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We experimentally demonstrate the possibility to retrieve the instantaneous frequency profile of a given
temporal light pulse by in-fiber fractional order differentiation of 0.5th-order. The signal's temporal
instantaneous frequency profile is obtained by simple dividing two temporal intensity profiles, namely
the intensities of the input and output pulses of a spectrally-shifted fractional order differentiation. The
results are supported by the experimental measurement of the instantaneous frequency profile of a
mode-locked laser.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Non-integer or fractional order differentiation dates back to the
birth of the theory of differential calculus of integer order [1]. In
the photonic domain, as far as we know, the first device capable of
calculating the fractional order differentiation on the complex
envelope of an incoming optical waveform was proposed in 2008
[2]. Since then, different proposals were presented to perform this
task including: an asymmetrical π phase-shifted fiber Bragg grat-
ing [3], long-period grating [4,5], tilted fiber Bragg grating [6], si-
licon-on-isolator micro-ring resonators [7,8], and electrically as-
sisted Mach–Zehnder interferometer [9]. The possibility to tune
the fractional order of differentiation within some range is present
in some of these devices [6–9]. Although is clear that a noticeable
effort was done in the development of new photonic fractional
order differentiator devices with better capabilities (such as frac-
tional order tuning), little progress was achieved demonstrating
some advantage in the use of these devices for a specific task.

On the other hand, due to its importance in the performance of
fiber-optic communication systems today, new solutions are de-
manded for the instantaneous frequency monitoring of optical
o (CONICET-UNR), Blvr. 27 de

rado-Laborde).
waveforms. There are renowned techniques able to perform this
task, such as the frequency-resolved optical gating (FROG) [10,11],
the spectral phase interferometry for direct electric field re-
construction (SPIDER) [12,,13], and the multi-photon intra-pulse
interference phase scan (MIIPS) [14]. However, they are typically
best suited for short high intensity pulses well in the femtosecond
regime, being of more limited application for broader optical
pulses, i.e. from a few ps to well into the ns regime. Thus, new
techniques have been proposed to retrieve the instantaneous fre-
quency profile for longer optical temporal waveforms. In addition,
the in-fiber solutions in which we are especially interested might
be more practical for optical fiber systems. In References [15,16], a
direct phase recovery technique was proposed from temporal in-
tensity measurements at the input and output of a linear optical
filter. However, precise knowledge of the filter's impulse response
is necessary in amplitude and phase. More recently, a direct
method for phase recovery based on the use of the transport of
intensity equation was introduced, where two temporal intensity
profiles at the input and output of a linear dispersive device are
required [17]. On the other hand, in Ref. [18] it was shown that a
spectrally shifted differentiator can be used to retrieve the phase
profile of a given temporal optical waveform. However, the pro-
posed algorithm also needs the numerical calculation of the first-
order derivative of the modulus of the input signal. As expected,
this numerical procedure is very sensitive to the presence of noise.
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Finally, in Ref. [19] it was demonstrated, through fractional cal-
culus tools, that a very simple expression relates the instantaneous
frequency, with the temporal intensities of the temporal waveform
under test and either its 0.5th order fractional integration or dif-
ferentiation. The developed theory was supported by numerical
simulations; however no experimental realization was provided.

In this work we provide experimental evidence of a photonic
0.5th order fractional differentiator measuring the instantaneous
frequency of a light pulse in the ten of ps regime. Next, we com-
pare this measurement with another technique able to retrieve the
instantaneous frequency profile [17]. To the best of our knowledge,
this is the first work that experimentally demonstrates the con-
venience of using a fractional order differentiator for a specific task
in the photonic domain, i.e. the instantaneous frequency mea-
surement. This works opens the door for the use of fractional
calculus operators solving specific problems in the photonic signal
processing.
Fig. 1. Measured optical spectrum of the LPG (solid curve) and theoretical response
(dashed curve) of a 0.5th order fractional differentiator, both in amplitude.
2. Theory

Let us suppose a given optical pulse, whose complex temporal
envelope is given by φ( ) = ( ) [ ( )]g t g t j texp , with j¼√�1. Now, if we
perform on this pulse not a standard, but a spectrally shifted 0.5th
order fractional differentiation (with angular frequency shifting
given by ωs), the signal processed by the photonic fractional order
differentiator could be written as ( ) ( )g t f t , with ω( ) = ( )f t j texp s .
Next, let us use the generalized Leibnitz rule for the differentiation
of the product of two arbitrary functions:
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where Γ(.) is the gamma function.
Now, by replacing r¼1/2, and taking into account that

ω[ ( )]j t td exp /da
s

a¼ ω ω( ) ( )j j texps
a

s , with a∈R; it can be demonstrated
that the instantaneous angular frequency profile of the input pulse
is related to the intensities of the original plus the spectrally
shifted 0.5th order differentiation td /d0.5 0.5 by the following ap-
proximation:
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The mathematical details of this derivation can be followed in
Appendix A of Ref. [19]. Eq. (2) shows that the instantaneous fre-
quency profile can be obtained by simply dividing the temporal
intensity profiles of the light pulse under test ( )g t 2, and that of its
corresponding spectrally-shifted 0.5th order fractional differ-

entiation ω[ ( ) ( )]g t j t td exp /ds
0.5 0.5 2

. The spectral shift ωs should be
high enough that the spectral content of the input pulse is mainly
located at one side of the 0.5th order fractional differentiator re-
sonance frequency. If required, the pulse's temporal phase profile
can be obtained by numerical integration of Eq. (2), except by an
undetermined numerical constant. It is worth noting the non-
iterative nature of the proposed procedure; as opposed to other
well-known techniques such as the Gerchberg-Saxton algorithm,
which precludes real-time applications. On the contrary, the
technique proposed here is potentially well-suited for real-time
applications and non-repetitive events.

We deliberative postponed until now the characteristics re-
quired to a photonic fractional order differentiator, whose basic
operation principle will be explained in the following. To this end,
it is very useful to remind one property of the Fourier transform,
namely:
I Iω ω ω[ ( )] = ( ) ⇒ ( ) = ( ) ( )
( )
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i.e. the Fourier transform of the nth time derivative of a given
function is (jω)n times the original Fourier transform; where the ℑ
symbol stands for the Fourier transform, and n is the order of
differentiation, which is not necessarily restricted to be an integer.
Therefore, and from a strictly spectral point of view, a 0.5th order
fractional differentiator is essentially a high-pass filtering device
with a transfer function given by (jω)0.5 [3], where ω is the
baseband angular frequency i.e. the difference between the optical
angular frequency ωopt and the central optical angular frequency
of the signal ω0.
3. Experimental

The photonic fractional order differentiation was performed in
this work by using a long period fiber grating (LPG). A detailed
characterization of this device working as a fractional order differ-
entiator is out of the scope of this work; the interested reader can
follow the fabrication details and performance characterization
through Ref. [5]. Only for completeness, its main features will be
summarized in the following. The LPG was inscribed in a boron
doped photosensitive fiber (PS980 by Fibercore, numerical aperture
of 0.13 and a cut-off wavelength of 980 nm) by using the point-by-
point technique. The selected periodicity was of 187.6 μm, with a
final LPG length of 146.5 mm. This LPG was specially fabricated to
behave as a 0.5th order fractional differentiator around the re-
sonance wavelength λ0¼1035.5 nm, with a �14 dB transmittance
dip and a 3 dB bandwidth of 1.14 nm. The experimental measure-
ment of the LPG transmission can be observed in Fig. 1 (in ampli-
tude). In the same figure, it is compared with the theoretical am-
plitude response of an ideal 0.5th order fractional differentiator, i.e..
There is a good degree of resemblance between both within the
whole operative optical bandwidth (determined by the first trans-
mission maxima at both sides of the resonance dip), except at the
resonance frequency, where the transmission should decay to �1.
However, it should be emphasized that a slight deviation in the
magnitude has lower consequences than a deviation of the phase



Fig. 2. Experimental setup used to measure the instantaneous angular frequency;
where OFC, OSC, and PC stand for optical fiber coupler, oscilloscope, and polar-
ization controller, respectively. The LPG is used to perform the 0.5th order frac-
tional differentiation.

Fig. 3. Measured temporal intensity profiles of the optical pulse under test; and
spectrally shifted 0.5th order fractional differentiation, scatter points and solid
curve, respectively.

Fig. 4. Instantaneous frequency profile of the light pulse under test measured
through in-fiber fractional order differentiation, and linear instantaneous frequency
profile corresponding to a chirp parameter C¼�30, scatter points and solid curve,
respectively.
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response for the implementation of a photonic fractional order
differentiator [5,20]. Finally, this LPG was fixed to a linear micro-
meter translation stage in order to select its operation wavelength
properly.

The experimental setup is shown in Fig. 2. The light pulses
under test whose instantaneous frequency will be measured, were
provided by a passively mode-locked ytterbium fiber laser, emit-
ting at a fixed wavelength λ0¼1038.5 nm. The repetition rate of
the mode-locked laser was of 23.15 MHz, and the output light
pulses can be approximately fitted with an hyperbolic secant
profile g(t)¼sech(t/T0), with T0¼13 ps, i.e., a FWHM of 23 ps. This
signal was split by a first optical fiber coupler (OFC1, 80/20); and
one of its outputs (20%) was sent to the trigger input of the os-
cilloscope through a 1.2 GHz bandwidth photodetector (not
shown). The second output port of the OFC1 was split by a second
fiber optic coupler (OFC2, 50/50) and propagated towards the LPG,
where the state of polarization of the signal at the input of the LPG
was previously adjusted through a polarization controller (PC). The
temporal intensity waveform at the output of the LPG was de-
tected with a463 GHz sampling oscilloscope (OSC) provided with
a fast built-in photodetector (53 GHz). Finally, a LED source in
conjunction with an optical spectrum analyzer (replacing the OSC
in Fig. 2) was used in those cases where the knowledge of the
spectral position of the resonance transmission dip of the LPG was
necessary.

Now, we will describe the experimental procedure used to
measure the instantaneous frequency. The first transmission
maxima at one side of the transmission dip of the LPG, see position
1 (P1) in Fig. 1, was tuned into the emission wavelength of the
mode-locked laser, by using the micrometer translation stage. In
this condition, the oscilloscope measured the temporal intensity
profile of the pulse under test; see Fig. 3. Next, we measured the
intensity profile of its spectrally shifted 0.5th order fractional
differentiator, by translating the transmission dip of the LPG to one
slope of the 0.5th order fractional differentiator by using the mi-
crometer translation stage, see position 2 (P2) in Fig. 1, a wave-
length shift below 1 nm was enough. In this case, the oscilloscope
registered the temporal intensity profile of the spectrally shifted
0.5th order fractional differentiation, see Fig. 3. The differences
between both intensity profiles are due to the spectrally shifted
fractional order differentiation performed on the signal, since the
trigger signal used for the oscilloscope was the same in both cases;
see the experimental setup in Fig. 2. On the other hand, it can be
estimated that the delay introduced by the slight stretching in the
LPG for the wavelength shift is below 1 ps; which has no con-
sequences according to Ref. [19]. The instantaneous angular fre-
quency experimentally obtained is shown in Fig. 4, and it was
obtained by dividing the temporal intensity profiles shown in
Fig. 3, according to Eq. (2). It is worth to mention, that we should
focus our attention where the pulse energy is located; the un-
shaded central area in Fig. 4 concentrates 95% of the input pulse
energy. The measured instantaneous frequency profile of the input
pulse g(t) can be fitted linearly within the area of interest. This
linearity for the instantaneous frequency necessarily implies a
parabolic phase profile for the output pulse of the mode-locked
laser g(t), which could be described by exp(� jCt2/2T02), where C is
the chirp parameter, being C¼�30 according to our fitting. Re-
garding the accuracy, one of the mains sources of errors in pro-
posed fractional order differentiators is located at the central fre-
quency of operation, where there is a gradual phase transition
instead of the required phase discontinuity of n�π. Fortunately, in
this proposed technique, this spectral region is avoided, since the
required fractional differentiation is fully spectral shifted.

It is useful to compare the results obtained with another
technique which also relies in temporal intensity measurements,
namely the instantaneous frequency measurement by using op-
tical fiber dispersion [17]. In this technique it is necessary to per-
form two temporal intensity measurements, namely at the input
and output of an optical fiber of known dispersion. With both
temporal intensity profiles plus the optical fiber dispersion, the
instantaneous frequency profile is obtained; via the temporal
transport-of-intensity equation -further details can be followed in
Ref. [17]. Therefore, we propagate the light pulse under test pro-
vided by our mode-locked laser through a dispersion line (low



Fig. 5. Instantaneous frequency profile of the light pulse under test measured
through optical fiber dispersion, and linear instantaneous frequency profile corre-
sponding to a chirp parameter C¼�30, scatter points and solid curve, respectively.
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numerical aperture optical fiber SM980 by Fibercore, length
102 m, measured first order dispersion D¼�44 ps/nm km at λ0).
Fig. 5 shows the instantaneous frequency profile obtained; in the
same figure, a linear fitting for the instantaneous frequency is
shown, corresponding again to a chirp parameter C¼�30, in
correspondence with our previous measurement. Again, as in
Fig. 4, we should focus our attention where the pulse energy is
concentrated; the unshaded central area in Fig. 5 concentrates 95%
of the input pulse energy.
4. Conclusion

In this work we measured the instantaneous frequency profile
of a light pulse provided by a mode-locked laser by using a LPG
based in-fiber 0.5th order fractional differentiator. This work is the
first experimental application, to our knowledge, of a photonic
device performing a fractional calculus operation in a specific
problem, namely the instantaneous frequency profile measure-
ment. We believe this result opens the door for the use of photonic
devices performing fractional calculus operation on light pulses for
a specific task; which could be expected given the rapid growth in
the applications of fractional calculus tools in an increasing
number of fields, such as electromagnetism, control engineering,
and signal processing. Finally, since the measurement relies on
time-domain intensity detection, the technique is limited by the
bandwidth of the oscilloscopes and detectors (100 GHz in real
time electronic oscilloscopes, 4500 GHz in sampling optical
oscilloscopes).
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