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Abstract

We develop methodology for identifying and estimating sufficient reductions in regressions with

predictors that, given the response, follow a multivariate exponential family distribution. This set-up

includes regressions where predictors are all continuous, all categorical or mixtures of categorical

and continuous. We derive the minimal sufficient reduction of the predictors and its maximum

likelihood estimator by modeling the conditional distribution of the predictors given the response.

Whereas nearly all extant estimators of sufficient reductions are linear and only partly capture the

sufficient reduction, our method is not limited to linear reductions. It also provides the exact form

of the sufficient reduction, which is exhaustive, its ML estimates via an IRLS estimation algorithm,

and asymptotic tests for the dimension of the regression.

1 Introduction

The goal of dimension reduction methodology in regression is the reduction of the dimension of the

predictor vector X ∈ Rp without loss of information about the response Y . Formally this amounts to

finding a function R(X) ∈ Rd, d ≤ p, such that F (Y |X) = F (Y |R(X)), where F (·|·) signifies the

conditional cumulative distribution function (cdf) of the first given the second argument. Most of the

methodology in Sufficient Dimension Reduction (SDR) is based on the inverse regression of X on Y .

Li (1991) introduced the concept of inverse regression as a dimension reduction tool in Sliced Inverse
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Regression (SIR). Cook and his collaborators formalized the field in several papers (e.g. Cook and

Weisberg 1991; Cook 1994, 1998b, 2007; Cook and Lee 1999; Bura and Cook 2001a,b; Cook and Yin

2001; Chiaromonte et al. 2002; Cook and Ni 2005; Cook and Forzani 2008, 2009) and a book (Cook

1998a), where much of its terminology was introduced.

The estimation in SDR was originally based on moments or functions of moments of the conditional

distribution of X|Y (SIR, Li 1991; SAVE, Cook and Weisberg 1991; pHd, Li 1992; PIR, Bura and Cook

2001; MAVE, Xia et al. 2002; Li et al. 2005; Cook and Ni 2005; Zhu and Zheng 2006; Cook and Li

2002; DR, Li and Wang 2007). It required continuous predictors, conditions on their moments, and

typically captured only part of the reduction.

Chiaromonte et al. (2002) made the first attempt to extend the SDR moment-based approach to

regressions with both quantitative and categorical predictors. The two types of predictors were treated

independently, with the categorical ones, of finite many values, used to define subpopulations for the

continuous predictors given the response. Reductions of the continuous predictors were computed for

each of the subpopulations separately. The sum of these reductions was shown to be a reduction of the

form (αTX,W ) for the regression of Y |(X,W ), where X are the continuous and W the categorical

predictors, respectively. This results in reductions where the categorical and the continuous predictors

do not mix, i.e. they are not allowed to be correlated, and are not necessarily minimal. Their estimation

algorithm, partial SIR, computes a reduction in each category so that when the number of categories is

large or there are several categorical predictors, substantially large samples are required to yield reliable

estimates. Partial SIR also requires homogeneous predictor covariances across the subpopulations, but

this was later relaxed in Wen and Cook (2007). We refer to all methods that require moment conditions

on the marginal distribution of the predictors, including Chiaromonte et al.’s partial SIR, as moment-

based SDR.

Cook (2007) connected dimension reduction methodology in regression with the classical statistical

concept of sufficiency. He introduced model-based inverse regression in order to avoid the restrictive

conditions on the marginal distribution of the predictors required in moment-based SDR. The main

attraction of model-based approaches is the identification of sufficient reductions of the predictors in the

sense that they are exhaustive for the regression of Y on X; that is, they contain all the information in X

relevant to Y . Inability to ascertain exhaustive estimation of the sufficient reduction was one of the main

limitations of moment-based SDR methods. Moreover, maximum likelihood estimators of the sufficient

reductions can be obtained that are optimal in terms of efficiency under the exact model.
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Cook (2007) and Cook and Forzani (2008) considered the case of normal X|Y in developing their

Principal Fitted Components (PFC) and Likelihood Acquired Directions (LAD) methodology (Cook

and Forzani 2009). Assuming normal X|Y with constant variance, they obtained minimal sufficient

reductions that were linear and exhaustive for the regression of Y on X. When the constant variance

assumption is not satisfied, though, the linear reduction is no longer necessarily a minimal sufficient

reduction (Cook and Forzani 2009).

The first attempt to develop SDR methodology where both categorical and continuous predictors are

jointly considered under model-based inverse regression was by Cook and Li (2009). Their approach

posits that Xj |Y follows a one-parameter exponential family distribution for each coordinate Xj of X

and requires the components be independent given the response Y . Under this model, they obtained

a minimal sufficient reduction that is linear in the predictors for the regression of Y on X. This is

a specific and restrictive form of conditional independence that limits the applicability of this method

in real data analyses. For example, it excludes conditionally independent normal predictors whose

both first two moments depend on Y , as we show in Section 3.1. Noorbaloochi and Nelson (2008),

whose framework follows Cook’s (2007), also considered the problem of finding sufficient reductions

in exponential families. They found that the space spanned by the logarithm of the density ratios,

f(x|Y = y)/f(x|Y = y0), with y, y0 varying in the support of Y , provides a linear representation for

a minimal dimension reduction subspace.

A defining feature of sufficient reductions in the majority of SDR methods, and in particular in

all SDR methods discussed above, is that they are projections of the predictor vector on lower dimen-

sional subspaces. Therefore, sufficient reductions have been by default linear in the predictors and SDR

methodology has been mostly linear.

In this paper, we consider the problem of identifying sufficient reductions in regressions with pre-

dictors that can be all continuous, all categorical, or mixtures of continuous and categorical variables.

We follow a model-based approach and assume that the distribution of X|Y is an exponential family, but

we require no conditional independence of the inverse predictors or any other condition. We identify the

minimal sufficient reduction for the regression of Y on X, and show that it is linear not in the predictors

but in T(X), the minimal sufficient statistic for the X|Y exponential family, where Y is considered

as a parameter. Depending on the form of T(X), the minimal sufficient reduction may very well be

non-linear in the predictors, as in the case of Bernoulli inverse predictors in Section 7.1.1. Our approach

fills in a void in SDR as there were no methods for regressions with only categorical predictors without
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imposing unrealistic and untestable conditions.

The linearity of the sufficient reduction in the sufficient statistic T(X) in this very broad family of

regression problems is important because of its simplicity and interpretability. The estimation of the

sufficient reduction is done via fitting exponential family regression. We propose an iterated reweighted

least squares algorithm (IRLS) to compute the maximum likelihood estimate (MLE) of the sufficient

reduction. Asymptotic tests for the dimension of the reduction are derived. Our approach subsumes

both Cook and Li (2009) and Noorbaloochi and Nelson (2008) set-ups and related methodologies, and

also the normal-based approaches of Principal Fitted Components (Cook and Forzani 2008), Likelihood

Acquired Directions (Cook and Forzani 2009) and the normal inverse predictor model in Bura and

Forzani (2015), since the normal distribution is the only common member of the exponential and the

elliptically contoured families of distributions. Furthermore, our IRLS estimation algorithm is fast and

easy to implement and can be used in place of Grassmann optimization for the estimation of sufficient

reductions in all model-based SDR approaches.

The rest of the paper is organized as follows. In Section 2 we provide a short review of the mul-

tivariate exponential family as it relates to our methodology. Sufficient reductions for general X|Y

exponential family distributions are presented in Section 3 and the minimal sufficient reduction is de-

rived in Section 3.1. Maximum likelihood estimates of the sufficient reductions are derived in Section 4

and asymptotic tests for dimension of the sufficient reduction in Section 5. Section 6 relates and com-

pares our methodology to existing approaches including kernel-based nonlinear dimensionality reduc-

tion methods. In Section 7 we turn to the important regression problem with multivariate Bernoulli

predictors, which has many applications and wide appeal to the machine learning community. In the

same section, a simulation study and a real data analysis are carried out. We conclude in Section 8.

2 Exponential Family

Let X = (X1, . . . , Xp)
T be a p-dimensional random vector with a distribution Pθ, θ ∈ Θ ⊂ Rk,

where Θ is an open and connected subset of Rk. The family of distributions {Pθ,θ ∈ Θ} for X =

(X1, . . . , Xp)
T is said to belong to the k-parameter exponential family if the family F = {f(·;θ),θ ∈

Θ} of probability density functions (pdf), or probability mass functions (pmf), of X are of the form

f(x|θ) = eη(θ)T T(x)−ψ(θ)h(x) (1)
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where the natural parameters of the family, η(θ) = (η1(θ), . . . , ηk(θ))T , are twice continuously differ-

entiable functions of θ with Jacobian of full rank, T(x) = (T1(x), . . . , Tk(x))T is a vector of known

real-valued functions, h(x) ≥ 0 is a known function, and ψ(θ) is such that f(·) is a proper pdf or

pmf. We assume that T is the minimal complete and sufficient statistic for the family and denote that a

random vector follows such distribution with X ∼ Fη,T,ψ. The natural parameter space

H = {η ∈ Rk : eψ(η) =

∫
eη

T T(x)h(x)dx <∞},

where the integral is replaced by a sum when X is discrete, describes the largest set of values of η for

which the density (or pmf) can be defined. The moments of T are related to the parameter function ψ

in (1) with the following equations (see Lindsay 1997; Nelder and Wedderburn 1972; McCulloch and

Nelder 1989),

Eη(T(X)) =

(
∂ψ(η)

∂ηj

)
, varη(T(X)) =

(
∂2ψ(η)

∂ηj∂ηk

)

for any η ∈ H. In particular, Eη(Ti(X)) = ∂ψ(η)/∂ηi, covη(Ti(X), Tj(X)) = ∂2ψ(η)/∂ηi∂ηj . A

more recent thorough treatment of the exponential family can be found in Bickel and Doksum (2006).

A generalized linear model (GLM) (Lindsay 1997; Nelder and Wedderburn 1972; McCulloch and

Nelder 1989) hypothesizes that the k-vector of natural parameters η is a known linear function η = Γν

of a vector ν ∈ Rd, d ≤ k, where Γ is a full rank k × d matrix.

3 Sufficient Reductions for X|Y in the Exponential Family

The success of Sufficient Dimension Reduction (SDR) approaches based on inverse regression derives

from the following fact. Assume (Y,X) has a joint distribution and let R(X) be a measurable function

of the predictor vector. Then,

F (Y |X) = F (Y |R(X)) iff X|(R(X), Y )
d
= X|R(X) (2)

Cook (2007) stated (2) and recognized that the equivalence in (2) means that if one finds a sufficient

statistic for Y using the distribution of X|Y , where Y is considered as a parameter, then this sufficient

statistic is also a sufficient reduction for X in the forward regression of Y on X. Cook’s idea yields a
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genial tool for obtaining sufficient reductions in regression. It also reveals that the intrinsic dimension

of the regression of Y on X is the dimension of the sufficient statistic for Y in the inverse model X|Y .

Estimation proposals for R(X) constitute different SDR methods.

Because of (2), model-based approaches such as ours provide sufficient reductions of the predictors

R(X) in the sense that they are exhaustive for the regression of Y on X. That is, the reduction R(X)

satisfies F (Y |X) = F (Y |R(X)), where F (·|·) signifies the conditional cdf of the first given the second

argument. This statement means that R(X) is all that is needed for the regression of Y on X, and thus

R(X) is exhaustive for the regression of Y on X. Herein, we focus on identifying sufficient reductions

for the regression of a response Y on continuous, categorical, or a mix of both types of predictors whose

conditional distribution X|Y belongs to the exponential family.

We assume that Xy = X|(Y = y) = (Xyj)j=1,...,p ∼ Fηy ,T,ψ; that is, Xy has a pdf (pmf) given by

f(x|ηy, Y = y) = eη
T
y T(x)−ψ(ηy)h(x) (3)

The natural parameters ηyj , j = 1, . . . , k, are functions of y as indicated by the first subscript, and

ηy = (ηy1, . . . , ηyk)
T . The dimension of the natural parameter vector typically satisfies k ≥ p. For

example, if Xy were p-variate normal with meanµy and covariance matrix Σy, then k = p+p(p+1)/2.

Following the GLM formulation, we assume that the natural parameter is a linear function of νY ,

ηY = η̄ + AνY

where η̄ = E(ηY ), A ∈ Rk×d is full rank semi-orthogonal so that its columns form a basis for SA =

span{ηY − η̄ : Y ∈ SY }, with SY denoting the sample space of Y and E(νY ) = 0. This implies that

νY = AT (ηY − η̄), a vector of dimension d.

In order to accommodate the dependence of νY on Y , we assume that the coordinate vectors are

modeled as νY = CT (fY − E(fY )), where fY ∈ Rr is a known vector-valued function of Y , and

C ∈ Rr×d, is an unrestricted matrix of rank d ≤ min(k, r). This formulation is similar to the principal

fitted components of Cook (2007) and Cook and Forzani (2008), and parametric inverse regression

(PIR) of Bura and Cook (2001) for continuous covariates. Under this model each coordinate ηY j ,

j = 1, . . . , k, follows a linear model with predictor vector fY . Consequently, we can use inverse

response plots (see Cook 1998a, chap.10) of Xj versus Y to gain information about suitable choices for

fY . This visual tool is not generally available in the forward regression of Y on a multi-component X.
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Choosing appropriate fY ’s is discussed in Cook and Forzani (2008) and Adragni and Cook (2009).

Let D = ACT with A : k × d, C : r × d and fY ∈ Rr known functions of Y , so that

ηY = η̄ + ACT (fY − f̄) (4)

= η̄ + D(fY − f̄) (5)

We refer to (5) as the unrestricted generalized linear model, and to (4) as the reduced-rank generalized

linear model.

3.1 Minimal sufficient reduction

Theorem 1 If X|Y has density in the exponential family given by (3), then the minimal sufficient re-

duction for the regression of Y |X is given by

R(X) = αT (T(X)− E(T(X))

where α = span{(ηY − EY (ηY ) = (ηY − η̄), Y ∈ SY }, and T(X) is a sufficient statistic for the

natural parameters of the exponential family defined by (3).

PROOF. By the Lehmann-Scheffé Theorem (see also Cook 2007), that αT (T(X) − E(T(X)) is a

minimal sufficient reduction for Y derives from showing the equivalence of (i) log(fX|Y (x)/fX|Y (z)) is

independent of Y , and (ii) αT (T(z)−E(T(z))) = αT (T(x)−E(T(x))), or equivalently, αTT(z) =

αTT(x).

Under (3), the independence of log(fX|Y (x)/fX|Y (z)) from Y is equivalent to

log
h(x)

h(z)
+
(
T(x)−T(z)

)T
ηY = c (6)

where c does not depend on Y . Taking the expectation with respect to Y yields that (6) is equivalent to

(
T(x)−T(z)

)T
(ηY − η̄) = 0 for all y ∈ SY . (7)

If T(x) ∈ Rk, let α ∈ Rk×d be a basis for span(ηY − η̄, Y ∈ SY ). Then, ηY − η̄ = ανY for some

νY ∈ Rd, and (7) is equivalent to (T(x) − T(z))TανY = 0, or αTT(x) = αTT(z). Therefore,

αT (T(X)− E(T(X)) is the minimal sufficient reduction. 2

7



The quadratic exponential family density depends only on its first two moments and is a subclass

of the exponential family. In particular, the distribution of X|Y belongs to the quadratic exponential

family if its pdf (pmf) is given by

f(x|ηy, Y = y) = eη
T
y T(X)−ψ(ηy)h(x)

= eη
T
y,1X+ηT

y,2vec(XXT )−ψ(ηy)h(x) (8)

Corollary 1 If X|Y belongs to the quadratic exponential family with pdf (pmf) (8), the minimal suffi-

cient reduction for the regression of Y |X is given by

R(X) =
(
αT1 (X− E(X)),αT20(vec(XXT )− E(vec(XXT )))

)
where span(α1) = span(ηY,1 − E(ηY,1), Y ∈ SY ) and α20 = span(α2) 	 span(α1 ⊗ α1) with

span(α2) = span
(
ηY,2 − E(ηY,2), Y ∈ SY

)
.

The proof of the Corollary follows directly from Theorem 1, the fact that the sufficient statistic for

the quadratic exponential family is T(X) =
(
XT , vecT (XXT )T

)
, and that if span(α2) ⊂ span(α1)⊗

span(α1), then the quadratic part is absorbed in the linear part.

3.2 Some known examples

Here we revisit previous results for quadratic exponential family distributions, such as the normal, and

describe how they relate to our results.

a. Normal with constant variance: X|Y ∼ N(µY ,∆)

Since X|Y follows a quadratic exponential family, we apply Corollary 1 to obtain that α1 =

∆−1span{µY − µ, Y ∈ SY } and α2 = 0, which yields that αT1 (X − E(X)) is the minimal

sufficient reduction as in Cook (2007) and Cook and Forzani (2008).

b. Normal with variance depending on Y by a multiplicative effect: X|Y ∼ N(µY , cY ∆)

The pdf of X|Y is

fX|Y=y(x) =
e−

1
2

(µy−µ)T cy∆(µy−µ)

2πp/2|cy∆|1/2
e−

1
2

vec((x−µ)(x−µ)T )T vec(c−1
y ∆−1)+(x−µ)T c−1

y ∆−1(µy−µ)
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Then, according to Corollary 1, α1 = ∆−1span((µY − µ), Y ∈ SY ) and α2 = vec(∆−1), so

that the minimal sufficient reduction is {αT1 (X − µ), (X − µ)T∆−1(X − µ)}, as in Bura and

Forzani (2015).

c. Normal with non-constant variance: X|Y ∼ N(µY ,∆Y )

Similarly to b., we obtain that the sufficient statistic is T(X) = (X−µ, vec(X−µ)(X−µ)T ), and

ηY = (∆−1
Y (µY −µ),−vec(∆−1

Y −E(∆−1
Y ))/2). Letα1 = span(∆−1

Y (µY −µ)) and consider

the p2×q matrix S = (Sj)
q
j=1, such that span(S) = span(vec(∆−1

Y −E(∆−1
Y ))). By rearranging

in p× p matrices the columns of S, the symmetric matrices Sj are formed for j = 1, . . . , q. The

minimal sufficient reduction is {αT1 (X−µ), (X−µ)TS1(X−µ), . . . , (X−µ)TSq(X−µ)},

as in Forzani (2007).

Cook and Forzani (2009) also considered this case, i.e. X|Y ∼ N(µY ,∆Y ). They computed a

linear sufficient reduction αTX with

span(α) ⊂ {∆−1(µY − µ),∆−1
Y −∆−1} (9)

Corollary 1 shows that the linear reduction (9) is not necessarily minimal. For example, in b)

the minimal linear sufficient reduction obtained in (9) is Rp, while the minimal reduction is(
span(∆−1(µY − µ))TX, (X− µ)T∆−1(X− µ)

)
by Corollary 1.

Cook and Li (2009) considered the special case of independent normal Xj |Y with mean µjY

and constant variance σ2
j , j = 1, . . . , p. Thus, in Corollary 1, ηY,2 = η2 and R(X) becomes

αT1 (X− µ), and, therefore, there is no quadratic contribution to the sufficient reduction.

The case of conditional independence of the predictors with variances depending on Y is not

covered by Cook and Li (2009). To see this, observe that when Xj |Y ∼ N(µY , σ
2
Y ) and Xj is

independent of Xk given Y ,

f(x|y) =
∏

f(xj |y) =
1

(2π)p/2
1∏p

j=1 σjy
exp

−1

2

[ p∑
j=1

x2
j

σ2
jy

− 2
∑
j

xjµjy
σ2
jy

+
∑
j

µ2
jj

σ2
jy

]
=

1

(2π)p/2
1∏p

j=1 σjy
exp

−1

2

∑
j

µ2
jj

σ2
jy

 exp

−1

2

p∑
j=1

x2
j

σ2
jy

+
∑
j

xjµjy
σ2
jy

 .

Hence, the sufficient reduction comprises of ηY,1 = ∆−1
Y µY , ηY,2 = −∆−1

Y /2, and ∆Y =
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diag(σ2
1Y , . . . , σ

2
pY ) by Corollary 1.

4 Estimation

Suppose that a random sample of size n is drawn from the response Y and the p-dimensional covariate

vector X = (X1, . . . , Xp)
T . Assuming the data follow (3) with ηYi satisfying (4) or (5), span(ηY −

η̄, Y ∈ SY ) needs to be estimated. Since, for i = 1, . . . , n, ηYi = η̄+ACT (fYi− f̄) = η̄+D(fYi− f̄),

the estimation of η̄ and A and C is required when the rank of D is known. If the rank of D is unknown,

we need to estimate η̄ and D.

In both cases, we use maximum likelihood estimation. Since the dimension will typically be un-

known, if we use the first approach we need to estimate η̄, and A, C for d = 0, . . . ,min(r, k), and then

compare the models, for example by AIC or BIC, in order to estimate span(ηY − η̄, Y ∈ SY ) and its

dimension. If the rank of D is unknown, once the MLEs of η̄ and D are obtained, the rank d of the latter

is estimated using the asymptotic tests in Section 5, and the first d̂ eigenvectors of D̂ form the MLE of

span(ηY − η̄, Y ∈ SY ).

The solution of the maximum likelihood equations has been shown to be equivalent to the itera-

tive reweighted least-squares (see, e.g., McCullough and Searle 2001, p.143; Nelder and Wedderburn

1972; Yee and Hastie 2003). We can estimate the parameters of interest using the alternating estima-

tion algorithm proposed by Yee and Hastie (2003) that extends the standard IRLS algorithm, which is

applicable when the rank of D is unrestricted. We describe the IRLS algorithm proposed by Yee and

Hastie (2003), noting that the algorithm reduces to usual IRLS when CT is a constant, in which case

the algorithm estimates D.

In the reduced-rank formulation, where D = ACT , and C has fixed rank d, the IRLS algorithm has

the following steps:

1. Given current estimates A(t), η̄(t),C(t), W
(t)
i = D2ψ(ηyi(A

(t), η̄(t),C(t))), set

vec(C(t+1)) =

(
n∑
i=1

A(t)TW
(t)
i A(t) ⊗ (fyi − f̄)(fyi − f̄)T

)−1

·
n∑
i=1

A(t)TW
(t)
i (z

(t)
i − η̄

(t))⊗ (fyi − f̄)
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where

z
(t)
i − η̄

(t) = A(t)C(t)T (fyi − f̄) + (W
(t)
i )−1(T(Xi)−∇ψ(ηyi(A

(t), η̄(t),C(t)))),

using ∂l/∂ηy = T(X)−∇ψ(ηy), where li = log(exp(ηyiT(xi)− ψ(ηyi))h(xi)).

2. Let H
(t)
i = (1, (fyi − f̄)TC(t+1))T ⊗ Ik. Then,

vec(η̄(t+1),A(t+1)) =

(
n∑
i=1

H
(t)
i W

(t)
i H

(t)T
i

)−1 n∑
i=1

H
(t)
i W

(t)
i s

(t)
i

where

W
(t)
i = D2ψ(ηyi(A

(t), η̄(t),C(t+1)))

and

s
(t)
i = η̄(t) + A(t)C(t+1)T (fyi − f̄) + (W

(t)
i )−1(T(Xi)−∇ψ(ηyi(A

(t), η̄(t),C(t+1)))),

since H
(t)
i vec(η̄(t),A(t)) = η̄(t) + A(t)C(t+1)T (fyi − f̄).

The choice of starting values can vary from example to example. We propose to obtain the initial

coordinates of η̄ and ACT of ηy that correspond to Xj , j = 1, . . . , p, by fitting one dimensional

exponential family regressions. In the Appendix we derive the initial values we use in the Australian

athletes data analysis example in Section 6.1, and adapt the standard multivariate version of the IRLS

algorithm when the rank of D is not fixed. The nuisance parameters are estimated at the outset and then

remain constant.

We refer to our approach of obtaining the minimal sufficient reduction of the regression of Y on X,

where X|Y is in the exponential family, as Exponential Family Dimension Reduction (EF-DR).

5 Asymptotic Tests for Dimension

The dimension of the regression of Y on X is d = dim(span(ηY − η̄)), where the inverse predictor

X|Y has an exponential family distribution with pdf (or pmf) given by (3), and ηY = η + D(fY − f̄),

with η = E(ηY ) ∈ Rk and D ∈ Rk×r.

The rank d of D, or equivalently, the dimension of the regression of Y on X can be estimated via
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model selection criteria such as AIC and BIC, where the values of d = 0, . . . ,min(r, k) are compared

by fitting the reduced-rank regression models in Section 4. In this section, we also derive asymptotic

tests to estimate the dimension. The standard IRLS algorithm is used to fit the generalized linear model

ηy = η + D(fY − f̄), with D ∈ Rk×r. Using the fact that the IRLS estimate of D is also the MLE and

asymptotically normal, we can estimate the dimension of D using either of the two tests in Bura and

Yang (2011). These tests require knowledge of the asymptotic variance of D̂.

We express the natural parameters as ηY = η + D(fY − f̄) = (Γ1,D)(1, (fY − f̄)T )T = ΓFY ,

with D = ΓMT , where M = (0, Ir) and FY = (1, (fY − f̄)T )T . The solution of the ML equations is

equivalent to the iterative re-weighted least-squares procedure given in Section 4 (see, e.g. McCullough

and Searle 2001, p. 143; Nelder and Wedderburn 1972; Yee and Hastie 2003). Thus, D̂MLE = D̂IRLS

with the same asymptotic normal distribution. The computation of the asymptotic variance for D re-

quires the information matrix for Γ̂. From (3), the log-likelihood of X|(Y = y) with natural parameters

modeled as ηy = ΓFy is given by

l = (ΓFy)
TT(x)− ψ(ΓFy)

Since (ΓFy)
TT(x) = vecT (T(x)FT

y )vec(Γ) and ΓFy = (FT
y ⊗ Ik)vec(Γ), we have

∂l

∂vecT (Γ)
= vec(T(x)FT

y )− (Fy ⊗ Ik)∇ψ(ΓFy)

∂2l

∂vec(Γ)∂vecT (Γ)
= −(Fy ⊗ Ik)∇2ψ(ΓFy)(F

T
y ⊗ Ik)

Therefore,
√
nvec(Γ̂ − Γ) ⇒ Nr×k(0,VΓ), with VΓ =

[
(Fy ⊗ Ik)∇2ψ(ΓFy)(F

T
y ⊗ Ik)

]−1
. As a

consequence,
√
n vec(D̂−D)⇒ Nr×k(0,VD), with VD = (M⊗ Ik)VΓ(MT ⊗ Ik). In the sample,

V̂D is obtained by replacing V−1
Γ by its sample mean, i.e.

V̂−1
Γ =

1

n

n∑
i=1

(Fyi ⊗ Ik)∇2ψ(Γ̂Fyi)(Fyi ⊗ Ik)

Since d = rank(D) and D̂ is asymptotically normal, we can use either an asymptotic weighted chi-

squared test or a Wald-type asymptotic chi-squared test based on the smallest singular values of D̂

developed by Bura and Yang (2011).
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Let D̂ = ÛT ∆̂R̂ be the SVD ecomposition of D̂, with ∆̂ = diag(λ̂1, . . . , λ̂min(r,k)), where λ̂1 ≥

. . . ≥ λ̂min(r,k) are the singular values of D̂, Û is the k × k matrix of its left singular vectors and R̂

is the r × r matrix of its right singular vectors. For m = 0, . . . ,min(r, k), let Û0 be the k × (k −m)

sub-matrix of the first k −m columns of Û, and R̂0 be the r × (r −m) sub-matrix of the first r −m

columns of R̂. Also, let Q̂ = (R̂T
0 ⊗ ÛT

0 )V̂D(R̂0 ⊗ Û0) and D̂0 = ÛT
0 D̂R̂0.

Following Bura and Yang (2011), when m = rank(D), the test statistic Λ1(m) = n

min(r,k)∑
i=m+1

λ̂2
i ,

m = 0, . . . ,min(r, k) has an asymptotic weighted chi-squared distribution with weights the ordered

eigenvalues of Q, the population counterpart to Q̂.

Also, when m = rank(D), the test statistic Λ2(m) = nvec(D̂T
0 )Q̂+vec(D̂0), with Q̂+ the Moore-

Penrose inverse of Q̂, is asymptotically chi-squared with min(rank(cov(D̂)), (r − m)(k − m)) de-

grees of freedom. The dimension is estimated to be the first value of m for which d = m cannot

be rejected at a prespecified level α when carrying out sequential tests of d = m versus d > m for

m = 0, . . . ,min(r, k).

The hypotheses in the sequential testing are hierarchically ordered in the sense that in order to

test d = m + 1 one has to first reject d = m. Such sequential application of unadjusted tests that

requires min(r, k) steps to test min(r, k) null hypotheses is called serial gatekeeping and is analogous

to union-intersection tests (Berger 1982). An important feature of this process is that each null is tested

sequentially at the overall level α, which is controlled for the entire sequential testing (see Dmitrienko

et al. 2010, sec. 5.3; Westfall and Krishen 2001).

6 Connection with Other SDR Methods for Exponential Family Inverse

Predictors

The first attempt to extend sufficient dimension reduction methodology to regressions with both contin-

uous and categorical predictors, was partial dimension reduction by Chiaromonte et al. (2002). Their

set-up, except for the continuous predictors X ∈ Rp, also requires a qualitative predictor W with

values w = 1, . . . , C, which identify C subpopulations. Chiaromonte et al. (2002) proved that if

Y (X,W )|(ζTX,W ), then (ζ̃
T
X,W ) partially recovers the reduction for the regression of Y on

(X,W ), where ζ̃ = span

C⊕
w=1

ζw, with ζw such that ζTwX is a component, not necessarily exhaustive,

of the reduction for the regression Y |Xw, and Xw denotes the restriction of the continuous covariates
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in subpopulation w = 1, . . . , C.

Partial SIR, their estimation algorithm, was an effective way to accommodate both categorical and

continuous predictors utilizing contemporaneous moment-based SDR methodology, which could only

handle continuous predictors. With this approach, a component of the sufficient reduction for the re-

gression of Y on (X,W ) was identified. As it does not allow mixing among continuous and categorical

variables, a main disadvantage is redundancy, especially if C is large, as each subpopulation is consid-

ered separately. Moreover if the number of categories is large, the sample size in each category defined

by W can be very small, leading to pronounced inaccuracy in estimation.

We showed in Section 3.2 that Cook and Li’s (2009) formulation is a special case of our general

approach. Their estimation of the reduction is done via optimization over Grassmann manifolds, a

specialized optimization algorithm which requires knowledge of the full likelihood and all its partial

derivatives and fairly accurate starting values.

Our method, EF-DR, allows for inter-dependence among the inverse predictors, which are modeled

as multiparameter exponential family distributed random vectors. EF-DR identifies the minimal suffi-

cient reduction and computes its MLE. Our IRLS estimation algorithm is fast and easy to implement

since it only requires the derivatives of the likelihood, which, in the case of the exponential family, can

be computed without computing the likelihood, and is a quadratic optimization problem in each iter-

ation. It can be used in place of Grassmann optimization in the Cook and Li (2009) framework. For

example, we can quickly reproduce Cook and Li’s (2009) Table 1 simulation results under their set-up

of conditionally independent inverse Bernoulli predictors.

We illustrate the connections, differences and advantages of our EF-DR approach and both previous

methods, as well as kernel-based methods, using the Australian athletes data set in Section 6.1.

6.1 Australian Athletes

To illustrate partial SIR, Chiaromonte et al. (2002) analyzed a data set discussed by Cook and Weisberg

(1994, 1999). Lean body mass (LBM), Y , is regressed on the logarithms of height, weight, red cell

count, white cell count and hemoglobin, plus an indicator for gender, for a sample of 202 individuals

training at the Australian Institute of Sport. Chiaromonte et al. (2002) considered five many-valued

predictors that comprise X, and one qualitative predictor, gender, denoted by W , with W = 0 for males

and W = 1 for females. They concluded that a single linear combination of the continuous predictors

together with gender were sufficient to describe the regression of Y on (X,W ). The reduction in X was
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estimated with the first partial SIR predictor ζ̂
T
X. The plot of Y versus the first partial SIR predictor

is given in Figure 1 with the two genders identified by different plotting symbols. Using this summary

plot to inform their forward regression model, they inferred that the relationship between Y and X is

linear in the first partial SIR predictor but also that the two straight lines differ for the two sexes both

in terms of rate (slope) and starting point (intercept), and they proceeded to fit a model for Y |(X, G) as

linear the first partial SIR direction, with two different straight lines for sex (G).

To compare with Cook and Li (2009), we assume that (X,W )|Y has an exponential family distri-

bution with all components of X and W independent given Y . That is,

f(X,W )|Y = fX|Y fW |Y = fW |Y

p∏
i=1

fXi|Y

By surveying the marginal plots, the normal distribution appears to be a reasonable model for all Xj |Y .

The variances are assumed to be unequal but independent of Y . We also assume that the distribution

of W |Y is Bernoulli with fW=w|Y=y = pwy (1 − py)1−w, w = 0, 1. In Figure 2, we plot Y versus the

first two sufficient reductions under this model. The plot of the first direction looks very similar to the

partial SIR plot but we note that in this case the reduction is of the form R(X,W ) and not (R(X),W )

as in partial SIR. The plots suggest we need both directions of the reduction to model Y . This result is

also supported by both asymptotic tests for dimension, with the weighted chi-squared test estimating the

dimension to be 2, i.e. separate linear models for the two sexes, at 0.05 level with a p-value of 0.02, and

the chi-squared test estimating the dimension as greater than 2, with a very small p-value. The latter,

though, is known to be a very conservative test so we typically use the weighted chi-squared test to

estimate dimension. As this is a two-dimensional problem and it is difficult to visualize the relationship

between the response and the two reductions, we simply fit a linear model in the two reductions and

report results from this model in the next section where we compare predictive accuracy.

Next, we assume that the joint distribution of (X,W )|Y has an exponential family distribution.

Since f(X,W )|Y = fX|(Y,W )fW |Y , we model X|(Y,W ) as multivariate normal with constant variance,

based on marginal plots of X versus Y for the two genders, and W |Y as Bernoulli(pY ). The plots of

the X components versus Y indicate that E(X|(W,Y )) depends on Y in a linear fashion within the

two sexes, i.e. E(X|(W,Y )) = µX + b1(fY − f̄Y ) + b2(W − µW ), with fY = Y , f̄Y = E(fY ),
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µW = E(W ). Therefore, we model the conditional joint distribution of (X,W ) given Y as

f(x, w|y) =
1

(2π)p/2|∆|1/2
e−

1
2

(x−µx−b1(fy−f̄y)−b2(w−µw))T ∆−1(x−µx−b1(fy−f̄y)−b2(w−µw))

× e(w−µw) log
py

1−py
+log(1−py)+µw log

py
1−py (10)

= eη
T
y T(x,w)−ψ(ηy)h(x, w)

The pdf form in (10) belongs to the exponential family with

T(x, w) = (x− µx, w − µw)

ηy = (η1, η2) =

(
∆−1b1(f − f̄y), log

py
1− py

− bT2 ∆−1b1(f − f̄y)
)

ψ(ηy) =
1

2

(
b1

(
fy − f̄y

))T
∆−1

(
b1

(
fy − f̄y

))
− log(1− py)− µg log

py
1− py

h(x, w) =
1

(2π)p/2|∆|1/2
e−

1
2

(x−µx)T ∆−1(x−µx)− 1
2

(w−µw)2bT
2 ∆−1b2+(w−µw)bT

2 ∆−1(x−µx)

where η1 = ∆−1b1(f − f̄y) is p × 1, and η2 = log(py/(1 − py)) − bT2 ∆−1b1(fy − f̄y) is a scalar.

Letting α = span{ηY − η̄ : Y ∈ SY }T , αTT(X,W ) is the minimal sufficient reduction for the

regression of Y on X and W .

The estimation algorithm for the sufficient reduction is given in the Appendix. Using the tests for

dimension in Section 5, the dimension was estimated to be one using both the weighted chi-squared and

the chi-squared tests at 5% level. The weighted chi-squared test had a p-value of 0 for testing dimension

0 versus 1 and 0.83 for 1 versus 2, and the chi-squaredd test had a p-value of 0 for 0 versus 1 and 0.053

for 1 versus 2. In Figure 3, the response, LBM, is plotted versus the sufficient reduction estimated by

EF-DR. The plot indicates that there is no difference between the two sexes and the same quadratic

function in R(X,W ) can be fitted to both sexes to predict LBM when the possible dependence among

the predictors, both quantitative and qualitative, is accounted for. That is, the regression model for

predicting LBM is

E(Y |X,W ) = E(Y |R(X,W )) = γ1 + γ2R(X,W ) + γ3R
2(X,W )

This result is in contrast to both the partial SIR analysis in Chiaromonte et al. (2002) and Cook and Li

(2009) who estimate the dimension of the reduction to be 2. By accounting for the dependence structure,
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EF-DR not only provides a more accurate characterization of the relationship between the response and

the predictors, but also reduces the complexity of the regression.

Figure 1: LBM versus the Partial SIR (Chiaromonte et al. 2002) estimated sufficient reduction (Dots for females,
crosses for males)

To examine how the dependence structure affects the performance of EF-DR, we carried out addi-

tional simulations using the set-up of the Australian athletes data varying the correlation of the inverse

predictors. That is, we generated a normal response and one binary and several continuous predictors

satisfying (10). The results, which are not reported, largely agree with our observations in the Aus-

tralian athletes example. EF-DR exhibited overall superior performance across dependence structures

with respect to both estimation and prediction.

We also studied how EF-DR behaves as the sample size and the number of predictors increases,

again using the Australian athletes set-up. As expected, increased sample sizes result in better per-

formance. Also, the higher the correlation among the predictors, the better EF-DR performed across

sample size and number of predictors.
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Figure 2: LBM versus the two Cook and Li (2009) estimated sufficient reductions (Dots for females, crosses for
males)

6.2 Comparison with Kernel-based SDR Methods

In attempts to overcome the linear nature of most SDR methods, several recent papers have combined

sufficient dimension reduction and reproducing kernel Hilbert spaces (Akaho 2001; Bach and Jordan

2002; Fukumizu et al. 2004, 2009; Fukumizu et al. 2007; Wu 2008; Wu et al. 2008; Hsing and Ren

2009; Yeh et al. 2009; Zhu and Li 2011). Along the same lines, Li et al. (2011) used support vector

machines to estimate functions of the sufficient reductions and called their method Principal Support

Vector Machine (PSVM). Kernel PSVM, its nonlinear version, compares well with linear SDR methods

in specific set-ups but it is computationally demanding and requires some judicious choices by the user

at the outset. Kim and Pavlovic (2013) developed Covariance Operator Inverse Regression (COIR), a

generalized version of linear discriminant analysis.

Kernel-based methods belong to what is called “manifold learning" or “nonlinear dimension re-

duction," where the data are considered to be a sample from a manifold that is embedded in a higher-

dimensional space (see Parviainen 2011). Manifolds generalize linear subspaces by introducing curvi-

linear coordinates. The manifold coordinates can be approximated by studying the data in a local scale,

and then combining local linear views into a global nonlinear shape. Local views are obtained by re-
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Figure 3: LBM versus the EF-DR estimated sufficient reduction (Dots for females, crosses for males)

stricting the analysis to the nearest neighbors of a data point. Kernel methods assume existence of a

low-dimensional structure and try to find it, instead of transforming high-dimensional data into a low-

dimensional form. Many manifold methods are reviewed in van der Maaten, Postma and van den Herik

(2009).

We apply KSIR (Kernel SIR, Wu 2008), KDR (Kernel Dimensionality Reduction, Fukumizu et al.

2004) and COIR (Kim and Pavlovic 2013) to the Australian athletes data. COIR is a modification of

KSIR for univariate response, where, instead of slicing, a non-parametric model is used in the inverse

regression of X|Y . The code for kernel PSVM (Li et al. 2011) is not publicly available. Except for

KDR, the other kernel-based SDR methods produce nonlinear reductions of the predictors that do not

have an explicit form. KSIR, KDR and COIR provide a representation of the capabilities of kernel-based

SDR methods for data such as the Australian athletes.

There are no tests for dimension for these kernel-based methods. Yeh et al. (2009) rank the im-

portance of the KSIR predictors by the associated eigenvalues and suggest using either the first one or

the first two after inspection of the eigenvalues. Fukumizu et al. (2009) do not consider the problem of

inferring the dimension of the KDR reduction important because KDR is often used in the context of

graphical exploration of data, where a data analyst may wish to explore views of varying dimensionality.

Both KSIR and KDR reductions are consistent (Wu et al. 2008; Fukumizu et. al. 2009). There are no

published consistency results for COIR (Kim and Pavlovic 2013).
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In Figures 4, 5 and 6 we plot the response versus the first KSIR, KDR and COIR predictors applied

to the continuous predictors, respectively. The Gaussian kernel was used for all three, and the choice

of optimal bandwidth was highly computationally intensive. Based on these summary plots and on the

plot of Y versus those predictors, we model Y as in the case of partial-SIR with

E(Y |X,W ) = E(Y |R(X),W ) = (α1 + α2I(W = 1)) + (β1 + β2I(W = 1))R(X)

where W is gender (1 for women, 0 for men), I is the indicator function, and R(X) is the reduction for

each method.

In Table 1 we report the coefficient vector α̂ of the reduction for the methods we are able to obtain

explicit solutions: For partial SIR and KDR, the reduction is α̂TX, and for Cook and Li (2009) and

our EF-DR, α̂T (X,W ). In Table 2 we report the leave-one-out squared error loss,
n∑
i=1

(yi − ŷ(−i))
2/n,

where ŷ(−i) indicates prediction of the ith response using all data except for the ith observation. EF-DR

has the best performance with respect to prediction error, followed by partial SIR and then KDR, KSIR

and COIR.

We also included kernel methods in the unreported simulations, using the set-up of the Australian

athletes data varying the correlation of the inverse predictors. We found EF-DR to exhibit overall better

estimation and prediction performance. This is not surprising as the data were simulated to comply with

the exponential family inverse predictor model, which is the premise of our methodology, and kernel-

based approaches are not tailored to specific distributional models. We note that the computational cost

for applying kernel methods in this set-up was significantly higher as compared with EF-DR: the time

required for KSIR or KDR ranged from 150 to about 1000 times that of EF-DR. We did not include

COIR in the computations as it generally gave the worst results at high computational cost.
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Figure 4: LBM versus the first KSIR predictor (Dots for females, crosses for males)

7 Multivariate Bernoulli Inverse Predictors

In many fields, predictors of a target variable are binary or categorical. Examples include gene asso-

ciation studies (Peng et al. 2009; Wang et al. 2011), image processing (Hassner and Sklansky 1980;

Woods 1978), natural language processing (Manning and Schutze 1999), social networks (Wasserman

and Pattison 1996; Handcock 2003), spatial statistics (Besag 1974). In Economics it is often necessary

to work around the proliferation of dichotomic predictors such as in deterministic weekly seasonal ad-

justment (Pierce et al. 1984), or when the empirical analysis of a large number of interactions is needed

in interaction based models (Brock and Durlauf 2001).

The multivariate Bernoulli distribution (Whittaker 1990; Dai et al. 2013) models potentially de-

pendent binary variables and is a member of the exponential family. Because unordered categorical

variables can be represented by binary variables, the multivariate Bernoulli can be used to model both bi-

nary and categorical variables. In this section we turn our attention to regressions with jointly Bernoulli

inverse predictors and apply our methodology in order to identify and estimate the sufficient reductions.

7.1 The Ising Model

The probability mass function of the multivariate Bernoulli involves terms representing third and higher

order moments. Graphical models have been used to represent the joint distribution of categorical
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Figure 5: LBM versus the first KDR predictor (Dots for females, crosses for males)

variables. While graphical models can easily capture pairwise correlations, higher order interactions are

extremely complex to accommodate. Moreover, the estimation is computationally infeasible for realistic

size networks as the evaluation of the likelihood is required.

The Ising model (Ising 1925) is an undirected graphical model that allows up to pairwise interac-

tion effects and it has been used to model multivariate binary data at great extent. Even though the

Ising model is a special case of the multivariate Bernoulli distribution, Wainwright and Jordan (2008)

showed that it can accommodate more general dependence structures as higher order interactions can

be converted to pairwise ones through the introduction of additional variables (also see Ravikumar et al.

2010).

We model binary inverse predictors using the Ising model. Suppose we have p binary inverse pre-

dictors X1|Y, . . . ,Xp|Y , with Xj |Y ∈ {1, 0}, 1 ≤ j ≤ p, whose joint distribution has density function,

p(x1, . . . , xp|Y = y) =
1

Z(Θ(y))
exp

 p∑
j=1

θjj(y)xj +
∑

1≤j≤j′≤p
θjj′(y)xjxj′

 (11)

where Θ(y) = (θjj′(y))p×p is a symmetric matrix specifying the network structure. The partition func-

tion Z(θ(y)) =
∑

Xj∈{0,1},1≤j≤p

exp(

p∑
j=1

θjj(y)Xj +
∑

1≤j<j′≤p
θjj′(y)XjXj′) ensures that the density

function in (11) is proper and integrates to one.
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Figure 6: LBM versus the first COIR predictor (Dots for females, crosses for males)

The term θjj(y), 1 ≤ j ≤ p, corresponds to the main effect for variable Xj |Y , and θjj′(y), 1 ≤ j <

j′ ≤ p, corresponds to the interaction effect between Xj |Y and Xj′ |Y . The θjj′(y)s reflect the structure

of the underlying network and Cheng et al. (2012) showed that they can be connected to conditional

log-odds via

log
P (Xj = 1|X−j , y)

1− P (Xj = 1|X−j , y)
= θjj(y) +

∑
j′ 6=j

θjj′(y)Xj′

where X−j = (X1, . . . , Xj−1, Xj+1, . . . , Xp). Also, by conditioning on X−j,−j′ = 0, Cheng et al.

(2012) obtained

θjj′(y) = log
P (Xj = 1, Xj′ = 1|X−j,−j′ , Y )P (Xj = 0, Xj′ = 0|X−j,−j′ , Y )

P (Xj = 1, Xj′ = 0|X−j,−j′ , Y )P (Xj = 0, Xj′ = 1|X−j,−j′ , Y )

which implies that Xj and Xj′ are conditionally independent given Y and all other X-variables if and

only if θjj′(y) = 0, and hence their corresponding nodes are not connected.
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α̂ W

Partial SIR

(0.18, 0.98, 0.01, 0.02, 0.12)

Cook and Li

(0.88, 0.45, 0.10, 0.02, 0.11) 0.04

(0.92, 0.37, 0.07, 0.02, 0.08) 0.10

EF-DR

(0.27, 0.92,−0.03,−0.04, 0.21) -0.17

KDR

(−0.29,−0.91,−0.03, 0.08,−0.29)

Table 1: Reduction Coefficients

partial SIR Cook-Li EF-DR KDR KSIR COIR

2.660 3.563 2.573 3.160 5.580 8.804

Table 2: Prediction Errors

7.1.1 Estimation of the Sufficient Reduction

The Ising probabibility function (11) belongs to the exponential family with natural parameter vector

ηy = (θ11(y), θ22(y), . . . , θpp(y), θ12(y), . . . , θp−1,p(y))T , and sufficient statistic

T(X) = (X1, . . . , Xp, X1X2, . . . , X1Xp, . . . , Xp−1Xp)
T , (12)

both with p+ p(p− 1)/2 elements. Applying Theorem 1, the sufficient reduction for the regression of

Y on X is αT (T(X)− E(T(X)), where α = span(ηY − η̄).

We use multivariate logistic regression to estimate the natural parameters ηY . Suppose n samples

are drawn from Y and X, denoted by y = (y1, . . . , yn) and xi = (xi1, . . . , xip), i = 1, . . . , n. The

log-likelihood for the generalized linear model of the Ising distribution is

l(x, y) =
n∑
i=1


p∑
j=1

xijθjj +
∑
j<j′

θjj′xijxij′ − log

1 +

p∑
j=1

exp(θjj +
∑
j′<j

θj′j)


 (13)

The maximization of the log-likelihood in (13) with respect to the coefficients of the fy components

in the generalized linear model for the natural parameters ηy can be done as in Section 4, and the
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IRLS algorithm can be used to estimate α via fitting a multivariate logistic regression model. The

dimension of α can be estimated either with the asymptotic tests in Section 5, or with an information

based criterion such as AIC or BIC. The sufficient reduction for the regression of Y on the binary X’s

is then (α̂1, . . . , α̂d̂)
T
(
T(X)− T̄(X)

)
, where T(X) is given in (12), T̄ is the sample mean of T(X),

and d̂ is the estimated dimension. In the next two sections, 7.2 and 7.3, we illustrate how to apply our

methodology in regressions with Bernoulli inverse predictors.

7.2 Simulation Experiments

Suppose Y is normal with zero mean and standard deviation 0.5. Given Y , we let X = (X1, . . . , Xp)
T

be a Bernoulli vector with p components with pairwise correlation structure among contiguous pairs as

follows, (X1, X2), (X3, X4), . . . , (Xp−1, Xp), and all other interactions of all orders are zero. There-

fore, ηY = (θ11, θ22, . . . , θpp, θ12, θ34, . . . , θ(p−1)p).

The sufficient statistic is T(X) = (X1, X2, . . . , Xp, X1X2, X3X4, . . . , Xp−1Xp). The natural pa-

rameter ηY is generated as

ηY = ACT (fY − EfY )

where C = 1, fY = Y . For p = 4, A = (1, 1, 1, 1, 10, 10)T /
√

204, and for p > 4, we set A5 = . . . =

Ap = 0, so that, for all p, the minimal sufficient reduction is [(X1 −E(X1)) + (X2 −E(X2)) + (X3 −

E(X3)) + (X4 − E(X4)) + 10(X1X2 − E(X1X2)) + 10(X3X4 − E(X3X4))]/
√

204.

We compute the accuracy of the estimation of the sufficient reduction in three cases: (a) assuming

the true correlation structure; (b) assuming the X components are independent given Y , which is Cook

and Li’s (2009) approach; and (c) assuming that all pairwise interactions are present as in the full Ising

model. Accuracy is measured as the maximum angle between the true subspace spanned by ηY − η̄,

Y ∈ SY , and the estimated one. We report results for n = 100, 200, 300, 500, and p = 4, 6, 10.

The estimation under (b) and (c) is carried out using the R package MVB developed by Dai (2013).

Dai et al. (2013) studied the multivariate Bernoulli distribution as well as estimation in a generalized

linear model that includes higher order interactions among the covariates. We applied our algorithm for

the estimation of the natural parameter vector under the true model (a). We note that the current version

of the MVB package does not allow setting specific individual second order, or any other higher order

interactions, to zero. To the best of our knowledge, our IRLS algorithm is the only computational tool
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for fitting the true model.

In Table 4 we report the time it takes to compute the reductions under (a), (b) and (c) for increas-

ing values of sample size and number of binary predictors in one replication. As expected, the full

Ising model is the most computionally demanding, followed by our method under the true correlation

structure. The conditional independence model (b) is by far the fastest, since much fewer quantities are

computed.

n = 100 n = 200 n = 300 n = 500 N

p = 4

(a) 35.12 (16.65) 26.29 (12.14) 21.94 (8.50) 17.49 (8.09) 100

(b) 43.69 (16.30) 39.29 (12.52) 37.64 (10.49) 37.19 (7.33) 100

(c) 45.81 (15.47) 41.12 (13.78) 30.95 (13.62) 29.56 (12.24) 100

p = 6

(a) 40.42 (12.10) 34.82 (13.15) 28.76 (16.96) 23.31 (13.24) 50

(b) 64.24 (15.84) 63.16 (23.91) 58.08 (25.59) 55.42 (30.12) 50

(c) 51.06 (14.56) 42.51 (13.25) 38.21 (13.78) 36.80 (12.89) 50

p = 10

(a) 50.38 (10.78) 40.43 (10.27) 33.97 (10.47) 28.84 (9.16) 50

(b) 75.23 (10.86) 72.16 (11.93) 73.14 (12.11) 74.45 (9.90) 50

(c) 57.12 (13.41) 55.63 (12.71) 50.22 (12.03) 47.01 (10.82) 50

Table 3: Mean angles and their standard deviations in parentheses between the true and estimated sub-
spaces

The average angles and their standard deviations, in parentheses, between the true and estimated

reductions under (a), (b) and (c) are reported in Table 3. The column headed by N reports the number

of replications for each variable number-sample size combination. From Table 3 we see that when we

account for the true correlation structure of the inverse predictors, the accuracy of the estimation of the

sufficient reduction rapidly increases as the sample size increases and is uniformly much better than

under both (b) and (c) schemes across sample sizes. It is also noteworthy that the over-parametrized

full Ising model (c) that contains all second order interactions yields better estimates compared to the

simple yet naive model (b) of conditional independence.

When the correlation structure of the inverse predictors is incorporated in the estimation process,

the accuracy improves significantly and is much better than both competing approaches. The question
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n = 100 n = 200 n = 300 n = 500

p = 4

(a) 20.99 42.09 63.94 105.9

(b) 1.98 4.15 5.8 11.14

(c) 30.12 52.23 89.21 200.98

p = 6

(a) 87.36 183.76 292.87 492.14

(b) 2.35 5.32 8.38 12.85

(c) 102.23 207.69 387.21 605.41

p = 10

(a) 2264.08 3888.49 5327.56 11962.96

(b) 2.73 3.34 8.25 13.1

(c) 3675.45 4671.90 6713.13 13945.12

p = 12

(a) 6158.65 13925.21 18243.74 26580.66

(b) 3.26 5.74 8.89 14.50

(c) 8712.21 15092.01 20193.12 28143.81

Table 4: Computational time (in seconds) for one replication of the reduction estimation under (a), (b)
and (c) for increasing n and p.

then arises how one can deduce the correlation structure in real data analysis problems with binary

predictors. An approach, also supported by the simulation results in Table 3, is to fit a full Ising model,

which has p+p(p−1)/2 parameters to estimate, and test for effect significance. For large p, this would

be practically impossible. For example, even for a relatively small number of predictors such as p = 10,

there are 55 parameters to estimate and 210 for p = 20.

Alternatively, one can screen the inverse predictor network. If the interaction terms in a multivariate

Bernoulli distribution are zero, the corresponding terms are independent (Dai et al. 2013). Using this

fact, one can control the dependence structure among the components of a Bernoulli vector by setting

the corresponding elements of the natural parameter vector to zero. This approach can be very useful

when the Bernoulli vector has large dimension and the number of parameters to be estimated makes the

problem infeasible for realistic sample sizes. Cheng et al. (2012) proposed a l1-based penalization for

interaction and variable selection in Ising models. We apply their method in order to identify which main

and second order effects to include in the generalized linear model and then use our IRLS estimation
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algorithm in the Zoo data analysis that follows.

7.3 Zoo Data

The Zoo data consist of 101 animals classified into 7 categories: amphibian, bird, fish, insect, inver-

tebrate, mammal, and reptile. The animals are distributed unevenly among the classes, the number

of subjects in the respective classes being 4, 20, 13, 8, 10, 41 and 5. Sixteen categorical predictors

were measured on each animal, including hair, feathers, eggs, milk, airborne, aquatic, predator, toothed,

backbone, breathes, venomous, fins, tail, domestic, cat-size and legs. The first fifteen predictors are

dichotomous, and the legs variable is polychotomous.

Cook and Li (2009) analyzed this data set. The fifteen dichotomous predictors, X, classify animals

into the seven animal categories, Y . The polychotomous legs variable is omitted from the analysis

in order to focus on comparing the classification accuracy under the assumption of independent and

dependent inverse Bernoulli predictors.

Under conditional independence of the predictors X given the response Y , the multivariate Bernoulli

logistic model can be easily fitted via iterative re-weighted least squares. Since the response is categor-

ical, we define a function fy with kth coordinate

fyk = I(y = k)− nk
n

for k = 1, . . . , r,

r = 7 − 1 = 6, where 7 is the number of distinct values of the response. The function I(·) is the

indicator function and nk is the number of observations in category k (see, also, Cook 2007). The

natural parameters θjj(y) in (11) can then be written as a linear function of fy using

θjj(y) = γ0j + γ1jfy1 + . . .+ γkjfyr (14)

where γj = (γ0j , . . . , γrj)
T is the coefficient vector to be estimated for j = 1, . . . , p. There are

7× 15 = 105 coefficients to be estimated in the simple case of independence.

With n samples on Y and X, (14) can be written as

ηn = FnΓ (15)

where ηn = (θi(jj)) is an n×p random matrix with θi(jj) = θjj(yi), Fn = (fil) = (fyi,l), an n×(r+1)
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fixed matrix, and Γ = (clj), the (r + 1) × p matrix of coefficients. Observe that rank(FnΓ) =

rank(ΓTFnF
T
nΓ) = rank(Γ), since FT

nFn is a positive definite matrix (see section A4.4 of Seber

(1977)). From (15), the natural parameter space is spanned by the rows of FnΓ, i.e. span(ηy) =

span(ΓTFT
n ) = span(ΓT ). In consequence, inference on the dimension d of span(ηy) can be based

solely on Γ in the sense that an estimate of the rank of Γ constitutes an estimate of the dimension of

span(ηy). The d eigenvectors of the IRLS estimate of ΓT that correspond to its d largest eigenvalues,

yield estimates of the basis vectors of span(ηy), and the resulting d linear combinations of the centered

T(X) are the sufficient predictors.

The MVB package yields parameter estimates for Γ, which we expect to be somewhat inaccurate

since n = 101. Under conditional independence, the MVB package yields the same estimates as Cook

and Li (2009) and the two methods can be used interchangeably. In Figure 7, the sufficient reductions

1, 3, 5, and 6 are plotted. The colors serve to identify the different categories with blue for amphib-

ian (Y = 1), red for bird (Y = 2), green for fish (Y = 3), cyan for insect (Y = 4), magenta for

mollusc.et.al (Y = 5), gold for mammal (Y = 6), and black for reptile (Y = 7). We see that under

conditional independence of the Bernoulli predictors given the response, the first versus the third in

panel (a) can separate red (bird), green (fish), but even though cyan (insect) and gold (mammal) appear

as separate, one gold is covered by cyan. The first versus the sixth in panel (b) can separate green

(fish) and blue (amphibian) easily. Also, there is separation between red (bird) and black (reptile), as

one can draw a closed curve around all black points without intersecting any other group. This can be

done using machine learning algorithms for pattern classification that are based on image segmentation

and optimization techniques used in level sets (see, for example, Varshney and Willsky 2010; Cai and

Sowmya 2007). The third versus the fifth direction in panel (c) can separate red (bird), magenta (molusc

et al.), cyan (insect) and green (fish) easily, and one can draw closed curves around the gold (mam-

mal) and either blue (amphibian) or black (reptile) points, but with blue and black being too close for

differentiation.

Even though we report results for some reductions, the singular values of Γ̂
T

are 120.87, 100.81,

67.03, 48.25, 35.52, 22.75, all so substantially far from zero to indicate that the dimension of the problem

is six. The sufficient reductions that were plotted in Figure 7 were selected as they provide the clearest

visual separation. We note that the reductions that can separate the classes are not ordered according to

their separation potential and several are needed.

With n = 101 it is impossible to fit the full pairwise dependence Ising model, as the number
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(a) SR1 versus SR3 under Independence (b) SR1 versus SR6 under Independence

(c) SR3 versus SR5 under Independence

Figure 7: Scatterplots of Sufficient Reductions 1, 3, 5, 6 under conditional independence of X given Y .

of natural parameters in this model is p +

(
p

2

)
= 120 and fitting the corresponding model to (14)

would require the estimation of 7 × 120 = 840 parameters with 101 observations. For this reason, we

assume that the Ising model is sparse; that is, that some natural parameters θjk(y) are zero, for some

j ≤ k = 1, . . . , p.

The l1 penalties of Cheng et al. (2012) induce sparsity both in the natural parameter vector ηy =

(θ11(y), . . . , θpp(y), θ12(y), . . . , θp−1,p(y))T , and in the (adjusted) coefficient matrix Γ, which is now

of dimension (r + 1) ×
(
p+

(
p

2

))
= 7 × 120 in the accordingly enlarged model (14). We applied

the joint estimation algorithm of Cheng et al. (2012) to the Zoo data. The Matlab code was provided by

Dr. Cheng. The singular values of the estimated adjusted Γ matrix are 12.07, 10.09, 9.91, 9.62, 7.91,
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Figure 8: EF-DR: SR1 versus SR2 under Dependence

7.46. The third and fourth and the fifth and sixth singular values are very similar, indicating that the

corresponding left singular vectors define the same eigenspace.

The reductions are of the form α̂T (T(X) − T̄(X)). At the start, i.e. prior to applying Cheng

et al.’s (2012) variable selection, T(X) = (X1, . . . , X15, X1X2, . . . , X14X15) with 120 terms. After

screening for sparsity, 66 of its terms were retained in the computation of the sufficient reduction. As so

many are left, we do not explicitly report either α̂ or the sufficient reduction, but note that the X1, X5,

X7, X11 and X14 main effects are active in the sufficient reduction. They are indicators of whether the

animals have hair, are airborne, predatory, venomous and domestic, respectively. All other 61 effects

are interactions, suggesting that the predictors are dependent.

In Figure 8 we plot the first two sufficient reductions. We can see that all colors are separated by

simple closed curves, the black and blue points included. That is, two sufficient reductions can separate

all seven classes of points, and, therefore, we estimate the dimension of the regression to be two, in

contrast to six under the independence assumption. For the Zoo data, EF-DR offers perfect in-sample

classification and significantly reduces complexity.

We also applied KDR with Gaussian kernel to the Zoo data. The seven classes cannot be separated
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with closed curves in the plot of the first two KDR directions, as in EF-DR. In order to compare numer-

ically the classification accuracy of EF-DR and KDR, we used linear discriminant analysis (LDA) and

the naive Bayes version of quadratic discriminant analysis (dQDA), which uses diagonal covariance ma-

trix estimates, since some class covariance matrices were singular. This form of QDA classifier operates

under the assumption of class-conditional independence between variables, which, even though is not

true in general, has been found to work well in practice on many data sets. KDR was applied directly

to the data without imposing any sparsity constraints such as in the implementation of EF-DR. It can

be seen from Table 5, where the LDA and diagonal QDA misclassification rates of the two methods

and two dimension values for the reduction (d = 2, 3) are reported, that EF-DR has better classification

accuracy with both classifiers.

EF-DR KDR

d = 2

LDA 0.139 0.297

dQDA 0.158 0.257

d = 3

LDA 0.119 0.158

dQDA 0.109 0.139

Table 5: LDA and dQDA misclassification errors

8 Discussion

Until very recently, sufficient dimension reduction meant finding linear combinations of the predic-

tors that are sufficient for the forward regression. Reproducing kernel Hilbert spaces (RKHS)-based

methods, in which the predictors are immersed in a higher dimensional space so that linear sufficient

dimension methodology can be applied, went a step further to obtain functions of the predictors that

are sufficient but not necessarily linear in the original predictors, though for most it is not possible to

extract an explicit form of the reduction. The generality of kernel-based methods, as they are applicable

to any types of data, is their most appealing feature. For the same reason, they can be less efficient than

methods that take advantage of the distribution of the data when the latter is known or easy to deduce.

Model based SDR emerged from the connection that Cook (2007) drew between sufficient statistics

and sufficient reductions. We make use of this connection to compute sufficient reductions in regressions
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with exponential family inverse predictors. The most attractive features of the sufficient reductions we

derive with EF-DR are that (1) they are exhaustive, (2) they are linear functions of the sufficient statistics,

which can be both linear and nonlinear functions of the predictors, and (3) they have explicit functional

forms. Moreover, the estimates of the sufficient reductions are MLEs and hence efficient.

Our results hold true when the response and the predictors have a joint exponential family distribu-

tion, since the conditional distribution of any subvector of (Y,X) given the rest is also in the exponential

family. Our methodology easily extends to the case of a vector response.

A potentially challenging aspect of our methodology stems from the fact that we regress a multivari-

ate vector of exponential family distributed predictors, which can be any mixture of continuous and/or

categorical variables, on functions of the response that requires the adjustment of the IRLS algorithm

to the specific joint distribution of X|Y . We touch upon the potential computational difficulties in the

analysis of the Australian athletes data example in Section 6.1.
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Appendix:

Initial values and Estimation Algorithm for the EF-DR sufficient reduction in the Australian

Athletes Data Analysis

We assume that for each Y = y, ηy = η̄ + D(fy − f̄y) ∈ Rp+1. Under this setup, we let ΓT =

(η̄,D) be the (r + 1) × (p + 1) matrix of unknown coefficients in the GLM model (5), and write

γ = vec(Γ) = vec

 η̄T
DT

 ∈ R(p+1)(r+1)×1, so that

ηy =

η1

η2

 =
(
Ip+1 ⊗ (1, (fy − f̄y)

T )
)
γ = Fyγ

with η1 ∈ Rp×1 and η2 ∈ R, and Fy = Ip+1 ⊗ (1, (fy − f̄y)
T ) : (p+ 1)× (p+ 1)(r + 1). Note that η̄
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is (p+ 1)× 1 and D is of order (p+ 1)× r, where p is the number of X predictors and the additional

dimension is due to the binary variable W .

The parameters of interest are D and η̄, whereas ∆ and b2 are nuisance parameters. The latter are

fixed at their initial values whereas D and η̄ are updated in each iteration of the estimation algorithm.

Initial values and algorithm:

1. (a) Regress Xctd = X− X̄ : p× 1 on the centered fy : r × 1 and centered W ,

Xctd = b1(fy − f̄y) + b2(W − W̄ ) + ε (16)

to obtain the least squares estimates b̂2 : p× 1 and b̂1 : p× r. Let ∆̂ denote the covariance

matrix of the residuals from fitting (16).

(b) Fit a logistic regression for W on fy − f̄y,

log
py

1− py
= h1 + hT2 (fy − f̄y)

and obtain the IRLS estimates ĥ1 and ĥ2, or, equivalently, the MLEs of h1 and h2, respec-

tively.

2. The initial value for γ is

γ0 = vec

 η̄T0
DT

0


where

(a) η̄0 = (AT
10, A20)T , A10 : p × 1, A20 ∈ R, and D̂0 = (D10,D20)T , with D10 : r × p,

D20 : r × 1

(b) A10 = 0 and D̂T
10 = ∆̂

−1
b̂1

(c) A20 = ĥ1 and D20 = ĥ2 − b̂T2 D̂T
10

3. We update γ by

γ(t+1) =

(
n∑
i=1

FTyiW
(t)
yi Fyi

)−1 n∑
i=1

FTyiW
(t)
yi

(
Fyiγ

(t) + (W(t)
yi )−1(T(x, w)− d(t)

yi )
)
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where for each i = 1, . . . , n,

(a)

d(t)
yi =

∆̂η
(t)
1i + b̂2(p(t)

yi − w̄)

p(t)
yi − w̄


using that E(T(X,W )|Y ) = ∇ψ(ηy), and ∂l/∂ηy = T(X,W )−∇ψ(ηy),

(b)

W(t)
yi =

∆̂ + b̂2b̂
T
2 p

(t)
yi (1− p(t)

yi ) p(t)
yi (1− p(t)

yi )b̂2

b̂T2 p
(t)
yi (1− p(t)

yi ) p(t)
yi (1− p(t)

yi )


using var(T(X,W )|Y ) = ∂2ψ(ηy)/∂η

T
y ∂ηy, where

• η(t)
yi =

η(t)
1i

η
(t)
2i

 = Fyiγ
(t), η(t)

1i ∈ Rp+1 and η(t)
2i ∈ R

• p(t)
yi =

eη
(t)
2i +b̂T

2 η
(t)
1i

1 + eη
(t)
2i +b̂T

2 η
(t)
1i

4. Repeat step 3 until convergence.
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