

FACULTAD DE BIOQUIMICA, QUIMICA Y
FARMACIA

ARCHIVOS DE

BIOQUIMICA, QUIMICA Y FARMACIA

TUCUMAN

TOMO XXI – N° 2

TUCUMAN
REPUBLICA ARGENTINA

2011

COMITÉ EDITORIAL

Editor responsableDr. José Alberto Komaid

Miembros titulares Dra. Aída María Suárez Dra. Mirtha Rachid

Biog. María A. Véliz

COMITÉ CIENTIFICO

Director honorarioDr. Raúl A. Salomón

LOS TRABAJOS ORIGINALES SON ARBITRADOS POR CALIFICADOS PROFESIONALES QUE CONFORMAN EL CUERPO DOCENTE DE LA UNT Y CUYA NÓMINA SE DETALLA AL FINAL DE ESTA PUBLICACIÓN.

DIAGRAMACIÓN : Dr. José Alberto Komaid REVISIÓN Y EDICIÓN : Dres. José Alberto Komaid; Aída María Suárez; Mirtha Rachid y

DISEÑO GRÁFICO Y

Bioq. María A. Véliz

REGISTRO DE LA PROPIEDAD INTELECTUAL Ley 23412 Nº 188912 REGISTRO NACIONAL DE PUBLICACIONES EN SERIE ISSN Nº 0365-0871

INDICE	
INSTRUCTIVO PARA PRESENTACIÓN DE TRABAJOS	96
EDITORIAL	98
PROLOGO	9:
PALABRAS	10
ARTICULOS ORIGINALES Scaled quamtum mechanical (SQM) force field for amino-oxo tautomer of 1, 5 dlmetHylcytosine Silvia A. Brandán1, Ferenc Kalincsak2, Gabor Pongor2 and Aida Ben Altabef3#	10 ⁻
PLAGUICIDAS ORGANOCLORADOS EN RÍOS DE LA PRINCIPAL CUENCA HIDROLÓGICA DE LA PROVINCIA DE TUCUMÁN- ARGENTINA A. P. Chaile, N. Romero y M. J. Amoroso	124
APLICACIÓN DEL SISTEMA DE INSTRUCCIÓN PERSONALIZADA EN LA CÁTEDRA DE TECNOLOGÍA FARMACÉUTICA II Sesto Cabral ME, Arias M, Ordoñez AAL, Nieva Moreno MI, Gómez Morton T, Gómez JD	136
NIVELES DE MONOXIDO DE CARBONO (CO) AMBIENTAL EN SAN MIGUEL DE TUCUMÁN Khouri, E.; Cruz, M.; Fuentes de Curia, M.E.; González, S.	141
RESUMENES DE TESIS 2011	147
RESUMENES DE TESINAS 2011	161
UNA INVESTIGACIÓN TUCUMANA ES PREMIONACIONAL EN FISICOQUÍMICA	189
Propuesta de logo FBQF	191
Resolución aprobación de logo FBQF	192
NOMINA DE EVALUADORES	193

199

CONTENIDO

ARTICULOS ORIGINALES

SCALED QUAMTUM MECHANICAL (SQM) FORCE FIELD FOR AMINO-OXO TAUTOMER OF 1, 5 DIMETHYLCYTOSINE

Silvia A. Brandán¹, Ferenc Kalincsak², Gabor Pongor² and Aida Ben Altabef^{3#}

² Department of Theoretical Chemistry, Eotvos Lorand University, 1518 Budapest 112, P.O.B. 32, Hungary.

Correspondence: Aida Ben Altabef, Universidad Nacional de Tucumán, Argentina, Email: altabef@fbqf.unt.edu.ar

SUMMARY

We have performed a force field calculation for the amino-oxo tautomer of 1, 5-dimethylcytosine at B3LYP/6-31G* level following the refinement and the scaling methodologies. Quantum mechanical calculations were carried out by using Density Functional Theory (DFT/B3LYP) methods with 6-31G* basis set. The force constants were scaled using the transferable scale factors of Rauhut and Pulay. The refined force constants obtained in terms of independent symmetry coordinates have been expressed in terms of simple valence internal coordinates.

Keywords 1, 5- dimethylcytosine, DFT, vibrational spectra, molecular geometry, force field.

1. INTRODUCTION

The study of the methylated derivatives of the nucleic acids is very important for a better understanding of the role of DNA methylation in important biological processes [1-14], including the regulation of the genome expression during the embryonic development [13-16]. Many previous studies in relation to the vibrational properties of methylated nucleic acid bases (DNA and RNA) have been published [17, 18]. Moreover, the force field of the nucleic acid bases like uracil, cytosine and guanine, have been studied by several authors [19-24] including the force field of tautomers of cytosine [25] and thiocytosine [26], 1-Methylcytosine [27] and 5-Methylcytosine [28,29], but not the one of the 1,5-Dimethylcytosine (DMC). We have reported recently a theoretical-experimental structural and vibrational analysis of this compound and we have proposed the existence of four tautomers, the most stable being the amino-oxo tautomer. In this case we have presented an assignment for the IR and Raman bands of the amino-oxo tautomer of 1, 5- dimethylcytosine using the DFT/BLYP method and 6-31G* basis set [30].

Now, a theoretical study is carried out for the amino-oxo tautomer of this compound with the methods of quantum chemistry in order to have a better understanding of its

¹ Instituto de Química Inorgánica. Facultad de Bioquímica, Química y Farmacia. Universidad Nacional de Tucumán. Ayacucho 471. 4000. San Miguel de Tucumán. Tucumán. R. Argentina.

³ Instituto de Química Física. Facultad de Bioquímica, Química y Farmacia. Universidad Nacional de Tucumán. San Lorenzo 456. T4000CAN S. M. de Tucumán. R. Argentina.

[#]Aida Ben Altabef is member of the Research Career of CONICET (National Research Council of R. Argentina)

vibrational properties by determining the force field and assessing vibrational assignments through B3LYP/6-31G* calculations. In the present paper, we report the results of the DFT calculation for force field for the amino-oxo tautomer of 1, 5-dimethylcytosine and compare the results with the assignment we realized previously [30]. The optimized geometry and wavenumbers for the normal modes of vibration were calculated at B3LYP/6-31G* level. The harmonic force constants given by these calculations were subsequently scaled using transferable scale factors to reproduce the experimental frequencies as well as possible and thus obtain an enhanced assignment.

2. RESULTS AND DISCUSSION

2.1. Geometry

Table 1 shows the optimized geometrical parameters for amino-oxo tautomer of 1,5dimethylcytosine at B3LYP/6-31G* level compared with theoretical parameters obtained by us for this compound at BLYP/6-31G* level [30], with experimental parameters determinated by X-ray diffraction for 1-Methylcytosine [24, 31] and for 5-Methyl-cytosine [32] and also with theoretical parameters obtained for 1methylcytosine [24] and aniline. The geometrical parameters for 1- methylcytosine [24] were obtained by SCF/MO method with STO-3G basis set and were corrected using 4-31G basis set. In the aniline the parameters were obtained at Hartree Fock level using 4-21G basis set augmented with d functions for the nitrogen atoms [33]. As can be seen the best results for bond distances and angles are obtained with the BLYP/6-31G* method. The geometry of the amino-oxo tautomer of 1, 5dimethylcytosine predicts that the amino group does not lie in the plane of the ring (Figure 1) according to the above calculations [30]. Also, the results show that the C4-N8 bond length is longer with DFT methods (1.384 Å with BLYP method and 1.370 Å with B3LYP method) than experimental values but smaller than the other theoretical methods (1.374 Å for 1- methylcytosine [24] and 1.401 Å for aniline [33]). For amino-oxo tautomer of 1, 5- dimethylcytosine, the C11-C5 (C-CH₃) and C16-N1 (N-CH₃) bonds length obtained with DFT method are close to the experimental values reported for 1- methylcytosine [31] and 5- methylcytosine [32].

2.2. Force field calculation

Simple or uniform scaling (i.e., the use of a single scale factor) has become a common practice in quantum chemistry. This method involves a simple multiplication of the theoretical vibrational frequencies by a factor (its value is 0.963 in conjunction with the B3-LYP/6-31G* level [34]). Still this approach is very attractive for large-scale studies (avoiding the complex procedure of defining the internal coordinates, etc.), however, it is not quite capable to correct each individual frequency appropriately. The Scaled Quantum Mechanical (SQM) force field method [35] is a more complex procedure than the uniform scaling. This method applies selective scaling for different classes of internal coordinates which possess a common physical meaning and thus allows to extract all the quantum mechanical information from the computations. The SQM method is very successful at the B3-LYP/6-31G* level [34], and we refer to the literature [34, 36] for further details. In this work we use the density functional derived SQM force field method in its original form [34]. This means that we scale the

quadratic force constant matrix (evaluated in terms of the natural internal coordinates [37]) using the scaling procedure and the transferable scale factors of Rauhut and Pulay (see column A of B3-LYP values in Table 4 of Ref. [34]). Since the SQM force field and the calculated harmonic frequencies of the 1, 5-dimethylcytosine do not contain any empirical parameters coming from the target molecule itself, they can be considered of "a priori" quality. Table 2 summarizes the description of the natural internal coordinates used for the amino-oxo tautomer of 1, 5-dimethylcitosine. Table 3 used for 1-methylcytosine [27] and also with scale factors of other molecules that have similar groups such aniline [33] and toluene [38]. In all cases the scale factors were obtained by their transferability between related molecules. In 1-methylcytosine a planar geometry was assumed for the amino group in order to simplify the normal coordinate analysis and the scale factor values were transferred from maleimide. uracil, formamide and methanol [24]. The scale factors from benzene have been used in aniline and toluene. In both cases, the force fields have been computed at the Hartree Fock level using the 4-21G basis set augmented with d functions for the nitrogen atoms in the aniline case. Thus, the results predict correctly that the amino group does not lie in the plane of the ring in aniline. Table 3 shows that the scale factor values for the stretching of 1-methylcytosine are lower than the corresponding to 1, 5 dimethylcytosine and to the other compared molecules. Although the smaller scale factor (0.395) corresponding to the inversion mode (γNH_2) and the higher scale factor (1,292) for the NH₂ torsion fundamental of aniline present a highly anharmonic character reflected in the observed frequencies but not in the calculated force constants, as seen later [33], Table 4 shows the unscaled (theoretical) and SQM values of the vibrational frequencies of 1, 5-dimethylcytosine. We also give the calculated absolute infrared intensities at the SQM level and the TED values (see above) for a qualitative assignment. In Table 5 the scaled force constants are presented for amino-oxo tautomer of 1, 5- dimethylcytosine compared with force constants for 1-methylcytosine [27], cytosine [24], aniline [33] and toluene [38]. In 1methylcytosine the force constants were scaled using the CNDO/2 calculations while in cytosine ab initio calculations were performed by the STO-3G/4-31G basis sets. In aniline and toluene ab initio calculations were performed by the Hartree Fock method using 4-21G basis set. In the case of aniline, augmented with d functions having orbital exponents of 0.8 on the nitrogen atom to give a better representation of the electron distribution in this region of the molecule. The CNDO/2 method predicts lower values for the force constants of the C-N and C=O bonds than for the STO-3G/4-31G and B3LYP/6-31G* methods. When the experimental value with the out of plane angle set at 37.5° was used in aniline, the inversion force constant changed markedly from 0.336 to 0.082 mdyn Å rad ⁻², closer to 1,5 -dimethylcytosine value (0.051 mdyn Å rad ⁻²). This difference is probably observed because the out of plane angle in 1, 5- dimethylcytosine is lower (11.99 with B3LYP/6-31G* and 13.89 with BLYP/6-31G* [30]) than the corresponding to the aniline value. Moreover, the values of force constants of the ring torsion obtained for the aniline and toluene are very different from the 1, 5-dimethylcytosine values. These differences can be attributed indistinctly to the different calculations or to the nature of the ring (aromatic for the aniline and toluene). Note that for 1.5- dimethylcytosine the obtained scaled force constants with DFT B3LYP/6-31G* method are very close to values found for 1methylcytosine with CNDO/2 method while the exception are the force constants related to stretching (f₁₆) and the plane deformation (F₂₆) of the C16-N1 bond. The

calculated force constant values for the amino-oxo tautomer of 1, 5- dimethylcytosine, with the B3LYP/6-31G* method are approximately similar to the 1-methylcytosine, as is expected, because both molecules have CH_3 groups in its structures. The force constant values are greater in cytosine than 1-methylcytosine and 1, 5-dimethylcytosine as can be seen in Table 5.

2.3. Spectroscopic analysis

In Table 6 the experimental wavenumbers and the assignments of the infrared and Raman bands for the amino-oxo tautomer of 1, 5-dimethylcytosine can be seen. The calculated vibrational wavenumbers lead to a rectification of the previously proposed assignment of bands observed with the exception of bands marked with asterisk in Table 6 (see row six). The calculations combining the hybrid functional B3LYP method with 6-31G* basis set gives somewhat better results than the BLYP/6-31G* method. These calculations determine the best theoretical approximation to predict the vibrational frequencies. All the density functional methods explored, systematically overestimate the higher vibrational frequencies. The inverse situation can be observed for the lower frequencies. These effects are essentially due to the neglect of the anharmonicity of the vibrations in the calculations, especially for NH and CH modes and the basis set deficiencies even taking into account the electronic correlation corrections. The hybrid B3LYP method gives somewhat better results than the BLYP method.

Band assignments

The assignment of the experimental bands to the normal modes of vibration of the molecule was based on the existing vibrational analysis [30], the results obtained from the theoretical calculations and the total energy distribution (TED) [39, 40]. In the following discussion, results obtained using the B3LYP/6-31G* method will be referred to. All the observed bands in the vibrational spectra are shown in Table 6 along with their relative intensities and the proposed assignments. Only 12 of the 51 normal vibration modes are completely pure modes as can be seen in Table 4. The remaining normal vibration modes are strongly coupled among them. In some cases however the relative intensity bands predicted by the B3LYP/6-31G* method, are very different from the experimental ones, i. e. the intensities of NH₂ and C6-H15 stretching bands, as well as the O7=C2 and C6=C5 stretching bands, show a reversal of the observed intensity ratio. The calculated intensities are not reliable but they may be employed as auxiliary information.

4000- 2000 cm⁻¹ region. In this region the previous assignment is confirmed [30]. The v_1 and v_2 modes are assigned to the shoulder and the band recorded in the infrared spectrum at room temperature at 3546 and 3391 cm⁻¹ respectively, and both are associated to NH₂ stretchings (N8-H10 and N8-H9, respectively). The v_3 mode is clearly assigned to the medium intensity band in the room temperature infrared spectrum located at 3112.4 cm⁻¹ and associated with the C6-H15 stretching mode because it is calculated as a pure mode (99% TED). The modes from v_4 to v_9 are calculated strongly coupled among them and can be assigned to the infrared and Raman bands at 3043, 2990, 2964.4, 2951, 2933 and 2924 cm⁻¹ as in our above calculations [30]. All these modes are associated to the C-H stretching, being the v_4 .

 v_5 and v_7 modes related to N-CH $_3$ group while the v_6 , v_8 and v_9 modes are associated to C-CH $_3$ (See Table 6).

1700- 1500 cm⁻¹ region. Newly here, the above assignment is confirmed, its are, the v_{10} mode is assigned to strong IR band at 1670.3 cm⁻¹ and is associated to the C2=O7 stretching mode; the v_{11} mode is assigned to the shoulder in infrared band at 1660 cm⁻¹ (C5 = C6 stretching) while the v_{12} mode is assigned to the strong band at 1615.6 cm⁻¹ (NH₂ deformation) and finally, the v_{13} mode is assigned to the medium intensity IR band at 1520 cm⁻¹ (N3=C4 stretching).

1500- 1000 cm⁻¹ region. In this zone the theoretical calculations predict the frequencies and the intensities of the bands accurately for some modes which permit to carry out a reliable assignment compared with the experimental spectrum (see Figure 2). The v_{14} , v_{16} and v_{20} modes could be assigned to the IR bands at 1482.5, 1464.4 and 1364.7 cm⁻¹ related to the C-CH₃ deformation, where the two first of them are associated to antisymmetric modes and the remain to symmetric mode. The v₁₅, v_{18} and v_{19} modes are assigned to the bands at 1475.7. 1427.9 and 1395.4 cm⁻¹ and are associated to the N-CH₃ deformation modes. In this case, the two first of them associated to antisymmetric modes while the last band to symmetric mode. Here, there is a little difference in reference to above assignment [30]. The mode associated to C4-N8 stretching mode, the v₁₇ mode, is assigned to the band at 1445 cm⁻¹ because is calculated using B3LYP/6-31G method with higher TED value (31%). In this case, the v_{21} , v_{22} , and v_{23} modes are in agreement with the above assignment (associated to C6-N1 stretching, βC6-H15 and C5-C11 stretching, respectively as in Table 6 is indicated), only the v_{24} and v_{25} modes are assigned to the IR band at 1163.3 cm⁻¹ and 1147.9 cm⁻¹, respectively instead of 1224.7 cm⁻¹ and 1045.5 cm⁻¹ as in Ref. [30]. In this case, these modes are associated respectively, to N3-C2 and C16-N1 stretchings instead of the N-CH₃ rocking modes. The v_{26} and v_{29} modes are easily assigned to the bands at 1106.9 and 1022 cm⁻¹ and related with the N-CH₃ rocking modes while the NH₂ rocking, associated to v₂₇ mode, is assigned to the very weak band located at 1066 cm^{-T} instead of 1163.3 cm⁻¹ as in BLYP/6-31G* calculations. The v_{28} and v_{30} modes are assigned to the bands at 1045.5 and 910.7 cm⁻¹ and are related to two C-CH₃ rocking modes.

1000- 100 cm⁻¹ region. The assignments in this region are less reliable due to the large number of vibrations expected and, for this, some modes such as, v₃₁, v₃₂, v₃₃, v_{34} , v_{38} , v_{39} , v_{41} , v_{42} , v_{43} and v_{47} modes appear inverted with B3LYP/6-31G* calculations in relation to BLYP method [30]. The assignments are confirmed for the v_{35} , v_{36} , v_{37} , v_{40} , and the modes from v_{44} to v_{51} modes. In Table 6 can be seeing the mentioned modes associated to the groups of the amino-oxo tautomer and its corresponding wavenumbers. Is important to note that, during the scaling process some bands change notably of intensity i.e. the bands located at 775, 541 and 360 cm⁻¹ increase its intensities while the intense band at 552 cm⁻¹ decrease it intensity. The band observed at 541 cm⁻¹ is assigned to v₃₉ mode associated with the NH₂ twisting vibration. The present calculation also predicts this mode coupled with the inversion mode (v₄₃) of the amino group. The NH₂ twisting vibration of the amino-oxo form of cytosine is calculated using HF/6-31G** method with higher TED value (37%) at 501 cm⁻¹ and observed in the Ar matrix spectrum at 507 cm⁻¹ [25]. The out of plane vibration (or inversion mode) of the amino-oxo form of cytosine is calculated at 224 cm⁻¹ (53% TED) [25] and experimentally not observed while is very different than the

amino-oxo tautomer of 1, 5- \underline{d} imethylcytosine (v_{43}), that it is observed at 400 cm⁻¹. In aniline [48], the inversion mode of the amino group is calculated at 567.4 cm⁻¹ and observed at 541.6 cm⁻¹ while the NH₂ twisting vibration is calculated at 235.2 cm⁻¹ and observed at 210 cm⁻¹. The difference observed in these values could be attributed to the different scale factor because they are strongly affected by the anharmonicity of the combined torsion-inversion motion and, also for the method of calculations.

3. Conclusions

The present study confirms most of the assignments realized for us using the BLYP/6-31G* method with some modifications indicated by the "A priori" force field developed in the present study at B3LYP/6-31G*.

We demonstrate that a DFT/B3LYP molecular force field for the amino-oxo tautomer of 1, 5- dimethylcytosine, computed using 6-31G* basis set are well represented.

An SQM force field was obtained for the amino-oxo tautomer of 1, 5- dimethylcytosine after adjusting the theoretically obtained force constants in order to minimize the difference between observed and calculated frequencies.

The complete force field for the amino-oxo tautomer of 1, 5-dimethylcytosine have been determined, as well as the force constants for stretching and deformations modes and the coupling force constants more significant.

4. Experimental

The infrared spectra of 1,5-dimethylcytosine, $C_4HN_2(NH_2)(CH_3)_2$, at room and low temperatures in KBr pellets and the Raman spectra at room temperature were taken from our previous study [30].

5. Computational Details

Ground-state equilibrium geometries, analytic Cartesian derivatives (first derivative of the dipole moment and second derivative of the energy) have been determined at the DFT level [41] using Becke's non local three-parameter exchange functional [42] and the Lee-Yang-Parr correlation functional (B3-LYP) [43] supplemented by the 6-31G* basis set. The aforementioned calculations were made by the Gaussian 98 [44] suite of programs. The system of natural internal coordinates has been determined by the INTC program [37]. The Cartesian quadratic force constants and the dipole moment derivatives have been transformed to the system of the natural internal coordinates, then the force constants were scaled according to the SQM force field method of Pulay [45] using the transferable scale factors of Rauhut and Pulay [34] with the help of the SCALE2 program [35] written by one of us (Gabor Pongor). The atomic masses used for the generation of the G matrix [46] were as follows: C 12.011; H 1.00794; O 15.9994; and N 14.0067 (in a. u. units). We have used a UNIX-script (originated from Pulay's group) in a somewhat modified form [47] for the manipulations mentioned in this paragraph. The script uses the archive site of the Gaussian 98 [44] output as its input. The form of the normal modes was characterized by the Total Energy Distribution (TED) values [39, 40]. The computed IR spectrum (in harmonic approximation) was considered as the sum of individual Lorentzian bands using an empirical mean of the halfwidths (12 cm⁻¹). Details are given in Ref. [48]. The IR spectrum was visualized by the GNUPLOT program [49].

Details not given in the present work can be asked from the authors upon request (see the [36] references below).

Acknowledgements

A. B. A. and S. A. B. acknowledged the research grants provided by CIUNT and CONICET, as well as, F. K. and G. P. acknowledged the partly supported by the National Scientific Research Fund of Hungary (OTKA), grant Nº. T- 037658.

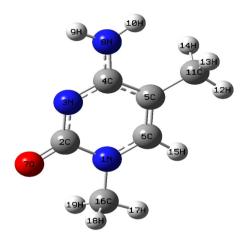


Fig. 1. Molecular structure of 1,5 Dimethylcytosine with labeling of atoms.

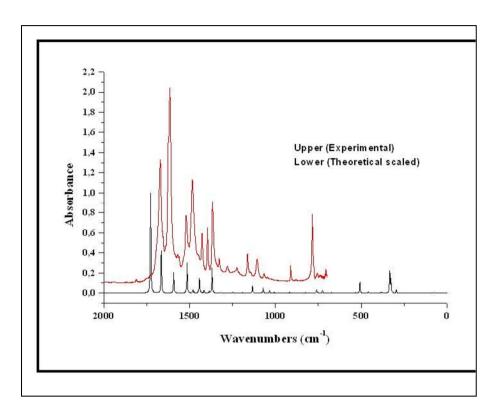


Fig. 2. Comparison between: Upper, the experimental infrared spectrum of the solid 1,5 Dimethylcytosine from Ref [30] with, lower, the corresponding theoretical at B3LYP/6-31G* theory level.

Parameters	BLYP 6-31G* [30]	B3LYP 6-31G* This work	1-Methyl-cytosine [46]	1-Methyl-cytosine [24]	5-Methyl-cytosine [47]	Aniline [48]
R(1,2)	1.459	1.434	1.395	1.398	1 376	
R(1,6)	1.367	1.357	1.357	1.370	1365	
(1,16)	1.472	1.460	1.464	1.409		
R(2,3)	1.380	1.370	1.358	1.369	1 354	
(2,7)	1.235	1.223	1.234	1.284	1 252	
(3,4)	1.332	1.318	1.332	1.334	1 338	
R(4,5)	1.450	1.443	1.422	1.422	1.438	1.401
(4,8)	1.384	1.370	1.336	1.374	1 337	1415
R(5,6)	1.377	1.364	1.334	1.352	1 350	1 300
R(5,11)	1.514	1.504			1 508	1.332
R(6,15)	1.094	1.087		1 119	002-1	1 070
R(8,9)	1.020	1.011		1 061		1 007
R(8,10)	1.018	1.009		1001		1,007
R(11,12)	1.102	. 1.095				1.00.1
R(11,13)	1.108	1.100				
R(11,14)	1.106	1.099				
R(16,17)	1.099	1.093				
R(16,18)	1.101	1.093				
(61'9)	1.101	1.093				
A(2,1,6)	121.2	121.2	120.1	120.0	1213	1100
A(2,1,16)	9.911	116.6	118.5	117.6		0.711
A(6,1,16)	122.3	122.2	121.5	122.4		120.5
A(1,2,3)	9'911	116.8	118	120.0	1192	140.0
1,2,7)	117.9	118.0	118.6	1173	119.0	
3,2,7)	125.4	125.1	122.4	122.7	121.8	
A(2,3,4)	120.6	120.7	120.0	117.8	119 5	
A(3,4,5)	124.5	124.3	121.8	124.6	123.1	1187
A(3 4 8)	11170				***************************************	7 7 7

A(5,4,8)	119.1	118.9	120.4	119.6	1190	3001
A(4,5,6)	114.7	114.5	117.2	115.8	115.7	120.0
A(4,5,11)	122.8	122.7		121.6	2.011	0.021
A(6,5,11)	122.4	122.7		122.6	177.7	
A(1,6,5)	122.2	122.3	121.8	121.6	1.77.7	1,003
A(1,6,15)	116.2	116.1		115.4	177.1	120.7
A(5,6,15)	121.6	121.6		123.0		1.001
A(4,8,9)	114.4	115.2		122.4		170.1
A(4,8,10)	118.9	119.8		123.7		7.111
A(9,8,10)	115.9	116.7		114.4		1001
A(5,11,12)	110.9	110.9				108.1
A(5,11,13)	112.3	112.3				
A(5,11,14)	111.8	111.8				
A(12,11,13)	106.9	106.9				
A(12,11,14)	107.5	107.4				
A(13,11,14)	107.0	107.2				
A(1,16,17)	109.1	109.1		112.0		
A(1,16,18)	109.9	110.0		1115		
A(1,16,19)	6.601	110.0		111.4		
A(17,16,18)	110.0	109.9		107.9		
A(17,16,19)	110.0	109.9		107.3		
A(18,16,19)	107.7	107.7		107.2		
D(3,4,8,9)	13.5	11.9		7.701		
D(3,4,8,10)	156.3	159.3				
D(8,4,5,11)	1.9	1.6				
D(7,2,1,16)	0.0036	0.0511				

$S_1 = K(2-1)$	CJINA	C2-N1
$S_2 = R(3-2)$	W.N.3 C.3	N S C S I
S ₃ =R(4-3)	77-00	N3-C2
S.=P(5.4)	v C4-N3	C4-N3
S-B(£1)	v CS-C4	C5.C4
S -P(£ £)	v C6-N1	C6-N1
S6=K(0-5)	v C6=C5	C6=C5
57=K(1-2)	v 07=C2	07=C2
28=K(8-4)	v N8-C4	N8-C4
29-K(9-8)	v H9-N8	8N-6H
S ₁₀ =K(10-8)	v H10-N8	H10 - N 8
511=K(11-5)	v C11-C5	C11-C5
512=K(12-11)	v H12-C11	H12-C11
513=K(15-11)	v H13-C11	H13-C11
Sta=K(14-11)	v H14-C11	H14-C11
S ₁₅ =K(13-6)	v H15-C6	H15-C6
Signature (10-1)	v C16-N1	CI6-N1
S17-K(17-16) S -B(18-16)	v H17-C16	H17-C16
018-14(10-10)	v H18-C16	H18-C16
519-K(19-16)	v H19-C16	H19-C16
520=2 B62.1- B1.3.2- B2.4.3 + 2 B3.5.4- B4.6.5- B5.1.6	βR3	6-membered ring
521=β1,3,2-β2,4,3+β4,6,5-β5,1,6	β R2	6-membered ring
322 P6.2.7 P1.3.2 + B2.4.3 - B3.5.4 + B4.6.5 - B5.1.6	βR1	6-membered ring
323 - 16,12,3 - 12,3,4,5 + 13,4,5,6 - 15,6,1,2	τR2	6-membered ring
324 - T6,12,3 + 2 T1,2,3,4 - T2,3,4,5 - T3,4,5,6 + 2 T4,5,6,1- T5,6,1,2	t R3	6-membered ring
325 - T6,123 + T1,2,3,4 - T2,3,4,5 + T3,4,5,6 - T4,5,6,1 + T5,6,1,2	τR1	6-membered ring
326 B6,16,1- B2,16,1	B CI6-NI	Ring tXY C16- N1
027 716,6,2,1	y C16-N1	Ring tXY C16-N1
528 pt.7.2 ps.7.2	β C2=07	Ring sXY C 2-07
229 77.1.3,2	7 C2=07	Ring sXY C 2-07
330 P5,8,4 D3,8,4	B N8-C4	Ring tXY N 8-C4

531 = 78.5.3.4	7 N8-C4	Ring tXY N 8-C4
S32= B6,11,5- B4,11,5	βC11-C5	Ring tXY C11-C5
S33 711,6,4,5	7 C11-C5	Ring tXY C11-C5
$S_{34} = \beta_{1,15,6} - \beta_{5,15,6}$	β C6-H15	Ring sXY C 6-H11
S ₃₅ = 7 _{15,1,5,6}	y C6-H15	Ring sXY C 6-H15
$S_{36} = 2 \beta_{9,10,8} - \beta_{4,9,8} - \beta_{4,10,8}$	8NH ₂	PXY2,2-1-1,X=N8
S ₃₇ = B _{4,9,8} - B _{4,10,8}	p NH2	PXY2, 1-1, X= N8
S38" 74,9,10,8	γ NH ₂	PXY2, 00p, X= N8
S39= \$13,14,11 + \$12,14,11 + \$12,13,11 - \$5,12,11 - \$5,13,11 - \$5,14,11	8, C11-H,	Prim XY3, X=C11
S40= 2 \$13,14,11- \$12,14,11- \$12,13,11	8, C11-H3	Prim XY3, X= C11
$S_{41} = \beta_{12,14,11} - \beta_{12,13,11}$	8, C11-H3	Prim XY3, X= C11
S42= 2 B5,12,11- B5,13,11- B5,14,11	p C11-H3	Prim XY3 , X= C11
S43= \$5,13,11- \$5,14,11	p C11-H,	Prim XY3, X=C11
S4= B18,19,16 + B17,19,16 + B17,18,16 - B1,17,16 - B1,18,16 - B1,19,16	8, C16-H;	Prim XY3 , X= C16
S45=2B18,19,16-B17,19,16-B17,18,16	8, C16-H,	Prim XY3, X=C16
S46= \$17,19,16-\$17,18,16	8, C16-H3	Prim XY3, X=C16
S47= 2B1,17,16- B1,18,16- B1,19,16	p C16-H ₃	Prim XY3, X=C16
S48= \$1,18,16-\$1,19,16	p C16-H3	Prim XY3 , X=C16
$S_{49} = \tau_{9,8,4,3} + \tau_{10,8,4,3} + \tau_{9,8,4,5} + \tau_{10,8,4,5}$	Twist NH2	Torsion N 8- C4
S50= T12,11,54+ T13,11,54+ T14,11,5,4+ T12,11,5,6+T13,11,5,6+T14,11,5,6	Twist C11-C5	Torsion C11-C5
Ss1= t17,16,12 + t18,16,12 + t19,16,12 + t17,16,16 +t18,16,16 +t19,16,16	Twist C16-N1	Torsion C16-N1

Abbreviations: v, stretching, δ, deformation; p, rocking or deformation in the plane; βR, ring deformation; γ, out of plane deformation or (a) See text and Fig. 1 for details. p, s, and t refer to primary, secondary and tertiary centers X, respectively., to which the atom(s) Y are attached. wagging, t, twisting, tR, ring torsion. a: antisymmetric, s: symmetric ., -. and = mean single, partial double and double bonds, respectively.

Table 3. SQM scale factors assigned for amino-oxo tautomer of 1,5-Dimethylcytosine.

N°	Scale factor*#	C ₆ H ₇ N ^a	C ₇ H ₈ ^b	1-methylcytosine ^c
1	0.922	0.919		
2	0.922	0.919		
3	0.922	0.919		
4	0.922	0.919	0.911	0.316
5	0.922	0.919		0.314
6	0.922	0.919	0.911	0.391
7	0.922			0.350
8	0.922	0.919		0.000
9	0.920	0.863		0.462
10	0.920	0.863		0.462
11	0.922		0.873	0.102
12	0.920		0.863	
13	0.920		0.863	
14	0.920		0.863	
15	0.920	0.863	0.863	0.424
16	0.922		7.45	0.314
17	0.920			0.410
18	0.920			0.410
19	0.920			0.410
20	0.990	0.794	0.808	1.420
21	0.990	0.794	0.808	1.420
22	0.990	0.794	0.808	
23	0.831	0.768	0.768	1.420
24	0.831	0.768	0.768	
25	0.831	0.768	0.768	
26	0.990	0.700	0.708	1.000
27	0.976			1.000
28	0.990			1.020
29	0.976			1.020
30	0.990	0.940		
31	0.976	0.794		
32	0.970	0.794	0.040	
33	0.976		0.842	
34		0.704		0.641
35	0.950 0.976	0.794 0.739	0.797	0.641
36	0.976		0.739	0.022
37	0.913	0.794 0.794		0.923
38	0.806			1.390
39		0.395	0.765	
10	0.915		0.765	
41			0.765	
42	0.915		0.765	
	0.950			
13	0.950			0.770
14	0.915			0.770
15	0.915			0.770
16	0.915			0.770
17	0.950			
18	0.950			
19	0.831	1.292		
0	0.831			
51	0.831			

"Ref. [37],

Table 4. Theoretical (unscaled) and SQM scaled vibrational frequencies (cm⁻¹), SQM infrared intensities (km/mol) and TED values for 1.5-

Modes	IR Experimental.	Theoretical	Intensity unscaled	SQM	Intensity scaled	TED values (a)
	3546 sh	3708	31.57	3556	31.58	62 S ₁₀ + 38 S ₉
	3391 s	3587	52.54	3440	52.38	62 S ₉ +38 S ₁₀
	3112.4 m	3198	11.88	3068	11.89	99 S ₁₅
	3043 m	3160	11.55	3031	11.59	64 St7 + 19 St9 + 18 St7
	2990 vw	3146	10.83	3018	10.84	51 S ₁₈ + 49 S ₁₉
	2964.4 vw	3119	15.32	2991	15.36	86S ₁₂ :+ 10S ₁₄
	2951 m	3074	37.10	2949	37.07	35 S ₁₇ +.33 S ₁₇ + 32 S ₁₉
	2933.1	3069	24.58	2944	24.55	66 S ₁₄ + 32 S ₁₃
	2924 s	3021	48.19	2898	48.21	66S ₁₃ + 24 S ₁₄ + 10 S ₁₂
	1670.3 s	1791	647.53	1726	662.12	72 S ₇
	1660 sh	1723	303.19	1664	276.21	35 S ₆ .+13 S ₃ + 11 S ₃₄
	1615.6 vs	1662	116.21	1592	136.71	81 S ₃₆
	1520 m	1568	189.45	1514	197.18	27.S ₃ + 17 S ₄ + 14 S ₆
	1482.5 s	1540	19.35	1480	21.13	29 S ₄₀ + 16 S ₄₅ + 15 S ₃
	1475.7 w	1536	3.41	1473	6.93	53 S ₄₅ + .26 S ₄₀
	1464.4 sh	1512	7.00	1449	7.36	92 S ₄₁
	1445 sh	1499	105.26	1442	97.25	31 S ₄₀ + 14 S ₈ + 13 S ₄
	1427.9 m	1496	5.500	1433	5.51	91 S46
	1395.4 m	1477	16.53	1415	18.57	81 S44
	1364.7 m	1448	8.54	1386	11.07	86 S ₃₉
	1328.9 w	1418	177.89	1369	162.69	26 S ₅ + 11 S ₄₄
	1281 vw	1357	5.99	1317	4.42	56 S ₃₄
	1274 sh	1288	8.75	1249	68.9	20 S ₂₂ + 15 S ₁₁ + 14 S ₈
	1163.3 w	1232	2.86	1192	3.22	34 S ₂ + 17 S ₃₇ + 11 S ₁₆
	1147.9 sh	1169	45.89	1133	47.63	28 S ₄₇ + 16 S ₁₆ + 14 S ₃₄
	w 6.9011	1160	0.03	1131	0.01	89 S ₄₈
	1066 vvw	1100	34 48	1071	34 53	48 C. + 14 C. + 11 C.

	1001	1.5.1	1001	1.33	01 343
1022 vw	1070	17.32	1034	17.47	29 S47 + 20 S5 + 18 S16
910.7 w	1035	3.23	1007	4.72	65 Sav + 10 Sc
878sh	922	8.20	617	7.36	100 835
786 m	855	6.37	826	5.43	23 S ₁ + 22 S ₄ + 10 S ₁₁
775	773	13.10	759	21.28	97 S20
758.7 vvw	770	22.08	753	4.71	35 S ₂₂ + 16 S ₁ + 13 S ₈
741.7 vvw	742	10.29	725	19.00	79 S ₃₁ + 12 S ₂₅
705.8 vvw	689	3.47	672	3.52	17 S21 + 15 S4 + 13 S22 + 12 S1 + 11 S1
624 w	625	0.45	617	0.33	31 S28 + 14 S20 + 11 S26 + 10 S 22
552 vs	558	76.22	531	2.94	35 Sr1 + 11 Sr1
541 sh	540	6.17	202	71.13	64 S49 + 21 S48
470 w	464	5.47	458	8.14	62 S ₂₀ + 15 S ₂₁
457 vw	421	4.84	384	66'9	45 S ₂₄ + 28 S ₂₅ + 16S ₂₃
427 w	383	29.32	376	5.97	28 S ₃₀ + 27 S ₂₈
400 vw	362	214.75	333	140.43	38 S ₃₈ + 26 S ₂₆
360 vw	332	5.50	326	89.46	28 S ₃₈ + 26 S ₂₆ + 17 S ₃₀
326 w	299	69.5	294	19.77	42 S ₃₃ + 33 S ₂₇ .
304 w	282	0.32	280	1.46	63 S ₃₂ + 11 S ₂₆
500	234	1.74	219	2.46	60 S ₂₅ + 17 S ₃₃ + 16 S ₂₇
183	197	1,35	181	1.12	89 S ₅₀
165	162	1.51	155	1.95	36 S27 + 28 S24 + 13 S11
139	113	1.65	104	1.53	81S ₅₁ + 12 S ₂₇ .
06	83	4.48	74	4.57	$71 S_{23} + 37 S_{24} + 11 S_{51}$

Force Constant	Description	unscaled	scaled	CeH ₇ N°	C,H8	1-Methylcytosine	Cytosined
F ₁	v N1-C2	4.759322	4.3881			5 720	6639
F ₂	v N3-C2	6.516765	6.0085			6 184	6.275
F ₃	v C4-N3	8.762175	8.0787			7.068	9 572
F4	v C5-C4	5.848912	5.3927		6.470	5.277	6 532
	v C6-N1	7.468285	6.8858			6.344	8 473
F ₆	v C6=C5	8.414510	7.7582		009'9	8.216	10 225
F ₇	v 07=C2	12,456581	11.485			9.387	13 347
F8.	v N8-C4	7.166466	6.6075	5.814		6.275	8 483
F9	v H9-N8	7.336687	6.7498	6.599		6.821	8 435
F10	v H10-N8	7,446552	6.8508	6.599		6.842	8 483
FII	v C11-C5	4.814733	4.4392		4.470		
F12	v C12-C11	5.326558	4.9004		4.940		
Fis	v C13-C11	5.10448	4.6961		4.770		
Fix	vC14-C11	5.182104	4.7675		4.830		
F ₁₅	v H15-C6	5.611885	5.1629	5.085	5.170	4.923	6.173
F16	v C16-N1	5.237578	4.829			6.072	1
F ₁₇	vH17-C16	5.408658	4.976			4.752	
F18	v H18-C16	5.385205	4.9544			4.946	
F19	v H19-C16	5.38794	4.9569			4.752	
F20	β R3	1.502955	1.4879	1.280	1.300	1.725	1 729
F21	ß R2	1.39662	1.3827	1.216	1.260	1.653	1.740
F22	BRI	1.437019	1.4226	1.239	1.270	1.671	0.843
F23	t R2	0.189731	0.1577	0.294	0.300		
F24	TR3	0.240218	96610	0.320	0.310		
F ₂₅	TR1	0.245316	0.2039	0.356	0.370		
F ₂₆	B C16-N1	1.050852	1.0403			0.542	
Far	WC16-NI	0.210007	7020				

β C2=07 γ C2=07	0.819998	0.8003			1.070	1.336
β N8-C4	1.225659	1.2134	1.014		0.910	1 353
γ N8-C4	0.716207	669'0	0.648			700.1
βC11-C5	0.846921	0.8385		0.830		
7C11-C5	0.469156	0.4579		0.520		
β C6-H15	0.597831	0.5679	0.509	0.520	0.465	0.635
γ C6-H15	0.462818	0.4517	0.442	0.430		0000
8NH ₂	0.536944	0.4913	0.651		0.510	0 574
p NH ₂	0.624762	0.5935	0.732		0.782	0.693
γ NH ₂	0.063336	0.051	0.133			0.000
8, C11-H3	0.601345	0.5502		0.560		
8a C11-H3	0.633954	0.5801		0.540		
8, C11-H3	0.611125	0.5592		0.550		
p C11-H ₃	0.70977	0.6743		0.620		
p C11-H3	0.700349	0.6653		0.660		
8, C16-H3	0.682233	0.6242			0 640	
δ _a C16-H ₃	0.587022	0.5371			0.605	
δ ₀ C16-H ₃	0.578625	0.5294			0.605	
p C16-H ₃	0.855083	0.8123			0.805	
p C16-H ₃	0.841872	0.7998			0.818	
Twist NH2	0.239771	0.1992	0.016			
Twist C11-C5	0.07581	0.063		0000		
Twist C16-N1	0.033509	0.0278		0.000		

Table 6. Experimental wavenumbers (cm⁻¹) and assignments of the infrared and Raman bands of 1,5 Dimethylcytosine on the basis of the vibrations of the amino-oxo tautomer.

IR Room Temperature	IR Low Temperature	IR Deuterated	RAMAN	Assignments BLYP/6-31G* Ref. [30]	Assignments B3LYP/6-31G* This work
3546 sh	3418 sh		3539 vw	v. NH,	v.N& 1110
3391 vs	3374.1 vs	3385.5 vs	3371 m	v.NH.	OITENIA
3305.8 w	3302.9 w	3305.8 sh	3300 vvw	2x 919.7 + 1482.5 = 3304 2x 1274 + 703 = 3251	2x 919.7 + 1482.5=3304
3229 vw	3231.8 w 3140 sh		3252 vvw	252 vvv 2x 1615.6=3231.2 4x 786= 3144	2x 12/4 + 705 = 3231 2x 1615.6 = 3231.2
3112.4 m	3103.8 s	3112.4 s	3114 vw	vC6H15	vC6-H15
2990 vw	2990 vw	WW C 7895	3004 w	va Crons	va CISHI7
2964.4 vw	2967.3 vw	2967.3 vw	2978 m	v, CI IH;	Va C16Hs Va C11Hs
2933.1	2935.9	2933.1 vw	2943 m	V _s CIOH ₃	v, C16H, v, C11H,
2862.0 vvw	2864.0 vvw	2865.6 w	2866	Vs.C11H3 2x 1428= 2856 2x 703+1425=2831	2x 1428= 2856 2x 703+1425=2831
2765.3	2773.8 vvw 2756.7 vvw	2769.8 w		1670.3 + 2x 552= 2774.3 2x 703 + 1364 7= 2770.7	1670.3 + 2x 552= 2774.3 2x 703 + 1364 7-2770.7
		2607.7 vvw 2534.8 s 2455.1 w 2427.2 2355.6 sh 2355.6 sh 2327.2 s 2312.9 sh			
1813 vvw		WV K.1222		1274 + 552= 1826	2001 C22 1 12C1

1170.1 w 1163.6 w p C16H ₃ v C2-N3 (*)	vC2=O7 vC5=C6 8 NH ₂ 2x 786= 1572 2x 775= 1550 vN3=C4 8 _a C11H ₃ 8 _b C16H ₃ 8 _b C16H ₃ 9 C4-N8 (*) 7 VC4-N8 (*) 8 _a C16H ₃ 8 _b C16H ₃ 7 VC4-N8 (*) 8 _a C16H ₃ 8 _b C16H ₃ 7 VC4-N8 (*) 8 _a C16H ₃ 8 _b C16H ₃ 7 VC4-N8 (*) 8 _a C16H ₃ 8 _b C11H ₃ 7 VC4-N8 (*) 8 _a C16H ₃ 8 _b C11H ₃ 7 VC4-N8 (*) 8 _a C16H ₃ 8 _b C11H ₃ 7 VC4-N8 (*)	vC5=C6 8 NH; 2x 786= 1572 2x 775= 1550 vN3=C4 8 _a C16H ₃ 8 _a C16H ₃ 8 _a C16H ₃ 7 vC4-N8 8 _b C16H ₃ 7 vC4-N8 8 _c C11H ₃ 7 vC4-N8 8 _c C16H ₃ 7 vC5-C11 P C16H ₃	1656 vw 1592 m 1513 w 1460 w 1357 w 1357 w 1325 w 1274 s	1673.9 s 1650 sh 1619.1 vs 1566.8 w 1522 w 1504.6 m 1487.2 w 1462.3 sh 1427.5 w 1397.6 w 1395.2 m 1330.4 vw 1283.1 vw 1283.1 vw 1283.1 vw 1283.5 vvw	1677.1 sh 1671.9 s 1660 m 1612.2 vs 1560 sh 1571.3 w 1551.3 w 1556 vw 1553.5 m 1489.3 s 1489.3 s 1475.7 w 4475.7 w 4475.7 w 4475.7 w 4475.7 w 4475.7 w 4475.7 w 4451 vw 4451 vw 4451 vw 451 vw
	vN1-C16 (р С16Н3	1169 w	1136.2 vvvv	1147.9 w
	vN1-C16 (*)	р С16Нз		1126 2 xxm	1147.9 w
				1213.4 vvw 1188.5 vvw	
1213.4 vvw 1188.5 vvw		v C2-N3	1222 m	1225.8 vvw	1224.7 vw
1225.8 vvw 1222 m v C2-N3 1213.4 vvw 1188.5 vvw	703 + 552= 12	703 + 552= 1255			1245.2 vw
1225.8 vvw 1222 m v C2-N3 1213.4 vvw 1188.5 vvw	vC5-C11	vC5-C11	1274 s		1274.2 vw
1274 s vC5-C11 703 + 552= 1255 1213.4 vvw 1188.5 vvw	B C6H15	В С6Н15		1283.1 vw	1284.5 sh
1283.1 vw β C6H15 1274 s νC5-C11 703 + 552= 1255 1213.4 vvw 1188.5 vvw	vN1-C6	vNI-C6	1325 w	1330.4 vw	1328.9 vw
1330.4 vw 1325 w vN1-C6 1283.1 vw β C6H15 1274 s νC5-C11 703 + 552= 1255 1213.4 vvw 1188.5 vvw	9 %	2	W ICCI	11 7:00c1	1349.4 sh
1330.4 vw 1325 w vN1-C6 1283.1 vw β C6H15 1274 s ν C5-C11 703 + 552= 1255 1213.4 vvw 1188.5 vvw	8, C11H;	8, C11H3	1357 w	1365.2 m	1368.1 s
1365.2 m 1357 w δ ₈ C11H ₃ 1330.4 vw 1325 w vN1-C6 1283.1 vw β C6H15 1225.8 vvw 1222 m v C5-C11 703 + 552= 1255 1213.4 vvw 1188.5 vvw	& CIGH.	8, C16H3	1391 m	1397.6 w	1397.1 s
1397.6 w 1391 m δ _s C16H ₃ 1365.2 m 1357 w δ _s C11H ₃ 1330.4 vw 1325 w vN1-C6 1283.1 vw β C6H15 1225.8 vvw 1222 m ν C2-N3 1213.4 vvw 1188.5 vvw	8. C16H. (*)	vC4-N8	1425 w	1427.5 w	1427.8 w
1427.5 w 1425 w vC4-N8 1397.6 w 1391 m δ _s C16H ₃ 1365.2 m 1357 w ⁷ 1330.4 vw 1325 w vN1-C6 1283.1 vw β C6H15 1225.8 vvw 1222 m vC2-N3 1213.4 vvw 1188.5 vvw	6	2			1434.7 vvw
y 1427.5 w 1425 w vC4-N8 1397.6 w 1391 m δ _s C16H ₃ 1365.2 m 1357 w γ 1330.4 vw 1325 w vN1-C6 1283.1 vw β C6H15 1225.8 vvw 1222 m vC5-C11 703 + 552=1255 1213.4 vvw 1188.5 vvw	vC4 -N8 (*)	8, C16H,			1445 vw
w 1427.5 w 1425 w vC4-N8 1397.6 w 1397.8 w 1357 w δ _s C16H ₃ 1365.2 m 1357 w δ _s C11H ₃ 1330.4 vw 1325 w vN1-C6 1283.1 vw β C6H15 vC5-C11 703 + 552=1255 1213.4 vvw 1222 m vC2-N3 1188.5 vvw	9	7			1451vvw
8 _a C16H ₃ 1427.5 w 1425 w νC4-N8 1397.6 w 1391 m 8 _a C16H ₃ 1365.2 m 1357 w γ 1330.4 vw 1325 w νN1-C6 1283.1 vw β C6H15 1225.8 vvw 1222 m ν C5-C11 703 + 552=1255 1213.4 vvw 1188.5 vvw	8, C11H,	8, CHH,	1460 w	1462.3 sh	1460.3 w
1462.3 sh 1460 w 8 ₆ C11H ₃ w	8, C16H,	δ _α C11H ₃			1475.7 w
w 1462.3 sh 1460 w 8 ₆ C11H ₃ w 1427.5 w 1425 w vC4-N8 1397.6 w 1391 m 8 ₅ C16H ₃ 1365.2 m 1357 w 8 ₆ C11H ₃ 1330.4 vw 1325 w vN1-C6 1283.1 vw 6C6H15 1225.8 vvw 1222 m vC5-C11 703 + 552=1255 1213.4 vvw 1188.5 vvw	8. C11H,	8a C16H3		1487.2 w	1489.3 s
1487.2 w			1513 w	1504.6 m	
1504.6 m 1513 w	v N3=C4	vN3=C4		1522 w	1523.5 m
1522 w 1502.6 m 1513 w 1487.2 w 8 a C16H3 8 a C16H3 8 a C16H3 8 a C16H3	2x 775 = 1550	2x 775= 1550		į	1550 vw
1522 w 1504.6 m 1513 w 1487.2 w 1487.2 w 1462.3 sh 1460 w 6 c C11H3 1427.5 w 1427.5 w 1427.5 w 1330.4 vw 1357 w 1330.4 vw 1225 w 1225.8 vvw 1225.8 vvw 1188.5 vvw 1188.5 vvw	7.61			1566.8 w	1564.4 w
1566.8 w 1566.8 w 2x.775=1550 1522 w 1504.6 m 1513 w 8 _a C16H ₃ 8 _b C11H ₃ 1462.3 sh 1460 w 8 _a C11H ₃ 7 1427.5 w 1425 w vC4-N8 1397.6 w 1397.6 w 1357 w 7 1330.4 vw 1325 w vN1-C6 1283.1 vw 1274 s vC5-C11 703 + 552=1255 1225.8 vvw 1188.5 vvw	2x 786= 1572	2x 786= 1572			1571.3 w
1566.8 w 1566.8 w 2 x 775= 1550 1522 w 1604.6 m 1513 w 2 x 775= 1550 2 x 775= 1550 3 x 1487.2 w 3 x 1460 w 3 x 11113 4 x 1460 w 5 x 11113 5 x 11513 5 x 11613 5 x 116113 5 x 11611	6	6	1592 m		1590 sh
1566.8 w 2 x 786= 1572 1566.8 w 2 x 775= 1550 1522 w 1504.6 m 1513 w 1487.2 w 1462.3 sh 1460 w 2 x 775= 1550 0 v N3=C4 1462.3 sh 1460 w 2 x 775= 1550 0 v N3=C4 1487.2 w 1427.5 w 1425 w 1430.4 v 1524 s 1530.4 v 1525 s 1530.4 v	S NH.	8 NH,		1619.1 vs	1612.2 vs
1566.8 w 1592 m 2 x 786=1572 1566.8 w 2 x 775=1550 1522 w 1504.6 m 1513 w 1487.2 w 1462.3 sh 1460 w 2 x 775=1550 0 v N3=C4 1462.3 sh 1460 w 2 x 775=1550 0 v N3=C4 1487.2 w 1427.5 w 1425 w 1425 w 1425 w 166.1 m 166.	VC3-C0				1622.5 s
1566.8 w 1566.8 w 1566.8 w 1522 w 1504.6 m 1513 w 1487.2 w 1487.2 w 1427.5 w 1427.5 w 1330.4 vw 1325.8 vvw 1225.8 vvw 1225.8 vvw 1225.8 vvw 1225.8 vvw 1225.8 vvw 1188.5 vvw	30-30 m		1656 vw	1650 sh	1660 m
1650 sh 1656 vw vC5=C6 1619.1 vs 8 NH ₂ 2x 786=1572 1566.8 w 2x 775=1550 1522 w 1504.6 m 1513 w 1487.2 w 160.3 sh 1460 w 8 _a C16H ₃ 8 _a C16H ₃ 1462.3 sh 1425 w vC4-N8 1397.6 w 1391 m 8 _a C16H ₃ 1365.2 m 1357 w 1330.4 vw 1325 w vN1-C6 1283.1 vw 1274 s vC5-C11 703 + 552=1255 1225.8 vvw 1188.5 vvw 1188.5 vvw	vC2=07	v C2=07		1673.9 s	1677.1 sh 1671.9 s

1000 VVW	1(1/1 I w	1071 5	1060 xx	pC11H,	C MILL CON
	*******	W C.1101	1000		DIALIS (**)
1045.5VW	1045.5 vvw	1049 vvw		vN1-C16	OCHH, (*)
	1026.7 vvw		1022 vw	p C11H ₃	p C16H; (*)
		949.5 vw			
910.7 w	915.8 w	912.1 w	wv 709	7 C6H15	o CIIH, (*)
8/8sh	883.3 vvw	882.3 vvw 827.5 vvw	867 m	vNI-C2	γ C6H15 (*)
786 m	786.1 m	787 7 m	786 w	βR ₁	vNI-C2 (*)
	779.2 w		775 vs		y C2 =07 (*)
		765.3 vvw			
758.7 vvw	755.3 w	756.6 vvw	750 w	γ C2 =07	BR; (*)
741.7 vvw	736.5 w	745.4 vvw		7 C4 -N8	v C4 -N8
705.8 vvw	707.5 w	705.6 vvw	703 s	vC4-C5	v.C4-C5
		670.7 vvw 638.3 w			
		623.4 vvw	624 w	βC2 =07	βC2=07
		WVV C.800	-		
		353.7 VVW	552 vs	t N8H9	BR ₂ (*)
		537 vvw	541 sh	βR₂	twist NH, (*)
		466.6 w	470 w	βR ₃	BRa
		462 sh	457 vw	tR ₁	TR: (*)
		428 vvw	427 w	t N8H10	B C4 -N8 (*)
		421 vvw			
		406.4 vvw	400 vw	β C4 -N8	γ NH ₂ (*)
			360 vw	B N1C16	B NIC16
			326 w	7C5C11	7 C5 C11
			304 w	BC5 C11	BC5C11
			500	tR3	tR, (*)
			183	Twis C11H ₃	Twis C11H ₃
			165	7 NIC16	VNI-C16
			139	Twis C16H3	Twis C16H,
			06	tR2	90 tR ₂

References

- M. Frommer, L. E. McDonald, D. S. Millar, C. M. Collis, F. Watt, G. W. Grigg, P. L. Molloy and C. L. Paul (1992) Proc. Natl. Acad. Sci. 89: 1827.
- G. Vilkaitis, I. Suetake , S. Klimasauskas, S. Tajima (2005) J. Biol. Chem. 280(1): 64.
- E. Merkiene , S. Klimasauskas (2005) Nucleic Acids Res. 33(1): 307.
- Y. Xu, J. J. Zhang, J. A. Grifo, L. C. Krey (2005)Mol. Hum. Reprod. 11(3): 167.
- J. J. Warren, L. J. Forsberg, L. S. Beese (2006)Proc. Natl. Acad. Sci. 103: 19701.
- R. Das, N. Dimitrova, Z. Xuan, R. A. Rollins, F. Haghighi, J. R. Edwards, J. Ju, T. H. Bestor, M. Q. Zhang (2006)Proc. Natl. Acad. Sci. 103: 10713.
- F. Agius, A. Kapoor, J. K. Zhu (2006)Proc. Natl. Acad. Sci. 103: 11796.
- D. R. Grayson, X. Jia, Y. Chen, R. P. Sharma, C. P. Mitchell, A. Guidotti, E. Costa (2005) Proc. Natl. Acad. Sci. 102: 9341.
- S. Yegnasubramanian, X. Lin, M. C. Haffner, A. M. DeMarzo, W. G. Nelson (2006) Nucleic Acids Res. 34(3):19.
- I. H. Wong (2006) Methods Mol. Biol. 336: 33.
- H. R. Moore, R. R. Meehan, L. E. Young (2006) Methods Mol. Biol. 325: 239.
- T. Swift-Scanlan, A. Blackford, P. Argani, S. Sukumar, M. J. Fackler (2006) Biotechniques 40:210.
- I. N. Lebedev, V.P.Puzyrev (2007) Russian J. of Genetics 43(9): 1157.
- H. Kobayashi, A. Sato, E. Otsu, H. Hiura, C. Tomatsu, T. Utsunomiya, H. Sasaki, N. Yaegashi, T. Arima, http://creativecommons.org/licenses/by-nc/2.0/uk/ (Hum. Mol. Genet., 2007).
- M. Benchaib, V. Braun, J. Lornage, S. Hadj, B. Salle, H. Lejeune, J. F. Guérin (2003) Human Reprod. 18(5):1023.
- H. Fulka, M. Mrazek, O. Tepla, J. Fulka, Jr (2004)Reprod. 128: 703.
- P. Lagant, P. Derreumaux, G. Vergoten, W. Peticolas (1991)J. Comp. Chem. 12(6):731.
- M. Szczesniak, K. Szczepaniak, J. S. Kwiatkowski, K. KuBulat, W. B. Person (1988) J. Am. Chem. Soc. 110: 8319.

- M. Tsuboi, S. Takahashi, I. Harada, Physico Chemical Propeties of Nucleic Acids, J. Duchesne (Ed.) Vol. 2, Academic Press, New York, (1973).
- 20. S. Aruna, G. Sahnmugam. J. Raman Spectrosc. 16(4) (1985) 229.
- R. Letellier, M. Ghomi, E. Taillandier (1987) Eur. Biophys. J. 14: 227.
- P. Lagant, P. Derreumaux, G. Vergoten, W. Peticolas (1991)J. Comp. Chem. 12(6):731.
- M. Szczesniak, K. Szczepaniak, J. S. Kwiatkowski, K. KuBulat, W. B. Person (1988)J. Am. Chem. Soc. 110: 8319.
- Y. Nishimura, M. Tsuboi (1985) Chem. Phys. 98: 71.
- I. R. Gould, M. A. Vincent, I. H. Hillier, L. Lapinski, M. J. Nowak (1992) Spectrochim. Acta 48A (6):811.
- L. Lapinski, M. J. Nowak, J. Fulara, A. Lés, L. Adamowicz (1990)
 J. Phys. Chem. 94; 6555.
- K. Kuczera, M. Szczesniak, K. Szczepaniak (1988)J. Mol. Struct. 88:172.
- M. J. Nowak, L. Lapinski, J. Fulara (1989) Spectrochim. Acta 45A
 (2): 229.
- H. Rostkowska M. J. Nowak, L. Lapinski, M. Bretner, T. Kulikowski, A. Lés, L. Adamowicz (1993) Spectrochim. Acta 49A(4):551.
- S. A. Brandán, G. Benzal, J. V. García-Ramos, J. C. Otero, A. Ben Altabef (2008) Vibrat. Spectrosc. 46: 89.
- 31. M. Rossi and T. J. Kistenmacher (1977) Acta Cryst. B33: 3962.
- 32. C. T. Grainger and D. Bailey (1981) Acta Cryst. B37:1561.
- 33. Z. Niu, K.M. Dunn and J.E. Boggs (1985)Mol. Phys. 55(2): 421.
- G. Rauhut, P. Pulay (1995) J. Phys. Chem. 99:3093.
- P. Pulay, G. Fogarasi, G. Pongor, J. E. Boggs, A. Vargha (1983) J. Am. Chem. Soc. 105:7037.
- F. Kalincsak, G. Pongor (2002) Spectrochim. Acta Part A 58:999.
- G. Fogarasi, X. Zhou, P. W. Taylor, P. Pulay (1992) J. Am. Chem. Soc. 114:8191.
- 38. Y. Xie and J. Boggs (1986) J. Comp. Chem. 7(2):158.
- P. Pulay, F. Torok (1965) Acta Chim. Acad. Sci. Hung. 47:273.
- 40. G. Keresztury, Gy. Jalsovszky (1971) J. Mol. Struct. 10: 304.
- R. G. Parr, W. Yang, "Density Functional Theory of Atoms and Molecules", Oxford, New York, 1989.
- 42. A. D. Becke (1993) J. Chem. Phys. 98:5648.
- 43. C. Lee, W. Yang, R.G. Parr (1988) Phys. Rev. B 41: 785.
- M. J. Frisch, A. B. Nielsen, E. Frisch, GAUSSIAN 98, Gaussian Inc., Pittsburgh, PA (1998).

- P. Pulay, G. Fogarasi, G. Pongor, J. E. Boggs, A. Vargha (1983) J. Am. Chem. Soc. 105:7037.
- E. B. Wilson Jr., J. C. Decius, P. C. Cross, "Molecular Vibrations", McGraw-Hill, New York, 1955.
- 47. G. Fogarasi (1997) Spectrochim. Acta Part A 53:1211.
- A. Navarro, J. J. López González, A. García Fernández, I. Laczik,
 G. Pongor, Chem. Phys., submitted (2007).
- Th. Williams, C. Kelley, "GNUPLOT UNIX-Version 3.5", free software, 1986-1993.

(M)