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a  b  s  t  r  a  c  t

Biallelic  mutations  of FANCD2  and  other  components  of  the  Fanconi  Anemia  (FA)  pathway  cause  a  dis-
ease  characterized  by  bone  marrow  failure,  cancer  predisposition  and  a striking  sensitivity  to  agents
that  induce  crosslinks  between  the  two  complementary  DNA  strands  (inter-strand  crosslinks-ICL).  Such
genotoxins  were used  to characterize  the  contribution  of the  FA  pathway  to the genomic  stability  of
cells,  thus  unravelling  the  biological  relevance  of ICL  repair  in  the  context  of  the  disease.  Notwithstand-
ing  this,  whether  the  defect  in  ICL  repair  as  the  sole  trigger  for  the  multiple  physiological  alterations
observed  in FA patients  is  still  under  investigation.  Remarkably,  ICL-independent  functions  of  FANCD2
and  other  components  of the FA pathway  were  recently  reported.  FANCD2  contributes  to  the  processing
RCA1
RCA2

of  very  challenging  double  strand  ends  (DSEs:  one  ended  Double  Strand  Breaks  -DSBs-  created  during
DNA  replication).  Other  ICL-independent  functions  of  FANCD2  include  prevention  of  DNA  breakage  at
stalled  replication  forks  and  facilitation  of chromosome  segregation  at the  end  of  M  phase.  The cur-
rent  understanding  of  replication-associated  functions  of FANCD2  and  its  relevance  for  the  survival  of

38
genomically  stable  cells  is herein  discussed.
© 2017  Published  by  Elsevier  B.V.
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. Fanconi anemia: the disease

Fanconi anemia (FA) is a rare recessive disorder with an inci-
ence of 1–5 per 1,000,000 births [1]. Despite such apparent low

requency, FA is the most common inherited bone marrow fail-
re syndrome [2]. While FA is classified as an anemia, the initial
igns of the illness may  include bone or skeleton defects, renal
ysfunction, short stature and very frequently abnormal hyper-
nd hypo-pigmentation of the skin and café au lait spots [3,4].
owever, the disease may  not be diagnosed until the onset of pan-

ytopenia (reduction in the number of cells of all haematopoitic
inages) [2]. The syndrome is also characterized by a predispo-
ition to blood cancers such as myeloid leukemias, and other
ype of cancers such as squamous cell carcinomas [2,5,6]. Further-

ore, bone marrow transplantation in these patients is challenging
s all tissues are extremely sensitive to ICL-generating therapy
7,8]. In fact, the modification of transplantation therapies in FA
atients correlates with an improvement in their life expectancy,
hich has increased from 33 years to patients currently reach-

ng their 40 s and even their 50 s (Fanconi Anemia Research Fund)
9].

At least 5 decades after the discovery of the illness, the first FA
ene, FANCC, was  identified [2,10]. To date 22 FA genes are known
nd it is possible that new genes will be discovered in the future.
he manifestation of the disease requires the germline inactiva-
ion of both alleles of one of the genes in the FA pathway. The
A family complementation groups are: FANCA, FANCB, FANCC,
ANCD1, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCJ, FANCL,
ANCM, FANCN, FANCO, FANCP, FANCQ, FANCR, FANCS, FANCT,
ANCU, FANCV and FANCW [2,11–13]. In all cases, the elimination
f each gene product enhances ICL sensitivity [3].

The characterization of the different clinical manifestations
n FA patients has shed light on the aetiology of the illness in
ach genetic background. Patients with germline biallelic inacti-
ation of 17 bona fide FA genes (FANCA, FANCB, FANCC, FANCD1
BRCA2), FANCD2, FANCE, FANCF, FANCG, FANCI, FANCJ (BRIP1),
ANCL, FANCN (PALB2), FANCP (SLX4), FANCQ (XPF), FANCT,
ANCU (XRCC2), FANCV (Rev7) and FANCW (RFWD3) suffer from
one marrow failure and the predisposition to leukaemia and
ther cancers, including squamous cell carcinoma (head and
eck, gynaecological), and oesophageal, liver, brain, skin and
enal tumours [14,15]. In contrast, patients carrying mutations
n FANCO (Rad51C), FANCR (Rad51) and FANCS (BRCA1) can be
ffected by other types of cancer including breast cancer, but
hey do not develop bone marrow failure and leukaemia. They
ere therefore classified as FA-like syndromes [16,17]. In some

ases, patients with germline mutations in a given FA gene are
are. For example, only hypomorphic mutations for BRCA1 were
dentified in 2 patients [18,19]. Finally, FANCM cannot be clas-
ified in these categories as only one patient carrying mutations
n both FANCM and FANCA genes has so far been described
20]. As wild type FANCM does not complement the ICL sensi-
ivity of such cells, the contribution of FANCM loss to the illness
s unclear. Also, no patients with biallelic mutations of the FA
ssociated Proteins; FAAP16, FAAP20, FAAP24 and FAAP100 or
Please cite this article in press as: M.B. Federico, et al., Beyond interstr
Anemia proteins to the replication of DNA, Mutat Res Fund Mol  Mech M

he deubiquitylating enzyme, USP1, have been described so far.
hile such limitations preclude a conclusive analysis, it is expected

hat more data will facilitate the association of different aspects
f the disease with specific functions of a protein/s within the
 . . . .  . .  .  .  . . .  . .  .  . . . . . . .  . . . . .  . . .  . .  . . . . . .  . .  .  . . .  .  .  . .  . . .  .  .  .  . .  .  .  .  .  . . . .  . . . . .  .  . .  .  .  .  . .  00

FA pathway. For a more extensive analysis refer to references
[3,21].

2. The contribution of FANCD2 and other FA proteins to the
repair of intra-strand crosslinks between Watson and Crick
DNA strands

2.1. Mechanistic insights

ICLs are DNA lesions that covalently link the Watson and
Crick strands. Some chemotherapeutic agents such as mitomycin C
(MMC), diepoxybutane (DEB) or cisplatin (Cis) cause ICLs accumu-
lation and cells derived from FA patients are strikingly sensitive to
such compounds [2,3,22].

ICL removal by the FA pathway is generally accomplished in a
manner that is strictly dependent on DNA replication. In fact, ICL
repair initiates when the replication fork (RF) abuts the DNA lesion.
The FA pathway triggers nuclease-dependent unhooking of the ICL
(Supplementary Fig. 1 A–F), DNA synthesis across the ICL-bound
DNA template, and homologous-directed repair-HDR (Supplemen-
tary Fig. 1F). The mechanisms of DNA synthesis across DNA lesions
and HDR steps are shown in Supplementary Figs. 2 and 3 respec-
tively. For a complete revision see [2,23].

2.2. Biological relevance

2.2.1. Genomic stability and cell survival
Elimination of each FA protein causes aberrant processing of the

ICLs, which in turn triggers accumulation of aberrant chromosomes
and cell death [24–28]. Such type of genomic instability could be
caused by the dysregulated processing of ICL-repair intermediates
by NHEJ (non-homologous end joining), a pathway that ligates dou-
ble strands breaks without any homology requirement (DSBs) [29].
The causal relationship between the loss of FANCD2 and the dys-
regulation of NHEJ has been explored in human and mouse cells
and in the C. elegans worm model [24,25,28]. Conclusions are so
far contradictory as NHEJ inhibition/inactivation was  reported to
revert or increase the cell death and the genomic instability caused
by the elimination of FA proteins [24,25,28]. Further experimen-
tation is required to evaluate the potential of NHEJ as a druggable
target in the context of the treatment of tumors with FA deficien-
cies. However and despite the lack of consensus, it is clear that the
DSB pathway choice influences the accumulation of chromosomal
abnormalities and the survival of cells depleted from FA proteins.

2.2.2. Bone marrow failure
The massive failure of all blood cell lineages in FA patients sug-

gests that the loss of haematopoietic stem cells (HSCs) may  be the
trigger for the bone marrow failure (BMF) [30]. In fact, the reduc-
tion in HSCs precede the clinical manifestation of BMF  in FA patients
[31]. To restore depleted blood cells, quiescent HSCs re-enter the
cell cycle causing massive activation of the metabolism which in
turn generates reactive oxygen species (ROS)-mediated DNA dam-
age. In the absent of a functional FA pathway, the deficiency in DNA
repair triggers p53/p21 hyperactivation and HSC cell death [31,32].
and crosslinks repair: contribution of FANCD2 and other Fanconi
utagen (2017), http://dx.doi.org/10.1016/j.mrfmmm.2017.09.004

It is unlikely that exogenously induced ICLs are the trigger for
such massive bone marrow defect, as FA patients are not normally
exposed to clastogenic agents. A potential endogenous source of
FA-activating DNA lesions are small aldehydes such as formalde-
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Fig. 1. DSE formation and resolution.
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SE are genetated by the abusting of RFs with nicks in one DNA strand or after the 

ow  the replisome can be reassembled in HDR-repaired RFs. A second RF arriving fr
he  finalization of DNA replication at those DNA regions.

ydes and acetaldehydes [30]. While acetaldehydes were shown
o stimulate monoubiquitylation of FANCD2 [33], cells derived
rom FA patients are sensitive to both formaldehydes and acetalde-
ydes [34–37]. Tissues with low levels of detoxifying enzymes
LDH2 and ADH5, e.g. the hematopoietic lineage, rely heavily on

he FA pathway to process DNA lesions generated from endogenous
ldehydes [34,38]. In adittion, Aldh2(-/-) Fancd2(-/-) and Adh5-/-
ancd2 -/- mutant mice closely recapitulate the defects hematopoi-
tic defects observed in FA patients [38,39]. Together these results
ave built a strong case linking defects in the processing of specific
ndogenous byproducts with bone marrow failure in FA patients.
owever, whether the defects in ICL repair represent the sole trig-
er for genomic instability and tumorigenesis in FA patients is still

 subject of intense investigation. FA cells are also sensitive to Reac-
iveOxygen Species (ROS) as extensively discussed in [40,41].

. The contribution of FANCD2 and other FA proteins to the
epair of Double Strand Breaks

.1. Mechanistic insights

In cells, DSBs can accumulate independently of ICLs. �IR and X-
ays are sources of direct (not associated with replication) DSBs that
re most frequently used in experimental models and for treatment
f patients. DSBs are dangerous because the disruption of both DNA
trands is very challenging to the stability of the genome [42]. A
ubtype of DSB relevant to this discussion are single-ended double
trand ends (DSEs). (Fig. 1). DSEs can be generated by endonucle-
ses when persistently stalled forks lose their ability to replicated
collapsed RFs) or when replication forks encounter nicks in the
emplate strand [43–45]. At DSEs, RFs may  be reconstituted by
Please cite this article in press as: M.B. Federico, et al., Beyond interstr
Anemia proteins to the replication of DNA, Mutat Res Fund Mol  Mech M

DR and other mechanisms that repair canonical, double ended
SBs (Fig. 2). It is unclear if such RFs could be proficient in DNA

eplication as the replisome may  completely dissociate both from
ollapsed RFs and DSEs. It is therefore possible that the repair of
sing of collapsed RFs.They require HDR for resolution. However it is unclear if and
e other side of the DSE may  be required for its HDR-mediated resolution and/or for

DSE require the abutting of a second RF (Figs. 1 and 2). Alternative,
replisomes may  not completely dissociate from DSEs as reported
at DSE generated by methyl methane sulfonate (MMS) treatment
[46].

The repair of DSEs and of two-ended-DSBs may  be differentially
regulated. In fact, the FA pathway is much more relevant for the
processing of DSEs than for the repair of DSBs. Upon �IR, a well-
characterized source of replication-independent DSBs, the ATM
kinase activates FANCD2 by phosphorylation and FANCD2 local-
izes to sites of DNA damage [47]. Nevertheless, the contribution
of FANCD2 to the cellular response to �IR seems to be tangen-
tial as FANCD2-deficient cells are only moderately sensitive to
both �IR and X-rays [48–51]. In addition, FANCD2 contributes only
mildly to the repair of site-specific DSBs generated by restriction
enzymes [52]. Conversely, FANCD2 is key to the resolution of ICL-
dependent replication-coupled DSEs [53]. These results led to the
assumption that FANCD2 is specifically required for the resolution
of replication-coupled DSEs but not direct DSBs.

Compelling evidence has demonstrated that the FA pathway
is required for the processing of DNA replication-associated DSBs
generated at ICL (Fig. 3A). However, the role of FA proteins in
the processing of replication-associated DSEs generated by sources
other than ICL-processing is less understood. Prolonged exposure
(24 h) to the inhibitor of ribonucleotide reductase, hydroxyurea
(HU) caused accumulation of replication associated DSEs [43,54].
In that scenario, Rad51 (FANCR) nuclear foci were detected and
were interpreted as sites of HDR-directed repair of broken RFs
[43,55]. Furthermore, in such experimental settings, Rad51 deple-
tion steeply delayed the repair of DSEs [43]. FANCD2 is also
recruited to replication factories after HU treatment but its role in
the repair of HU-triggered DSEs has not been reported. Notwith-
and crosslinks repair: contribution of FANCD2 and other Fanconi
utagen (2017), http://dx.doi.org/10.1016/j.mrfmmm.2017.09.004

standing this, the contribution of FANCD2 to the repair of DSEs
which are generated independently from ICLs processing has been
explored in the context of DNA lesions generated after Ultraviolet
irradiation(UV) [56]. It has long been known that UV irradiation
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Fig. 2. Mechanism of resolution of DSEs.
A) Classical HDR can restore RFs structural integrity at convergent (A1) or individual (A2) replication forks. B) Alternatively, another type of HDR, break-induced replication
(BIR),  can resolve DSEs in an error prone manner that involves extensive and mutagenic DNA synthesis. However, it is preferentially used after oncogenic stress [79]. The
key  step that commits a DSE to HDR (in A and B) is the generation of protruding ends by resection, and their coating with Rad51 filaments on ssDNA. During HDR (A and B),
the  template for DNA synthesis is the homologous DNA strand, primarily the sister chromatid. C) The resolution of DSE by NHEJ causes aberrant fusion of non-homologous
crhomosomes. D) A-NHEJ (alt-NHEJ) requires microhomology, i.e., a few bp sequence identity between the DNA ends. Deletions are introduced in the DNA sequence flanking
the  homologous region. For all panels: in the chromosome, the original localition of the DSE is indicated with a red arrow. The black lines in chromosomes represent point
mutations or micro deletions/insertions.

Fig. 3. FANCD2 as a facilitator of HDR-mediated resolution of DSEs.
A) During ICL repair FANCD2 coordinates TLS, HDR and possibly NER. The coordinating role of FANCD2 is not required after other type of DNA lesions and therefore the
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unction of the FA pathway may  be limited to ICL repair. B) After UV irradiation, 

ake  place at RF that collapsed into DSEs. Loss of FANCD2 results in dysregulated pr
rradiation, the facilitation of HDR may  be a function of the FA pathway that preser

auses the monoubiquitylation of FANCD2 and its recruitment to
eplication factories [57]. However, the role of FANCD2 in the
ellular response to UV irradiation was not further evaluated as
ells depleted from FANCD2 and other FA proteins are not sen-
itive to UV irradiation [20,56–64]. In addition, FA proteins seem
ispensable after UV irradiation, as the coordinated activation of
ranslesion DNA Synthesis (TLS) and HDR is not necessary to repair
V-triggered DNA lesions in S phase (Fig. 3B). While the contri-
ution of TLS to the replication of UV-damaged DNA has been
xtensively documented [65], the role of HDR in such response
Please cite this article in press as: M.B. Federico, et al., Beyond interstr
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s less understood. While initial predictions suggested that DSBs
hould not be generated after UV irradiation, DSBs accumulation
as detected even after moderate UV irradiation [56,66–68]. Such
SBs are most likely DSEs as the are associated with DNA replica-
ke place at proficient, not collapsed RFs while FANCD2-triggered HDR are events
ing of DSEs by NHEJ. Because DSEs may be generated by genotoxins other than UV
nomic stability after a plethora of genotoxins.

tion and cause an increase the HDR-dependent exchange of sister
chromatids [56]. While the levels of UV-induced DSEs are not regu-
lated by FANCD2, its ubiquitylation (and therefore other upstream
components of the FA pathway) regulates the DSE repair path-
way choice, specifically preventing the aberrant activation of NHEJ
at DSEs (Fig. 3B) [56]. Because many other genotoxic treatments
generate indirect DSEs during S phase, it is possible that FANCD2
facilitates HDR, preserving chromosome integrity after an unantic-
ipated broad range of DNA damaging agents (see Section 3.3).

Another inducer of FANCD2 monoubiquitylation is BRCA1/2
and crosslinks repair: contribution of FANCD2 and other Fanconi
utagen (2017), http://dx.doi.org/10.1016/j.mrfmmm.2017.09.004

depletion [69,70]. In such scenario, FANCD2 acts as a backup regula-
tor of DSE repair promoting the survival of BRCA1/BRCA2 deficient
cells [69,71]. Because in such genetic backgrounds HDR cannot be
activated, FANCD2 facilitates the activation of other DSB repair
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echanisms. Specifically, FANCD2 aids pol � loading onto DNA,
avoring the microhomology searching step of alternative end joing
A-EJ) [70]. This is an error-prone “backup” pathways that uses
mall homologous sequences of a few base pairs to align broken
nds before joining, thereby deleting flanking regions in close prox-
mity to the original break [72]. The involvement of FANCD2, pol �
nd PARP1 in A-EJ activation was demonstrated using a cell-based
ssay that measures the efficiency of recombination of two GFP
lleles (A-EJ assay) [69,70]. Because of the need for microhomology
earch, It is possible that the resolution of DSEs by A-EJ requires
he abutting of a second fork coming from the opposite direction
72] (Fig. 2D). While more investigation is required to fully under-
tand the mechanism by which FANCD2 promotes A-EJ, it is clear
hat FANCD2 has a dual role in the choice of a DSB resolution path-
ay: it contributes to HDR in cells proficient for BRCA1/2, but it

lso promotes A-EJ, a role that is exacerbated in cells deficient in
RCA1/2.

.2. Biological relevance

Depletion of FANCD2 in UV-irradiated samples prevents sister
hromatid exchange and causes the accumulation of micronuclei
nd aberrant chromosomes including radial chromosomes [56].
emarkably, chromatidic aberrations and micronuclei were not
etected in cells co-depleted from FANCD2 and XRCC4, a compo-
ent of the NHEJ pathway [56]. None of these genetic modifications
odulate cell survival, hence suggesting that the oncogenic drive

f FANCD2 depletion in this scenario is high, as it exclusively mod-
lates genomic stability parameters. To prevent NHEJ activation
fter UV irradiation FANCD2 requires lysine 559, which is the target
f monoubiquitylation by the FA core complex. Thus, the canoni-
al FA pathway is required to protect genomic stability after UV
rradiation. Remarkably, such function of FANCD2 may  be also
elevant during the cellular response to other non-ICL inducing
gents that were reported to activate FANCD2, for example HPV16
6/E7 expression [73], aphidicolin-APH or HU treatments [74–76],
ARP inhibition [71] and R loop accumulation [77]. Given that
enomic instability does not increase in UV-treated FANCD2/XRCC4
epleted samples, the potential of NHEJ inhibitors could be evalu-
ted as antioncogenic agents that could be used to treat FA patients.
owever, at least two cautionary remarks should be taken into con-

ideration. First, NHEJ cannot be inhibited globally as it is required
or telomere processing [78]. Second, other types of DSE resolution
athways such as Break Induced Replication (BIR), which can be
ery mutagenic [79] could be used with increased frequency after
nhibition of NHEJ.

While FANCD2 promote HDR in BRCA2 proficient backgrounds,
n BRCA2 deficient cells it facilitates the alternative DSE resolution
y A-EJ [69–71]. Mutational signatures associated with the dysreg-
lated utilization of Pol �- and possibly FANCD2- were documented
fter BRCA1 and BRCA2 depletion [80,81]. While such signatures
uggest dysregulation of A-EJ in such HDR deficient backgrounds,
hey do not rule out the participation of other mechanisms during
he resolution of DSEs. For example, NHEJ can also join DNA ends
ith long 50nt overhangs, giving rise to junctional microhomol-

gy [82]. The elimination of FANCD2 further modulates the already
ltered DSE repair pathway choice of BRCA2 depleted cells. Com-
ined elimination of FANCD2 and BRCA2 increases the number of
hromosomal aberrations in cells treated with PARP inhibitors [71].
t is unclear if such genomic instability is associated with a change in
he DSE repair pathway choice, perhaps involving increased NHEJ-

ediated resolution of such DNA lesions but it is likely associated
Please cite this article in press as: M.B. Federico, et al., Beyond interstr
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ith a downregulation of A-EJ triggered by FANCD2. Moreover, in
RCA1/2 depleted cells, FANCD2 elimination also reduces cell sur-
ival suggesting that A-EJ protects BRCA2 depleted cells from cell
eath [69,70]. Co-depletion of FANCD2 and Pol � causes embry-
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onic lethality in mice [70]. While such results reveal a cell survival
promoting activity of FANCD2 in BRCA2 deficient backgrounds, the
also suggest that FANCD2 and Pol� functions do not fully overlap.
It is possible that FANCD2 may be a poor inducer of A-EJ in HDR
proficient backgrounds but an efficient inducer of such type DSE
in BRCA2 deficient (and possibly other HDR deficient) cells. In any
case, when considering the relative mutagenic load of each DSE
repair pathway, it should be kept in mind that while A-EJ is indeed
error-prone choice, HDR can also be mutagenic at DSEs [83]. In such
scenario, FANCD2 arises as a factor that regulates the degree of
genomic alteration associated with the repair of such intrinsically
mutagenic DNA lesions.

4. Contribution of FANCD2 and other FA proteins to the
prevention of DSE formation

4.1. Mechanistic insights

The encounter of a RF with a replication barrier causes multi-
ple changes in the RF structure or dynamics which may  regulate
RF collapse and DSE formation. Many genotoxic agents includ-
ing topoisomerase inhibitors, ICL-inducing agents, DNA synthesis
inhibitors, and base-damaging agents increase the size of single
stranded DNA (ssDNA) stretches at the tip of RFs [84–86]. Rad51
(FANCR) protects such ssDNA regions, preventing the uncoupling
of parental DNA at the tip of the fork [85] and promoting the
formation of reversed RFs (Fig. 4A) [84]. The latter four-way junc-
tion DNA structures are generated after the annealing of the two
newly synthesized strands and the re-annealing of the two  parental
strands [87]. Reversed RFs are formed with high frequency (20–30%
of all forks) after treatment with different genotoxic agents [84]
aiding DNA repair, DNA damage tolerance events and checkpoint
activation [84,88–92]. Moreover, in the context of persistent DNA
replication blocks, the structure of reversed forks may  be less fragile
than the typical three-way junctions forks, preventing RF breakage
[91,93] and protecting asymmetric nascent DNA ends [94]. Path-
ways involved in RF reversal and restoration were identified and
are discussed elsewhere. Another transaction reported at RFs is
repriming, as documented in Rad51-depleted cells treated with
UV irradiation (Fig. 4B) [95]. In summary, a number of adaptative
events that reverse, stabilize or promote the maintenance of DNA
replication are required to prevent RF collapse and breakage and
severals FA proteins are involved in such events [87].

Because the nascent DNA arm of a four-way junction resembles
a DSB, such arm may  also require protection from DNA processing.
In agreement with such prediction, recruitment of BRCA1, BRCA2
and FANCD2 were reported to prevent the MRE11 exonuclease-
mediated processing of nascent DNA after HU and APH treatment
[76,85,94,96,97]. In the absence of FANCD2 monoubiquitylation,
severe nucleolytic degradation was shown to depend on the
concerted action of both MRE11 an another nuclease, FAN1
(Fig. 4C) [74,98]. Intriguingly, MRE11-triggered nascent DNA degra-
dation was  revealed also when Rad51 function was  impaired
[76,85,92,95]. Since Rad51 depletion prevents fork reversal [84,92],
it has been proposed that MRE11 attacks non-reversed forks [92].
In that case the substrates for MRE11 exonuclease activity could
most likely be ssDNA structures formed behind replication [85,95].
In fact, after MMS  treatment, ssDNA gaps but not ssDNA stretches
were reduced by the inhibition of MRE11 exonuclease activity [85].
Likewise, a more recent study reported that in UV irradiated human
cells, Rad51 depletion triggers MRE11-dependent degradation of
and crosslinks repair: contribution of FANCD2 and other Fanconi
utagen (2017), http://dx.doi.org/10.1016/j.mrfmmm.2017.09.004

ssDNA behind the fork but not of ssDNA stretches at the fork [95].
Not only the pathological, but also the physiological process-

ing of RFs by exonucleases has been reported. In the context of
a proficient FA pathway, MRE11, FAN1 and DNA2 were reported
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Fig. 4. RF adaptation to damaged templates.
A) Rad51 localizes to RFs, probably at ssDNA stretches and at the tip of the fork. When RFs encounter DNA lesions, the size of the ssDNA stretch increases perhaps augmenting
the  loading of RAD51, and thereby facilitating RF reversal [84]. Rad51 is unloaded at reversed forks, which are poor in ssDNA. It is unknown if BRCA2 aids RF reversal by Rad51.
Other  factors such as PARP, SMARCL1, and ZRANB3 promote the generation of reversed forks. Such four way  DNA structures may  facilitate the relocation of the DNA lesion
to  DNA-repair prone regions of the DNA. ssDNA regions accumulate at the tip of the reversed fork in a manner that depends mainly on the asymmetry between both strands.
BRCA1, BRCA2 and FANCD2 protect the DNA ends from nascent DNA degradation. Reversed forks are re-converted into typical three-way junction structures by RECQ1,
DNA2  and BLOOM. Replication-competent RFs finish DNA synthesis, promoting the proliferation of genomically stable cells. B) In the absence of RAD51, RFs accumulate
two  types of ssDNA regions: ssDNA stretches and ssDNA gaps behind the fork [85,95]. Fork reversal does not take place without Rad51 [84]. Non-reversed RFs are subject
to  nucleolytic degradation by MRE11 and the replication program is altered by facilitated repriming. Fragile RFs collapse and cell death increases [95]. Genomic instability
could also increase but has not been reported to date. C) In the absence of FANCD2 it has been proposed that reversed RF accumulate [76] in cells expressing Rad51 albeit
the  model has been challenged [92]. Unprotected reversed forks are subjected to dysregulated nucleolytic degradation by MRE11, creating DNA structures (which may  not
be  DSEs) [94] that trigger chromosome aberrations [76]. In the absence of FANCD2, FAN1 could increase degradation of replication forks [74]. In the absence of BRCA2 (and
also  BRCA1) reversed RF are generated [94], possibly in a Rad51-dependent manner [84]. Reversed RF were proposed to be the substrate of dysregulated MRE11-driven
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ucleolytic degradation, triggered by PTIP [90]. Fragile and collapsed RF cannot be
ANCD2-dependent activation of A-EJ at DSE [69]. E) In the absence of both BRCA2
bsence of FANCD2 [69], chromosomal aberrations increase and cell death is also in

o degrade nascent DNA to promote RF re-start, thus protecting
enome stability [74,92,99,100]. Also, the p53 exonuclease activ-
ty (p53 exo), which is strongly impaired by a point mutation in
115 [101], promotes nascent DNA degradation to facilitate tem-
late switching [102]. Hence, the exonucleolytic processing of RF
id DNA replication across DNA lesions, but such processing should
e limited by FA proteins (BRCA1, BRCA2, FANCD2, RAD51) to avoid
yseregulated degradation of nascent DNA.

RF re-start depends on FANCD2, BRCA1, FANCJ, and the Bloom
elicase [74,103,104]. To promote RF re-start, FANCD2 stimulates

oading of MRE11, CtIP and FAN1 nucleases to RF but limits their
ucleolytic activity [74,103,105]. Intriguingly, such events of RF re-
Please cite this article in press as: M.B. Federico, et al., Beyond interstr
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tart are independent of FANCI and FA core components [74]. The
evel of coordination between RF transactions that depend or not
n FANCD2-monoubiquitylation is unknown. It has been proposed
ved by HDR. Chromosome aberrations [71] increase albeit they may  be limited by
ANCD2, RF are degraded by PTIP/MRE11 [90]. However, A-EJ is not activated in the
ed [71].

that monoubiquitylation ensures the localization of FANCD2 to RFs,
whereas deubiquitylation of FANCD2 is required for fork protection
[2]. Furthermore, DNA replication can also be regulated by FA com-
ponents in a FANCD2-independent manner. For example, FANCI has
a FANCD2-independent role in the Dbf4-dependent Cdc7 kinase
(DDK)-dependent firing of dormant origins in conditions of mild
replication stress [106]. Moreover, under such conditions of low
replication stress (which are insufficient to cause checkpoint acti-
vation) FANCD2 counteracts FANCI–mediated origin firing [106].
Other components of the FA pathway including PALB2 (FANCN)
and FANCJ were also implicated in events that aid DNA replication
[104,107] in a manner that prevent RF breakage. Together, these
and crosslinks repair: contribution of FANCD2 and other Fanconi
utagen (2017), http://dx.doi.org/10.1016/j.mrfmmm.2017.09.004

results demonstrate that the FA pathway support multiple DNA
replication transactions.
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The complex contribution of FANCD2 to DNA replication is also
ighlighted when analyzing the length of the nascent DNA track.
he average length of those tracks depend on the combinatorial
ffect of a number of DNA replication transactions including perma-
ent or transient stalling, RF reversal and nascent DNA degradation.

n general, genotoxic agents cause a reduction in track length, pre-
umably because of a temporal delay generated by DNA replication
ransactions at replication barriers (e.g. [74,84,92,94,95,105]), but
xceptional lengthening has been also reported (e.g. [95]). Track
ength is both positively and negatively regulated by FANCD2.
wo hours after HU treatment, FANCD2 depletion causes exces-
ive elongation of the track length [108]. The RF transactions
hat prevent dysregulated elongation of nascent DNA involve a
biquitin-independent interaction of FANCD2 with the CMG  heli-
ase [108] and the interaction of ubiquitylated FANCD2 with the
AN1 nuclease [98]. In contrast, at 5 h after HU treatment, nascent
NA tracks are shortened in the absence of FANCD2. Such reduction

n nascent DNA tracks results from MRE11-dependent degradation
f stalled forks in the absence of ubiquitylated FANCD2 [76] and
n the nuclease activity of FAN1 [74]. In conclusion, not only HDR
roteins but also FANCD2 attenuate DSE formation by protecting
ersistently stalled RFs and promoting their reactivation.

.2. Biological relevance

Genomic instability strongly correlates with alterated DNA
eplication choreography in FANCD2-depleted samples. The main
hallenge has been to determine whether such genomic instabil-
ty is the consequence of: a) DNA replication defects or b) DSE
enerated as a consequence of DNA replication deficiencies.

FANCD2-depletion increases the nucleolytic degradation of
ascent DNA by MRE11 and FAN1 and the genomic instability of
ells (Fig. 4C) [74,76]. However, the causal relationship between
he dysregulation of nascent DNA degradation and the increase in
he genomic instability of cells is unclear. In this respect, impor-
ant information was gained in the context of BRCA2 depletion
90,94]. Depletion of the MLL3/4 complex protein, PTIP, inhibits the
ecruitment of the MRE11 nuclease to BRCA1/2-deficient stalled
eplication forks. In that way, PTIP restores the rate of nascent
NA synthesis, reducing the accumulation of chromosomic aberra-

ions with no restoration of HDR at DSBs [90]. A direct association
etween impaired DNA replication and increased genomic insta-
ility has been established utilizing a BRCA2 mutant proficient for
DR but deficient in RF protection (BRCA2 S3291A). Such HDR
roficient BRCA2 mutant was less efficient than wtBRCA2 in restor-

ng the genomic stability of BRCA2 deficient cells treated with
U [94]. It was thereafter concluded that defective DNA replica-

ion can directly trigger gemonic instability. It is however puzzling
o envisage how chromatidic aberrations, which were frequently
ssociated with unleashed S-phase-associated NHEJ [24–26,28,56]
ccumulate in cells proficient for HDR. It has been proposed that the
tructure of unprotected RFs (reversed forks) may  expose potential
ites for aberrant interchromosomal end-joining (at the tip of the
eversed fork) [94]. In addition, it has been showed that RFs derived
rom origins that fire after HU treatment are preferentially escorted
y NHEJ factors rather than by HDR factors [109]. While it is possi-
le that aberrant RF structures would be processable preferentially
y NHEJ in HDR proficient environments, the specific conditions

n which NHEJ can precede HDR during DSE resolution in S phase
eed further elucidation.

As mentioned in Section 4.1, the individual or combined deple-
ion of FAN1 and FANCD2 exacerbate elongation of replication forks
Please cite this article in press as: M.B. Federico, et al., Beyond interstr
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uring the first two hours after HU treatment. A similar degree of
pistasis was observed when documenting chromosomes abnor-
alties [98]. Micronuclei were also reported in FAN1-depleted

onditions [74]. Remarkably, a FAN1 variant found in a patient with
 PRESS
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high-risk pancreatic cancers also causes genomic instability [98].
These results reinforce the relevance of RF protection by FANCD2
to the genomic stability of cells. However, whether the replication
defect in FAN1-depleted cells cause genomic instability indepen-
dently of DSE formation remains to be tested.

Finally, FANCD2 has been identified as a potential factor for pro-
motion of resistance to PARP inhibitors in BRCA2-depleted cells
[71]. Specifically, FANCD2 elimination slows down RF progression
[69,71] and prevents the accumulation of chromatidic aberrations
and cell death in BRCA2-depleted cells [71]. The protective effect
of FANCD2 may not be linked to RF degradation as MRE11 activ-
ity would be already unleashed because of BRCA2 elimination.
Remarkably, such protective effect is also independent from HDR
as BRCA2-depleted cells are already deficient in HDR. The evi-
dence suggest that such protection may  involve a role of FANCD2
in the pathway choice downstream of DSEs formation. In fact, in
the absence of BRCA1/2, FANCD2 promotes A-EJ (Fig. 4D)  [69] (dis-
cussed in Section 3.2). As FANCD2-triggered A-EJ is associated with
cell survival [69], these observations are very relevant because the
generation of resistant tumors has been identified as a main reason
for the failure of PARP treatment in the clinic [110]. While many
aspects of the adaptation of RF to damaged DNA templates are still
unknow, Fig. 4 illustrates the current, yet incomplete, knowledge
on the effect that BRCA1, BRCA2, Rad51 and FANCD2 loss has on
the replication of damaged DNA.

5. Contribution of FANCD2 and other FA proteins to the
correct finalization of DNA replication

5.1. Mechanistic insights

Many DNA structures can block DNA replication (e.g. R-loops, G4
cuadruplexs, telomeres, centromeres). While a number of cellular
responses such as origin firing and checkpoint signals may  favor
their replication during S phase [111,112], it is becoming evident
that such mechanisms may  not be failsafe. Thus, more frequently
than once thought, cells may  enter mitosis without completing S-
phase. The DNA that is not synthesized during S phase may require
mitotic DNA synthesis for its transmission to the next cell genera-
tions for its completion.

It has been proposed that DNA replication at hard-to-replicate
regions such as common fragile sites (CFS) might be completed dur-
ing M phase. In prophase, the nuclease Mus81 is recruited to CFSs,
promoting POLD3-dependent DNA synthesis. In that way, chro-
mosome mis-segregation is minimized [113]. The persistence of
under-replicated DNA in early mitotic cells is manifested by the
presence of ultra-fine DNA bridges (UFB) coated with RPA at CFS and
at other problematic regions such as telomeres and centromeres
[114–116]. Such DNA regions are also coated in their entire length
by PLK1-interacting checkpoint helicase (PICH), which is an ATP-
dependent DNA translocase [117–119]. The interaction of PICH
with DNA increases as the DNA stretches [118]. PICH promotes
bridge resolution at the end of anaphase by recruiting BTRR (BLM
helicase/topoisomerase IIIa (TOPOIIIa)/RMI1 and RMI2 cofactors),
a complex that resolves double Holliday complexes, to the UFBs
[120]. If not resolved, UFBs can lead to chromosome breakage and
other chromosome lesions that are transmitted to daughter cells
and are visible as nuclear compartments shielded with p53-binding
protein 1 (53BP1) in the subsequent G1 [121].

It has been long known that FANCD2 and FANCA are required
to maintain the stability of chromosomal fragile sites [75]. More
recently, FANCD2 and FANCI were shown to localize to the most
and crosslinks repair: contribution of FANCD2 and other Fanconi
utagen (2017), http://dx.doi.org/10.1016/j.mrfmmm.2017.09.004

frequently expressed fragile sites, FRA3B and FRA16D, colocalizing
with BLM [115,122]. In UFBs, FANCD2 colocalizes with structure-
specific endonucleases XPF and MUS81, which, together with BLM
promote the accurate processing of under-replicated DNA that per-
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ist at CFSs until mitosis [123]. Intriguingly, FANCD2 localizes to
he UFB ‘termini’ only [122]. Such specific localization may  con-
ribute to the stabilization of the UFBs, and/or to the recruitment
f PICH onto each type of UFB [116]. FANCM is also recruited to
FBs, at a stage in which BLM and PICH are no longer recruited to
FBs [115,124]. It is possible that the PICH and BTRR complexes

esolve some UFBs, while other complexes resolve persistent UFBs
n telophase [116].

FANCD2 specifically associates with CFS loci irrespective of
hether the chromosome is broken [115], which may  suggest

hat it functions beyond UFB protection. In fact, a recent report
as demonstrated that FANCD2 not only protects under-replicated
FS but promotes their bidirectional DNA replication, favoring the
nalization of CFS duplication [125]. When FANCD2 is depleted,

 loops accumulate in CFS loci promoting replication pausing and
riggering the firing of dormant origins. Intriguingly, such function
f FANCD2 is independent of the FA core complex. In conclusion,
ANCD2 function is crucial for CFS duplication and segregation
125]. FANCD2 and other FA proteins may  also control mitosis in

 DNA replication-independent manner as these proteins localize
o the mitotic apparatus. Remarkably, depletion of FA proteins was
hown to dysregulate the spindle assembly checkpoint [126]. Tak-
ng together the current knowledge, it is clear that FA proteins
rotects many aspects of DNA replication and chromosome seg-
egation. More work is required to identify the extent to which the
irsruption of each of these functions contributes to the chromo-
omal instability of patients with FA.

.2. Biological relevance

CFS are hotspots for genome instability both in cancers and neu-
ological syndromes [127]. The most characterized CFS are FRA3B
nd FRA16D, which encode the putative tumor-suppressor genes
HIT and WWOX, respectively [128]. Moreover, as CFS loci can
arbor long transcribed genes, R loops may  trigger genomic insta-
ility preferentially at those sites [128]. In fact, FA proteins protect
ells from the accumulation of DNA:RNA hybrids [77,129]. How-
ver, given the current inability to functionally dissect the many
unctions of FANCD2 in S phase and beyond, the specific contribu-
ion of UFB regulation and CFS protection to the genomic stability
f FANCD2-depleted cells is unknown. Notwithstanding this, the
elevance of successful CFS duplication for the genomic stability
f cells is highlighted by a number of evidences. For example,
FB and the accumulation of DNA damage in the following G1
hase, increase after depletion of endonucleases that process UFBs
123]. The need of FANCD2 for replication of CFS is evident in lym-
hoblasts but not in cells that are rich in initiation events such as
broblasts [125]. Also, POLD3-dependent mitotic DNA synthesis is
nhanced in aneuploid cancer cells that exhibit intrinsically high
evels of chromosomal instability (CIN+) [113]. These findings indi-
ate that replication stress enhances the reliance of tumor cells on
A proteins. Such observations may  suggest that FA proteins-driven
itotic transactions could represent a target for cancer treatment.

. Concluding remarks

During the last 15 years a solid body of evidence has demon-
trated that FANCD2 and other FA proteins are key regulators of
ultiple DNA replication-associated transactions that include but

re not limited to ICL repair. A number of new functions were
escribed for FA proteins and their relative contribution to the
enomic stability of cells is currently under identification. Acquir-
Please cite this article in press as: M.B. Federico, et al., Beyond interstr
Anemia proteins to the replication of DNA, Mutat Res Fund Mol  Mech M

ng mechanistic insights into such unanticipated functions of the
A pathway may  provide crucial understanding of the aetiology
f carcinogenesis in FA patients. The identification of separation
f function mutants of different components of the FA pathway
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may  be key to reveal the biological relevance of different activities
within a same protein. For example, cells expressing a Rad51 T131P,
which has been identified in a FA-like patient, are HDR proficient
but fail to correctly repair ICLs, hence suggesting not overlapping
functions of Rad51 at RFs and DSE repair [130]. Separation of func-
tion mutants such as Rad51 T131P may  help to answer important
open questions which include but are not limited to the following:

1. How important is the FA pathway for the facilitation of DNA
replication across cell-intrinsic obstacles? Not only FANCD2 is
important for CFS replication (Section 5.1) but also, other line of
evidence link DNA replication across G4s and R-loops with the
FA pathway [77,129].

2. Does FANCD2 participate in the DSE pathway choice after every
genotoxic challenge? What about other FA proteins? How cen-
tral is FANCD2-directed processing of DSE for the genomic
stability of cells?

3. Is the pathological nascent DNA degradation observed after
FANCD2, BRCA2, BRCA1 depletion sustained only after HU/APH
or can it be observed after other types of genotoxins? Does
MRE11 degrades nascent DNA on the DNA structures after Rad51
depletion? And after all genotoxic challenges?

4. How is the FA pathway turned off? Such mechanism may involve
the deubiquitylating enzyme USP1, which removes the ubiquitin
from FANCD2 [131,132]. Intriguingly, USP1 depletion increases
sensitivity to crosslinking agents, despite the elevated levels of
ubiquitylated FANCD2 [133,134]. Which are the molecular bases
of such sensitivity? Are results similar after genotoxins that do
not cause ICL accumulation?.

5. Does the FA pathway contribute in similar ways to unperturbed,
mild or acute replication stress? FANCD2 was reported to pro-
mote origin firing during unperturbed replication [135] but to
inhibit it after mild replication stress [106]. Hence, the potential
interaction of FA with other cellular pathways may need further
exploration.

6. Do FA proteins participate in other mechanisms of DNA  repair
other than ICL repair? What is the contribution of FA proteins to
DNA damage tolerance pathways? BRCA1 was  reported to pro-
mote Nucleotide Excision Repair (NER) in S-phase [136]. Also,
NER is promoted by FANCJ in a process that requires mistmatch
repair proteins [137]. TLS is regulated by BRCA1 and some FA core
components [136,138]. Hence, the degree of interaction between
the FA pathway with other DNA damage response pathways
should be further explored.
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