BSs
occupied by TFs, respectively. After one or more TFs bind to the regulatory BSs, the regulatory system is able to initiate transcriptional complex
formation, where all the components required for transcription (pink and green molecules) are assembled on the CRS. States s§Nz2 in the middle
layer are those capable of recruiting RNApol (blue protein) to synthesise mRNA. The synthesis rate (as) depends on the number of bound TFs. The

regulatory system can make transitions from state j to state i with rate ti,j . The elements of the transition matrix T̂T are ts,sz1~cks,sz1 and
tsz1,s~ksz1,s for s~1,2, . . . ,N , where ks,r are the kinetic rates.
doi:10.1371/journal.pone.0084020.g001

Figure 2. Different number of cooperative interactions. The
schematic shows a CRS with four BSs where a bound TF can interact
with: (A) only one TF, case (i), (B) two TFs (ii), (C) three other TFs, case
(iii).
doi:10.1371/journal.pone.0084020.g002

Noise Minimisation
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Ltr(x,t)~
X4

k~0

MkLk
xr(x,t): ð5Þ

Neglecting terms of higher order than two on 1=m and further

algebraic steps, allows us to find expressions for the coefficients

Mk as follows: M0~c, M1~cxz
c

m
{c and M2~

c

2m
xz

c

2m
{l

R

m2
, while M3~M4~0 where, to simplify notation, we

dropped the angle brackets and the star to denote the mean value

of m in its steady state, m~SmT�. The factor R depends on the

kinetic rates, R~
X

ij
t
{
ijP�jaiaj . (see Text S1 for a detailed

derivation). l keeps track of the SNA expansion order. Notice that

noise due to CRS dynamics, through factor R, influences the term

associated with diffusion in the Fokker-Planck equation, while the

deterministic limit is restored when l?0. Thus, the master

equation can be cast into a Fokker-Planck equation for marginal

density r(x,t)

Ltr(x,t)~{Lx½A(x)r(x,t)�z 1

2
L2

x½B(x)r(x,t)� ð6Þ

with A(x)~c(1{x) and B(x)~
c

m
(xz1{

2lR

mc
). An impor-

tant advantage of this formulation is that the associated Fokker-

Planck equation has a closed expression for steady state density in

terms of a simple quadrature

r�(x)~z 1z
x

b

� �d

exp {
d x

(1zb)

� �
, ð7Þ

with b~1{
2R

cm
, d~2m(1zb){1 and z is a normalisation

constant; m is indicating the average number of transcripts in the

steady state. Notice that expression (7) is x-squared and similar to

the Gaussian form in the SNA region of validity. The expression

(7) is general, meaning that it is valid for any CRS, whatever the

dynamics and number of BSs. As solution (7) is an approximated

one, an estimation of the SNA accuracy is necessary. For this, we

define D as the ratio between O2(l) and R (which is proportional

to O(l)). Consequently, our approximation predictions are

accurate for small D (See Text S1 for details).

Results

In this section we validated our SNA and analysed fluctuation

behaviour and sensitivity as a function of the number of binding

sites and E within SNA validity limits.

In order to validate the solutions obtained with the proposed

approximation, we compared the transcript number analytical

distributions predicted by Eq. (4), with the corresponding

histograms obtained by stochastic simulation using the Gillespie

method [37]. Figure 3 shows the distribution which was obtained

for a CRS with three binding sites in which each TF interacts with

all TFs already bound to DNA (case iv). Green color corresponds

to the parameter values listed in Table 1. To highlight the effect of

CRS kinetics on the approximation, we also show the distributions

that were obtained with different kinetic rates, by multiplying the

elements of matrix T̂T by factor 10 (blue color), and by factor 100

(red color). Fig. 3A corresponds to the distribution obtained for a

non-cooperative binding case (i.e. E~1), while Fig. 3B and Fig. 3C

correspond to recruitment and stabilisation CBMs, respectively,

(with E~12). As expected, our results showed excellent correspon-

dence for fast transitions between CRS states in relation to

production and degradation rates. When cooperative binding was

included in the model (E~12), approximation accuracy decreased.

Moreover, comparison of Fig. 3B and Fig. 3C shows that the

approximation for recruitment CBM is more accurate than for

stabilisation CBM. This occurs because stabilisation CBM

decreases unbinding rates (i.e., slows down CRS kinetics), as can

be observed explicitly in Eq. (1) and Eq. (2). Furthermore, SNA

accuracy increases for lower interaction intensity and for a lower

number of interactions (data not shown). The comparison between

SNA predictions and the corresponding simulation results in

Table 2 shows that, when Dv0:5, mean and standard deviation

estimations for each distribution are reliable.

In this context, we applied SNA to study the performance of a

complex CRS using the parameter values listed in Table 1. In

particular, we were interested in quantifying the phenotypic noise

(spread of expression levels within the cell population) of an

activator switch in terms of the CRS architecture (i.e., as a

function of the number of BSs and fs), and the intensity of the

cooperativity E involved in the CRS. In this sense, to characterise

noise expression we computed the fluctuation/signal ratio (which

is known as noise) defined by g~sm=SmT [38], at an activator

concentration c equal to the Kd of the dose-response curves. Given

the SNA region of validity, hereafter both SmT and sm were

obtained from SNA distributions with Dv0:5.

Fig. 4 depicts two important features of the regulatory system

response, as a function of N : the noise g (A) and the Hill coefficient

nH of the mean response (B). These features are presented for both

CBMs: recruitment (filled circles) and stabilisation (open circles).

Since the Hill coefficient is CBM-independent, curves in panel B

are superimposed. Fig. 4 illustrates case (i), where each TF

interacts with only one bound TF. This figure shows how g decays

monotonically (Fig. 4A) while the steepness of the associated

response (Fig. 4B) increases with the number of BSs N for all

curves. The red and blue curves correspond to E~6 and 12,

respectively. Similar behaviour can be found for other E values.

This is illustrated by the density plot (on a plane) shown in Figure

S2 for both CBMs (N,E). This behaviour suggests that, when TFs

interact with only one other TF, additional BSs on the CRS

improve the signal/noise ratio and the sensitivity of the switch

response (the latter is characterised by the Hill coefficient).

However, when CRS architecture admits more than one

interaction between TFs, noise, as a function of N , shows a

complex behaviour. Fig. 5A depicts noise for case (ii), in which

each TF interacts with two bound TFs. In this case, g behaviour

depends on which CBM is acting and on the intensity of this

cooperativity, E. Red and blue curves correspond to E~6 and 12,

respectively, while the filled and open circles correspond to

recruitment and stabilisation CBMs, respectively. For the cases

illustrated in Fig. 5A, noise g shows a minimum around N~2
when stabilisation CBM is acting, and g increases with N for

Nw2. When recruitment CBM is acting, g can show a minimum

in an E dependent manner, or not, as can be observed in Fig. 5A

inset. At E~6 (red curve) g decays monotonically with N and there

is no valley. However, for a higher intensity of cooperativity

(E~12), g has a minimum around N~6. On the other hand,

similarly to Fig. 4B, Hill coefficient associated to the steepness of

the mean response, increases with the number of BSs N , as is

shown in Fig. 5B. However, the steepness for case (ii) is always

Noise Minimisation
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higher than for case (i). This means that Hill coefficients nH are

determined not only by the number of BSs in the regulatory

system and the interaction energy between TFs, but also by the

number of TF interactions which are admitted by the CRS. Noise

behaviour in an E dependent manner can be better illustrated by

density plots on a plane (N,E), as those depicted in the bottom

panels of Fig. 5. Fig. 5C and Fig. 5D show g in grey scale maps as

a function of N and E for both CBMs. For recruitment CBM

(Fig. 5C), a valley appears when E is greater than 10 and the

position of the minimum changes with E. For example, for E~10
there is a valley around N~12, whereas for E~12 (blue dotted

line) the valley is around N~6, and for E~18 the minimum

position shifts to N~4. For stabilisation CBM (Fig. 5D), the

minimum is more apparent at a lower intensity of cooperativity.

For example there is a minimum at N~2 for E~6 (red dotted

line), although this valley also exists at smaller E (data not shown).

Fig. 6 depicts noise g (A) and Hill coefficients nH (B) as a

function of N for case (iii), where each TF interacts with three

bound TFs. Figs. 6B and 6D depict case (iv), where each TF

interacts with all bound TFs. The red and blue curves correspond

to E~6 and 12, respectively, while the open and filled circles

correspond to recruitment and stabilisation CBMs, respectively.

Both CBMs show a minimum in the fluctuation/signal ratio for

E~6. However, the number of BSs necessary for an optimal

performance differ between CBMs: the minimum for recruitment

CBM is around N~3 or 4, depending on E, while for stabilisation

CBM the minimum is around N~2. Thus, for many interactions,

as cases (iii) and (iv), the signal/noise ratio is maximised by an

architecture with two or three binding sites. Minima in g can also

be found for faster CRS with weaker cooperativity (data not

shown). Moreover, it can also be observed that the sensitivity of the

switch response (characterised by the Hill coefficient) increases

faster with N than in previous cases. In particular, for case (iv)

(Fig. 6D), nH approximation by N is accurate only for a high

interaction energy and Nw4. Finally, Figures 4, 5 and 6 suggest

that noise and steepness increase with the number of TF

interactions which are admitted by the CRS.

Figure 3. Transcript distributions. Comparison between exact (symbols, obtained by stochastic simulations) and analytical distributions (curves,
obtained by the SNA) for three different CRS kinetic rates (red, blue and green correspond to quick, medium and slow CRS dynamics, respectively).
Panels from left to right show non-cooperative, recruitment and stabilisation CBMs, respectively. In the last two cases E~12. The comparison shows
very good correspondence when CRS state transitions are fast in relation to production and degradation rates. This figure shows that the SNA fails to
correctly predict the distribution for slow kinetics when there is TF cooperative binding, even though this is more apparent for the stabilisation CBM.
doi:10.1371/journal.pone.0084020.g003

Table 1. Parameter values.

Name Symbol Value

TF binding p 0.25

TF unbinding q 0.75

Coop. intensity E variable

TC assembly � ks,szN s|0:5

TC disassembly � kszN,s 0.5

Transcript prod. a 1.5

Transcript degrad. c 0.03

Number of BS N variable

kinetics rates ks,sz1 and ksz1,s , with s~1, . . . ,N , were obtained in each case
using the corresponding Eqs. (1) or (2), with the above values of p, q and E. The
time unit is min and the concentration is an arbitrary unit. � with
s~2, . . . ,Nz1:
doi:10.1371/journal.pone.0084020.t001

Table 2. SNA performance.

mean value standard deviation

plot simulation SNA simulation SNA D

Fig.3A green 18.75 18.75 7.01 6.94 0.134

Fig.3A blue 18.73 18.75 4.68 4.67 0.013

Fig.3A red 18.77 18.75 4.37 4.37 0.001

Fig.3B green 18.75 18.75 10.18 10.02 0.581

Fig.3B blue 18.74 18.75 5.40 5.38 0.058

Fig.3B red 18.77 18.75 4.45 4.43 0.006

Fig.3C green 18.78 18.75 25.77 14.87 12.558

Fig.3C blue 18.71 18.75 10.97 10.04 1.256

Fig.3C red 18.77 18.75 5.65 5.57 0.125

Comparison of the transcript number mean values, and its associated standard
deviation, obtained by Gillespie simulations and predicted by SNA for the plots
depicted in Figure 3. The last column depict the estimator for SNA accuracy D.
doi:10.1371/journal.pone.0084020.t002

Noise Minimisation
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Discussion

Regulation of gene expression is a topic of central importance in

biology. Given our increasing ability to monitor gene expression

levels and model its regulation, many key issues have been

unraveled in the past years. An example of this is the discrete

nature of the transcriptional process which impacts on the noise

expression phenomenon and has promoted the extended use of

stochastic modeling to study the origin of noise expression and its

propagation. However, many other issues require new models and

methodological approaches to be elucidated. For example, an

important aspect which impacts synthetic biology, is to understand

how the CRS architecture (i.e., the biological components of the

regulatory system and its organisation) determines the regulatory

function features and the associated fluctuations. Most of the

previous studies which analysed gene product fluctuations due to

transitions between CRS states, used models which considered a

small number of states for the CRS. This is mainly because

theoretical approaches become intractable for complex CRS

[34,39], but the use of simple models can limit our understanding

of gene regulatory phenomena involving complex CRS. However,

modeling of complex CRS is becoming more frequent in

specialised literature [39,40,41].

This paper had mainly two aims: the first was methodological

and consisted in presenting an approximation of the master

equation to deal with stochastic models for arbitrarily complex

CRS in an analytical fashion. In this respect, we developed the

SNA for a generic CRS which can include many states. Thus, we

derived an explicit form for the Fokker-Plank equation from a

microscopic description which can be applied to any CRS. This

approximation was validated against the distribution of mRNA

levels generated by a Gillespie simulation and showed very good

correspondence in the unimodal regime. Other approaches have

recently been developed which are capable of dealing with

complex CRS, among these, the stochastic spectral analysis [42]

and the effective rate equation approach developed by Grima

[43]. These approaches could deal with bimodal distributions

more accurately than SNA.

The second and most important aim, was to study the impact of

tandem regulatory BSs on CRS response to TF activators, using

the above mentioned approximation. Namely, how noise and

sensitivity depend on the number of regulatory BSs. At this point it

is important to distinguish regulatory BSs from decoy BSs that

competitively bind TFs. Decoy sites protect these proteins from

degradation and thereby indirectly influence the expression of

target promoters. The role of decoy BSs was studied recently by

[44,45], who showed that protective decoys can buffer noise by

reducing correlations between TFs. Hitherto, the role of the

number of regulatory BSs on the regulation of expression level and

its associated fluctuation, have only been addressed by a few

studies. In one of these studies, experimental evidence from

genetically modified mammalian cells showed that increases in the

number of regulatory BSs lead to higher noise (Fig. 3B of [46]).

However, the contrary effect was reported in Drosophila, where

an increasing number of Bcd BSs decreased noise (Fig. 6 of [41]).

A more recent study which analysed the expression level and noise

associated with several native targets of the transcription factor

Zap1 [32], suggested that the relationship between expression level

and noise is a feature that characterises the CRS and is determined

by CRS architecture. However, in all these studies the precise

mechanisms by which noise is controlled remained unidentified.

In this context, we previously reported that noise expression

behaviour depends on the acting CBM and on cooperativity

intensity [33]. Our present results expand upon this analysis

showing that CRS performance is a consequence of the interplay

between diverse factors: CBMs, the number of regulatory BSs, and

the number and intensity of TF interactions. Figures 4 and 5 show

that increasing the number of regulatory BSs can lead to noise

Figure 4. Case (i), TFs interact with only one other TF. When fs Eð Þ~E for sw1, noise g and steepness nH behaviour is monotonic with respect
to the number of BSs N . (A) g~sm=SmT as a function of N for both CBMs (filled and open circles indicate recruitment and stabilisation CBMs,
respectively) with E~6 (red circles) and E~12 (blue circles). (B) nH as a function of N for E~6 (red triangles) and E~12 (blue triangles). Curves
correspond to cubic spline interpolations.
doi:10.1371/journal.pone.0084020.g004
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reduction in a low interaction scenario. We also show that the type

of acting CBM and the number of interactions play a critical role

in determining how noise g depends on the number of regulatory

BSs. Finally, we identified a scenario where noise presents a

minimum on a plane defined by N and E, where the size of the

valley and its position depend on the number of interactions and

the CBM. Moreover, the position of the valley was found around

intervals [2,6] for N , and [3,20] for E (corresponding to DGI

ranging from 0.65–1.8 kcal/mol). Since the mentioned values for

N and DGI correspond to those found in the spectrum of real

biological systems, our results suggest that evolutionary processes

Figure 5. Case (ii), each TF can interact with up to two other TFs. When f2 Eð Þ~E and fs Eð Þ~E2 for sw2, noise g shows a more complex
behaviour which depends on the acting CBM and the intensity of cooperativity. (A) g~sm=SmT as a function of the number of sites N for both CBMs
(filled and open circles indicate recruitment and stabilisation CBMs, respectively) with E~6 (red circles) and E~12 (blue circles). The inset rescales the
recruitment case for both E-values. (B) nH as a function of N for E~6 (red triangles) and E~12 (blue triangles). Curves correspond to cubic spline
interpolations. Lower panels correspond to density plots of g as function of N and E for recruitment CBM (C) and stabilisation CBM (D). Dotted lines
indicate the values of E used in panels A and B. For recruitment CBM, the density plot clearly shows the existence of a valley in g around N~6) for
Ew12 while, for stabilisation CBM, the valley in g is apparent for lower values of E around N~(2,4). The green area in panel D denotes the region
where D§0:5 and SNA predictions are less accurate.
doi:10.1371/journal.pone.0084020.g005
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are capable of adjusting these parameters to optimise noise in

single-gene switches.

Supporting Information

Figure S1 Cooperative binding mechanisms. The effect of

cooperative binding on binding and unbinding. (A) In the

recruitment mechanism, TFs already bound to the DNA increase

the ability for recruiting new TFs. (B) In the stabilisation

mechanism, TF interaction diminishes the unbinding rate. DGI

denotes the free energy involved in the cooperative binding; the

black link represents a chemical interaction.

(TIF)

Figure S2 Density plots for case (i). g as function of E and

N: for recruitment (panel A) and stabilisation (panel B) CBMs.

Dotted lines indicate the values of E used in Figs. 4A and 4B. The

density plots clearly show that there is no valley in g for the

explored parameters.

(TIF)

Figure 6. Cases with many interactions. Top panels: g~sm=SmT as a function of the number of sites N for both CBMs (filled and open circles
indicate recruitment and stabilisation CBMs, respectively) with E~6 (red circles) and E~12 (blue circles). Bottom panels: nH as a function of N for E~6
(red triangles) and E~12 (blue triangles). Panels A and C show the case in which each TF can interact with up to three other TFs, i.e., case (iii). Panels B

and D show the case where each TF interacts with all available TFs (case (iv)) where fs Eð Þ~Es{1 for all s. Curves correspond to cubic spline
interpolations.
doi:10.1371/journal.pone.0084020.g006
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