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a b s t r a c t

In this work we study the joint transform correlator setup, finding two analytical expressions for the
extensions of the joint power spectrum and its inverse Fourier transform. We found that an optimum
efficiency is reached, when the bandwidth of the key code is equal to the sum of the bandwidths of the
image plus the random phase mask (RPM). The quality of the decryption is also affected by the ratio
between the bandwidths of the RPM and the input image, being better as this ratio increases. In addition,
the effect on the decrypted image when the detection area is lower than the encrypted signal extension
was analyzed. We illustrate these results through several numerical examples.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Spatial optical techniques have shown great potential in the
field of information security to encode high-security images. The
joint transform correlator (JTC) optical encryption setup emerged
as an attractive option to previous techniques [1], such as the dual
random phase encoding (DRPE) proposed in the 1990s [2]. The
main advantage of JTC is that only the intensity of the encrypted
signal is necessary for decryption, which relaxes the otherwise
restrictive requirements for optical alignment in the system. Fur-
ther, the decryption is performed using the same key code, which
eliminates the need to produce an exact complex conjugate of the
key as in the DRPE. Several multiplexed variants were proposed
later, in order to increase the system capacity of the JTC [3–8].

The study of the space bandwidth product in different optical
systems is of undeniable importance [9]. Hennelly et al. reported
important progress in this subject in the context of DRPE [10–11].
In this work, we focus in the study of the extensions of the re-
corded encrypted signal in the Fourier, as well as direct, domains
with the purpose to optimize its space bandwidth product. The
theoretical work is supported through several numerical
examples.
o (CONICET-UNR), Blvr. 27 de
a.
ar (C. Cuadrado-Laborde).
2. Theory

Fig. 1 shows the JTC optical encryption setup [1]. For the sake of
clarity, we used one-dimensional notation. The original image u(x)
is bonded to the input random phase mask (RPM) α(x), and both
are placed at coordinate x¼a, whereas the key code h(x) is posi-
tioned at coordinate x¼b. The JTC is illuminated by a plane wave of
wavelength λ. The input RPM α(x) has uniform amplitude trans-
mittance and random phase information. The complex-valued key
code h(x) is the inverse Fourier transform (ℱ-1) of H(ν), which in
turn purely contains random phase information and unitary am-
plitude, statistically independent of α(x) [1], where ν is the spatial
frequency variable associated to x – additionally a capital letter
stands for the Fourier transform (ℱ) of the corresponding function
in lower case letter. After transmission through a lens with focal
length f, the encrypted signal is obtained at the output plane. In
the JTC optical encryption setup the encrypted signal is optically
recorded in intensity, for this reason this signal is usually called
the joint power spectrum (JPS) [1]. Analytically, the JPS can be
expressed through:
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where j¼√�1, and the centered asterisk and superscript asterisk
denote convolution and complex conjugation, respectively. Let us
discuss now the inverse Fourier transform of the JPS, which can be
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Fig. 1. Optical setup of the JTC used for encryption; where u(x), α(x), h(x), and JPS(ν)
are the signal to be encrypted, the RPM, the key code, and the encrypted signal
respectively, whereas f is the focal length and λ is the wavelength of the illumi-
nating field.

Fig. 2. Optical setup of the JTC used for decryption; where u(x), h(x), and JPS(ν) are
the decrypted signal, the key code, and the encrypted signal respectively, whereas f
is the focal length and λ is the wavelength of the illuminating field.

G.E. Galizzi, C. Cuadrado-Laborde / Optics Communications 353 (2015) 76–82 77
obtained by inverse Fourier transforming each term in Eq. (1):
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where ★ stands for the cross-correlation operation. Briefly, see
Fig. 2, in the decryption process, the key code h(x) is positioned at
coordinate x¼b of the input plane of a 4f setup. In the Fourier
plane, i.e. at z¼2f, the JPS is located on axis; being illuminated by
the Fourier transform of h(x�b), i.e., H(ν)� exp(� j2πνb). After
another optical Fourier transform, the original signal u(x) is
obtained at x¼a, and z¼4f; provided u(x) is positive, and the
RPM is removed by an intensity sensitive device.

Let us now discuss the spatial and frequency extents of the
encrypted signal recorded, i.e. the JPS. In what follows we assume
that signals – e.g. u(x) – are bounded within some finite region in
the spatial and spatial frequency space, where the optical power of
the signal itself, as well as its spectrum, is significantly a non-zero
function [9–11]. This is, if E represents the total function energy,
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, where Δxu and Δνu
are the total spatial and spatial frequency extents of u(x) and U
(ν)¼ℱ[u(x)], respectively. The same digression applies for all the
other signals present through the encryption process. Let us now
analyze the JPS bandwidth, see Eq. (1). The JPS signal bandwidth
will be as high as the highest bandwidth of any of the four signals
present in its composition, see Eq. (1). The spectral bandwidth of
the first term, i.e. U 2ν Α ν( )* ( ) , is given by the sum of the individual
bandwidths, because of the convolution operation, i.e. uν νΔ + Δ α .
The second term has a spectral bandwidth simply given by hνΔ .
The third and fourth terms has the same spectral bandwidth, be-
cause the complex conjugation does not affect this parameter. As a
consequence of the multiplication present in these terms, the
bandwidth can be obtained from the minimum between the

bandwidths of U ν Α ν( )* ( ) and H ν*( ), i.e. min ,u h( )ν ν νΔ + Δ Δα . The
final result for the JPS bandwidth can be expressed as follows:

⎡⎣ ⎤⎦max , , min , 3u h u hJPS ( )ν ν ν ν ν ν νΔ = Δ + Δ Δ Δ + Δ Δ ( )α α
The maximum efficiency is obtained when the bandwidth of
the key code h(x) on the one hand, and the sum of the bandwidths
of the RPM α(x) plus the image u(x), on the other, are equal, i.e.,

h uν ν νΔ = Δ + Δ α . In this case the bandwidth of the JPS becomes
h uJPSν ν ν νΔ = Δ = Δ + Δ α. This physically implies that both, the

Fourier transform of the key code h(x), as well as the Fourier
transform of the tandem RPM plus image α(x)u(x) fill the same
area in the intensity detector that records the JPS, maximizing the
efficiency. On the contrary, when h uν ν νΔ ≪ Δ + Δ α , the image is
only partially encrypted, because a fraction of the Fourier trans-
form of the tandem RPM plus image α(x)u(x) is not fully covered
by the Fourier transform of the key code h(x). In this case a low
quality decryption is expected, without mentioning an increment
in the vulnerability of the (partially) encrypted signal. Finally,
when h uν ν νΔ ≫ Δ + Δ α , i.e., when the key code bandwidth largely
exceeds the bandwidth of α(x)u(x), the encryption–decryption is
performed inefficiently. This is because a large fraction of the key
code spectrum H(ν) is not used in the encryption process. On the
contrary, the quality of decryption is unaffected.

On the other hand, the calculus of the spatial extent of e(x)
differs from the calculus of the bandwidth analyzed above; es-
sentially because of the presence of two off-centered terms, see
the Dirac deltas in Eq. (2). We start by analyzing the first term;
because of the cross-correlation, its spatial extent is twice the
spatial extent of x u xα ( ) ( ) – which in turn we can consider equal to

xuΔ – In this way the spatial extent of the first term of e(x) is given
by x2 uΔ , being centered at x¼0. The second term of e(x) has an
spatial extent simply given by x2 hΔ , being also centered at x¼0.
The third term has a spatial extension given by

x x x xh u h uΔ + Δ = Δ + Δα , centered at x¼a�b. Finally, the fourth
term has identical spatial extent as the third term, but centered at
x¼b–a. Therefore, the spatial extent of e(x) can be written as fol-
lows:

x b a x x2 4e u hΔ = ( − ) + Δ + Δ ( )

Generally, images, RPMs, and key codes have equal extensions
and are placed side by side, i.e. b¼�a, and Δxu¼Δxh¼Δxα ¼2b;
in this case x x4e uΔ = Δ .

Finally, it should be taken into account that although we refer
to the extension of JPS as a bandwidth, in an experiment its ex-
tension is measured in units of length. Reciprocally, e(x) could be
considered as a spectrum, with its extension given by Eq. (4), as a
bandwidth. In both cases, the parameter λf – with λ as the optical
wavelength and f as the focal length – must be used to solve this
difference between the mathematical predictions and the experi-
mental measurements. It is worth to mention also that in this
work we focus on the extensions of the already registered en-
crypted signal, which is recorded in intensity. As opposed to Ref.
[12] where the analysis was done on the optical fields by using the
Wigner distribution function.
3. Results

In this section we numerically prove the validity of the analy-
tical results obtained, by using several computer simulated ex-
amples. Without loss of generality, our signals in the input plane
will be measured in units of pixels, as well as in the Fourier plane.
However, if it is necessary to work in the usual units of length, the
pixel size should be known. In the Fourier plane the usual units of
frequency will be obtained by simple dividing the pixel size with
λf. The key code h(x) was located at x¼b¼256 pixels, whereas the
RPM α(x) was attached to the image u(x) and located at
x¼a¼�256 pixels. As original image u(x), we used the acronym of
our host institution “IFIR”, which is shown together with its cor-
responding Fourier transform U(ν) (in intensity), see Fig. 3(a) and



Fig. 3. Input image u(x) and its corresponding spectrum, (a) and (b), respectively (both in intensity). Phase distribution of the RPM α(x) and its corresponding spectrum (in
intensity), (c) and (d), respectively. Key code h(x) and its corresponding spectrum (both in intensity), (e) and (f), respectively. The captions specify the size of the subarea
shown in each case.
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(b). From these figures it can be measured both, the extension of u
(x) and its spectral bandwidth, which result in Δxu¼232 pixels
and Δνu¼160 pixels, respectively. On the other hand both, the
RPM α(x) and the key code h(x), were iteratively designed by
following the procedure detailed in Refs. [13] and [14,15], re-
spectively, in order to limit its spatial and spectral extension. In the
iterative process used in the design of the RPM, the bandwidth
was arbitrarily limited to 1024 pixels. This process is rapidly con-
verging, being the energy of A(ν), outside the desired range, below
1% after 100 iterations. Fig. 3(c) and (d) shows the final phase
distribution of the RPM α(x), as well as its corresponding Fourier
transform (in intensity), respectively. From these figures we
measured the extension of α(x) and its spectral bandwidth, which
result in Δxα¼512 pixels and Δνα¼1024 pixels, respectively, as
expected. According to our previous discussion in Section 2, the
bandwidth of the key code should fulfill h uν ν νΔ = Δ + Δ α , i.e. 160
pixelsþ1024 pixels¼1184 pixels. Therefore, in the iterative pro-
cess used in the design of the key code, the bandwidth was limited
to a slightly higher value of 1200 pixels. The final intensity dis-
tribution of the key code h(x) and its corresponding Fourier
transform are shown in Fig. 3(e) and (f), respectively. In this case,
after 100 iterations the energy outside the desired range of H(ν)
was below 0.1%. From these figures we measured both, the ex-
tension of h(x) and its spectral bandwidth, which result in
Δxh¼512 pixels and Δνh¼1200 pixels, respectively. Finally, the
JPS, and its corresponding inverse Fourier transform e(x), are
shown in Fig. 4(a) and (b), respectively. From these figures we
measured a spectral extension ΔνJPS¼1200 pixels, whereas the
spatial extension Δxe¼1763 pixels. The validity of Eqs. (3) and (4)
can be confirmed by replacing with the registered values for the



Fig. 4. (a) Joint power spectrum JPS(ν) and (b) its corresponding inverse Fourier transform e(x) (both in intensity), when the bandwidth of the key code is optimally selected.
(c) Image finally recovered in the decryption (in intensity).
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spatial and spectral extensions. Therefore, we obtain
ΔνJPS¼max[160 pixelsþ1024 pixels, 1200 pixel, min(160
pixelsþ1024 pixels, 1200 pixels)]¼1200 pixels, and Δxe¼2� [256
pixels�(�256 pixels)]þ232 pixelsþ512 pixels¼1768 pixels. In
both cases the degree of coincidence is reasonably well for the
spatial and spectral extensions; the small differences can be at-
tributed to the impossibility to measure with precision in the
spatial and spectral domains, simultaneously. The decrypted image
can be observed in Fig. 4(c). This example could be considered the
optimum case, in which both the key bandwidths and their ex-
tensions are designed to match accordingly to Eqs. (3) and (4). One
of the reasons for the noise present in the decrypted image is the
non-unitary magnitude in the RPM α(x) and key-code spectrum H
(ν), as a consequence of the iterative process used to limit their
bandwidths. Finally, in order to quantify the quality of the image
decryption process, we computed the root mean square error rms
as follows [16]:
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where u(n, m) is the original image, u0(n, m) is the decrypted im-
age, n and m are pixel coordinates, and N and M are image width
and height respectively. In this specific case of Fig. 4(c) rms¼53.7.

We now analyze the situation when the key code h(x) has an
spectral bandwidth hΔν above the optimum, given by uν νΔ + Δ α . In
this case, we selected 1600 pixelshνΔ = . The JPS, and its corre-
sponding inverse Fourier transform e(x), are shown in Fig. 5(a) and
(b), respectively. From these figures we measured a spectral ex-
tension ΔνJPS¼1600 pixels, whereas the spatial extension
Δxe¼1763 pixels. The validity of Eqs. (3) and (4) can be confirmed
one more time, by replacing with the measured values for the
Fig. 5. (a) Joint power spectrum JPS(ν) and (b) its corresponding inverse Fourier transform
value. (c) Image finally recovered in the decryption (in intensity).
spatial and spectral extensions. Therefore, we obtain
ΔνJPS¼max[160 pixelsþ1024 pixels, 1600 pixels, min(160
pixelsþ1024 pixels, 1600 pixels)]¼1600 pixels, and Δxe¼2� [256
pixels�(�256 pixels)]þ232 pixelsþ512 pixels¼1768 pixels. In
both cases the degree of coincidence is reasonably well. The de-
crypted image can be observed in Fig. 5(c) (rms¼54.2). In this case
the quality of decryption should be practically unaffected, as it can
be observed by comparing Figs. 4(c) and 5(c); which is further
confirmed by the similarity in the obtained RMS error values. Fi-
nally, we analyze the situation when the key code h(x) has an
spectral bandwidth hνΔ bellow the optimum, given by fν νΔ + Δ α . In
this case, we selected 512 pixelshνΔ = . The JPS, and its corre-
sponding inverse Fourier transform e(x), are shown in Fig. 6(a) and
(b), respectively. From these figures we measured a spectral ex-
tension ΔνJPS¼1200 pixels, whereas the spatial extension
Δxe¼1763 pixels. The validity of Eqs. (3) and (4) is confirmed, by
replacing with the registered values for the spatial and spectral
extensions. Therefore, we obtain ΔνJPS¼max[160 pixelsþ1024
pixels, 512 pixels, min(160 pixelsþ1024 pixels, 512 pixels)]¼1184
pixels, and Δxe¼2� [256 pixels�(�256 pixels)]þ232 pixelsþ
512 pixels¼1768 pixels. In both cases the degree of coincidence is
reasonably well. The decrypted image can be observed in Fig. 6(c)
(rms¼75.95). In this case the quality of decryption was indeed
affected, as it can be observed by comparing Figs. 4(c) and 6(c), as
a consequence of a partial encryption of the image. This is con-
firmed also by the increment in the RMS error from rms¼53.7 in
Fig. 4(c) to the actual value of 75.95.

Eq. (3) can be used to match the encrypted signal extension at
the output plane with the transversal length of the optical avail-
able recording medium. When one, or both, the RPM or the key
code bandwidth are un-limited, the encrypted signal extension
increases without control, see Eq. (3). In this case, an intensity
e(x) (both in intensity), when the bandwidth of the key code exceeds the optimum



Fig. 6. (a) Joint power spectrum JPS(ν) and (b) its corresponding inverse Fourier transform e(x) (both in intensity), when the bandwidth of the key code falls behind the
optimum value. (c) Image finally recovered in the decryption (in intensity).

Fig. 7. Joint power spectrum and its corresponding decrypted image (both in intensity), when the extension of the JPS and the detection area exactly match (a) and (b), the
detection area is lower than the extension of the JPS with a 57% mismatch (c) and (d), and a 79% mismatch (e) and (f), respectively.
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Fig. 8. (a) Joint power spectrum JPS(ν) and (b) its corresponding inverse Fourier transform e(x) (both in intensity), when the bandwidth of the RPM decreases up to 256
pixels. (c) Image finally recovered in the decryption (in intensity).
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detector only can record a fraction of the encrypted signal, being
the subsequent loss of information the responsible of a low quality
decryption. In the following, we illustrate the consequences of a
mismatch between the encrypted signal extension at the output
plane ΔνJPS and the area of detection Δνd. This effect was nu-
merically simulated by multiplying the JPS obtained in the ex-
ample shown in Fig. 4, with an amplitude-only matrix filled with
ones within the area of detection, and zeros otherwise. In Fig. 7
(a) and (b), the JPS and its corresponding decrypted signal are
shown (rms¼53.85), respectively, when the extension of the JPS
and the area of detection exactly match, i.e. ΔνJPS¼Δνd¼1200
pixels. As expected, the decryption is unaffected by this restriction,
when compared to Fig. 5(c), where this restriction does not apply.
Fig. 7(c) and (d) shows the JPS and the decrypted signal
(rms¼61.72), respectively, when the area of detection is further
reduced toΔνd¼512 pixels, i.e. a mismatch of 57%. In this case the
decryption can be performed, although the noise content clearly
increases; being this further corroborated by the increment in the
RMS error from rms¼53.85 in the preceding case up to rms¼61.72
in this case. Finally, Fig. 7(e) and (f) shows the JPS and decrypted
signal (rms¼63.15), respectively, when the area of detection is fi-
nally reduced to Δνd¼256 pixels, i.e. a mismatch of 79%. As a
consequence of the strong mismatch between the extensions of
the JPS and detector, the loss of information has severely in-
creased. Despite this, the decryption can still be performed, al-
though the noise content in the decrypted image is evidently
higher, as compared to our previous results.

In Section 2 we demonstrated that a maximum efficiency is
obtained when the bandwidth of the key code h(x) and the sum of
the bandwidths of the RPM α(x) plus the image u(x). In this case,
the bandwidth of the JPS JPSνΔ is either hνΔ or uν νΔ + Δ α . This raises
the following question: how much tight the JPS could be for a
Fig. 9. (a) Joint power spectrum JPS(ν) and (b) its corresponding inverse Fourier transform
(c) Image finally recovered in the decryption (in intensity).
given input image while simultaneously preserving an acceptable
decryption? To address this topic is a relevant subject, since the
area of the detector relates directly to its price. The answer is given
by the ratio between the bandwidths of the RPM and the image. In
the example shown in Fig. 4, this ratio wasΔνα/Δνu¼1024 pixels/
160 pixels¼6.4. In the new example shown in Fig. 8, we reduce the
RPM bandwidth to Δνα¼256 pixels – while preserving all lengths
and separations identical to the example shown in Fig. 4. There-
fore, the ratioΔνα/Δνu reduces now to 256 pixels/160 pixels¼1.6.
A fair comparison should contemplate simultaneously a key code
bandwidth reduction up to the optimum value, since we are in-
terested in a reduction of the JPS extension. Thus, the new key
code bandwidth was given by Δνh¼ΔνuþΔνα¼160 pixelsþ256
pixels¼416 pixels. Therefore, the expected extensions in the JPS
and its corresponding inverse Fourier transform should be
ΔνJPS¼416 pixels and Δxe¼1768 pixels, according to Eqs. (3) and
(4), respectively. The JPS and its corresponding inverse Fourier
transform e(x) are shown in Fig. 8(a) and (b), respectively. From
these figures we measured the spectral extension ΔνJPS¼420
pixels, whereas the spatial extension Δxe¼1763 pixels, which
reasonably agree with the expected values. The decrypted image is
depicted in Fig. 8(c) (rms¼53.43). In this figure, it can be observed
that, as a consequence of a reduction in the RPM bandwidth, the
decrypted image has decreased its quality. Finally, we reduced
further the RPM bandwidth up to 80 pixels – while preserving all
lengths and separations identical to the example shown in Fig. 4.
The ratio Δνα/Δνu reduces to 80 pixels/ 160 pixels¼0.5. Again, in
order to make a fair comparison, the key code bandwidth should
be adequately reduced to the optimum value, given now by

h uΔν Δν Δν= + α ¼160 pixelsþ80 pixels¼240 pixels. According to
Eqs. (3) and (4), the expected extensions in the JPS and its corre-
sponding inverse Fourier transform should be ΔνJPS¼240 pixels
e(x) (both in intensity), when the bandwidth of the RPM decreases up to 80 pixels.
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and Δxe¼1768 pixels, respectively. The JPS and its corresponding
inverse Fourier transform e(x) are shown in Figs. 9(a) and (b), re-
spectively. From these figures we measured the spectral extension
ΔνJPS¼240 pixels, whereas the spatial extension Δxe¼1763 pix-
els, which reasonably agree with the expected values. The de-
crypted image can be observed in Fig. 9(c) (rms¼53.19). In the
present case of strong RPM bandwidth reduction, the decrypted
image shows broader speckle grains than in the preceding cases.
Despite this, the RMS error does not significantly increases be-
cause the JTC parameters were optimally set.
4. Conclusions

In this work we analyzed the extensions in the recorded JPS in
both, spatial and Fourier domains. The expressions were further
corroborated through several numerical examples under different
situations. An optimum efficiency is reached, when the bandwidth
of the key code on the one hand, and the sum of the bandwidths of
the image plus the random phase mask, on the other, are equal.
The quality of the decryption is also affected by the ratio between
the bandwidths of the RPM and the input image, being better as
this ratio increases. The effects on the decrypted image, when the
detection area is lower than the encrypted signal extension, were
analyzed also.
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