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� Homo-, heteroscedastic and corre-
lated error structures are studied.

� Closed-form expressions for predic-
tion errors are derived.

� Different error sources can be
discerned.
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Most of the current expressions used to calculate figures of merit in multivariate calibration have been
derived assuming independent and identically distributed (iid) measurement errors. However, it is well
known that this condition is not always valid for real data sets, where the existence of many external
factors can lead to correlated and/or heteroscedastic noise structures. In this report, the influence of the
deviations from the classical iid paradigm is analyzed in the context of error propagation theory. New
expressions have been derived to calculate sample dependent prediction standard errors under different
scenarios. These expressions allow for a quantitative study of the influence of the different sources of
instrumental error affecting the system under analysis. Significant differences are observed when the
prediction error is estimated in each of the studied scenarios using the most popular first-order
multivariate algorithms, under both simulated and experimental conditions.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

First-order multivariate calibration is today dominated by latent
tzell), olivieri@iquir-conicet.
variable based models. Among them, the most popular ones are
principal component regression (PCR) [1] and partial least-squares
(PLS) regression [2e4]. The latter involves a modification of the
former tomodel the datawith fewer latent variables, but there is no
clear advantage in terms of quantitative predictive ability [5].
Despite the widespread use of these calibration models in analyt-
ical chemistry, one important feature that has been somewhat
neglected is the fact that they work optimally when the measure-
ment errors are independently and identically distributed with a
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normal distribution (iid normal). The same situation stands for the
estimation of important analytical figures of merit, most of which
have been defined within the same iid context [6e12]. The subject
has arisen considerable interest in recent years, particularly in the
present Journal [7e12].

Traditional multivariate calibration methods can often obtain
satisfactory results when modest deviations from the ideal iid
conditions are present, although this leads to increasing prediction
errors [13]. When the error structure significantly deviates from the
ideal situation, specific actions may be required to improve cali-
bration performance. There are two alternatives in this regard. One
is to apply a suitable data preprocessing method prior to the clas-
sical calibration procedure, which modifies the error structure to
approximate the iid case (i.e. match the error structure to the
model). However, this approach is only possible for certain error
structures and such preprocessing may yield suboptimal results
when misapplied [13]. The second option is to use an algorithm
based on maximum likelihood (ML) principles such as MLPCR (i.e.
match the model to the error structure) [14,15]. This latter alter-
native requires the estimation of the error covariance matrix
associated with the error structure by replication and/or modeling
[16].

Irrespective of the applied model, the definition of the figures
of merit necessary to evaluate and validate the performance of the
models operating in a non-iid context is still unclear. Further
research is needed to uncover how and to what extent the
different error sources affect error propagation in the data under
analysis [17]. An approximation based on the value of the mean
square error of calibration (MSEC) has been proposed and tested
for second-order data [18]. However, this approach is suitable if
the measurement noise is the same during both calibration and
prediction stages. Moreover, it takes into account the overall effect
of the measurement noise, without insight into the specific
properties of the individual error sources. This is a fundamental
aspect in the development of analytical instrumentation. If one
could separately identify the influence of each error source on the
final prediction uncertainty, limiting sources of errors could be
identified and possibly mitigated to improve the overall quality of
the result.

A relevant figure of merit is the sensitivity, which lies at the core
of the definition of most analytical quality metrics [19e21]. The
sensitivity estimator is well-defined by a general expression
covering different algorithms and data orders, i.e., from univariate
to multiway calibration [6]. The general formula discussed in the
latter report was derived by considering the sensitivity as the ratio
of input to output noise, assuming that the input noise is iid. The
latter is used as a small perturbing probe which allows one to
investigate how it propagates to prediction. However, no assump-
tions are made regarding the properties of the real experimental
noise affecting the system [6]. As a consequence, the interpretation
of the sensitivity parameter remains invariable, even when the
noise deviates from the iid structure.

However, the prediction uncertainty and other relevant figures
of merit that depend on it are significantly affected by the noise
structure, as will be clear below. Important reasons for conducting
further studies in this field are: (1) all validation procedures
require, as a good analytical practice, to report a result together
with a reliable estimate of its uncertainty [22,23], and (2) uncer-
tainty estimation is a key step in the calculation of other important
figures of merit such as the limit of detection [24]. Even when
replicate sample analysis may allow for the experimental estima-
tion of the overall prediction uncertainty, studies such as the pre-
sent one provide further insight into the different error sources
affecting the latter. This is important regarding method optimiza-
tion aimed at precision improvement, which can be achieved even
in the absence of replicates [25].
The error covariance matrix is central to error propagation

procedures estimating prediction uncertainty in first-order multi-
variate calibration. However, relevant expressions for prediction
uncertainty have been derived under the iid assumption, without
going deeper into the consequences of non-iid situations [23]. On
the other hand, Wentzell et al. have highlighted the importance of
estimating the noise structure of multivariate data, proposing and
testing different methods to model the error covariance matrix
[16]. Even in the absence of replicates, heteroscedastic noise can be
characterized using a strategy based on a high-pass digital filter
[25]. This is an important step to identify non-iid data sets, but does
not cover the presence of correlated errors. These two lines of work,
involving the estimation of the prediction uncertainty and of the
error covariance matrix, are complementary, although no efforts
have been undertaken to combine them.

In this work, a general scheme to estimate sample dependent
uncertainties in first-order multivariate calibration is presented. It
is based on a local linearization/error propagation approach, and
requires an adequate estimation of the covariance matrix charac-
terizing the error structure. Three possible situations are described,
depending on the type of measurement noise structure for the
samples under analysis. Comparison and validation of the results
obtained by the proposed expressions is supported by noise addi-
tion simulations, and confirmed in some experimental data sets.
The presently discussed strategy was developed and tested for both
classical PCR and PLS calibration models, these representing the
most widely applied inverse least squares methods (even when iid
assumptions are not valid) and the most straightforward cases. The
validity of the prediction error expressions is not contingent on the
optimality of the model (providing it is unbiased). The obtained
results are relevant to the estimation of further figures of merit
which are a function of the prediction uncertainty, such as the
limits of detection and quantitation.

2. Theory

2.1. Latent variable based regression methods

PCR and PLS are the most widespread regression techniques for
first-order analytical calibration [3,4]. These models are similar in
their basic philosophy: they project the original variables into a
vectorial subspace defined to extract the maximum significant
variance of the data [3]. This projection shows the main advantage
of compressing the information contained in the original data, in
such a way that only the relevant information concerning the
quantitation of the analyte of interest is kept, while removing small
and random noise variability [3]. This also allows one to deal with
the usual problems of collinearity (similar spectral responses for
the analyte and the interferences) and rank deficiency (number of
instrumental sensors larger than number of calibration samples)
[3]. These advantages readily explain the popularity of the PCR/PLS
approaches, and their success compared to other less complex first-
order algorithms such as classical least-squares (CLS) [26] and
multiple linear regression (MLR) (sometimes also called inverse
least-squares or ILS) [26].

The prediction step for PCR and PLS can be expressed as:

by ¼ t Tþycal (1)

where by is the predicted analyte concentration (or other predicted
quantity) in the test sample, the vector t contains the scores
calculated for the test sample (size 1 � a), ycal is the vector of
reference values used for calibration (size m � 1, where m is the
number of calibration samples) and T is the matrix of calibration
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scores (size m � a, where a is the number of latent regression
variables), resulting from the projection of the original calibration
datamatrixX containing as rows the calibration spectra (sizem� n,
where n is the number of sensors) into the subspace defined during
the compression step. The superscripts ‘T’ and ‘þ’ indicate matrix
transposition and generalized inverse, respectively. During the
projection, the dimensionality is reduced from n sensors to a latent
factors. The projection equation to obtain PCR and PLS scores can be
written in a common way for both models as:

T ¼ XV (2)

where V (size n � a) is known as the loading matrix. In PCR, V is
obtained by singular value decomposition (SVD) of the data matrix
X, whereas in PLS the calculation of V is somewhat more complex.
In fact, there are nine possible PLS algorithms [27], with the most
popular and numerically stable being the non-linear iterative PLS
(NIPALS) version, where:

V ¼ W
�
PTW

�e1
(3)

In this expression, two additional sets of loadings P and weight
loadings W are introduced to incorporate concentration informa-
tion and to maintain orthogonality among scores [3,26].

2.2. The error covariance matrix

To understand the concept and utility of the covariance matrix,
it is important to make clear the distinction between the terms
“error” and “uncertainty” [17]. Although they are frequently used as
synonymous, the uncertainty is a parameter, associated with the
result of a measurement, that characterizes the dispersion of the
values that could reasonably be attributed to the measurand, while
the error is a specific value associated with one particular mea-
surement, which can be expressed as a difference between a
measured and a true value, and can thus be either positive or
negative.

The error covariance matrix is a symmetric square matrix con-
taining, as diagonal elements, the error variances associated with
each measurement channel, and as off-diagonal elements, all of the
covariances among measurement errors at different channels. It
allows visualization of the statistical relationships among the errors
of elements of a vector-form predictor in first-order calibration, as
opposed to a single scalar in univariate calibration [17]. For the
analysis of the error structure, the diagonal of the covariancematrix
gives information about the noise heteroscedasticity, whereas the
off-diagonal values describe the nature of the correlated noise.

2.3. Uncertainty propagation approach

The prediction uncertainty is a function of the input data. Every
differentiable function can be approximated using a Taylor series
expansion truncated after the linear term. This approximation is
known as local linearization in statistics, and as error propagation
in chemistry [18]. Considering a generalized scalar quantity z, as the
predicted analyte concentration in a test sample, which is a func-
tion of several variables such that z ¼ f(x1,x2, …), the general for-
mula for error propagation is represented by eq. (4) [17]:

s2z ¼
X
i

�
vz
vxi

�2
s2i þ 2

X
i

X
j> i

�
vz
vxi

� 
vz
vxj

!
sij (4)

where s2i is the variance of the errors in xi and sij is the covariance
of the errors in xi and xj. To simplify the notation, it is convenient to
represent eq. (4) in matrix form. This can be achieved by defining a
Jacobian column vector j which contains the partial derivatives of z
with respect to x:

j ¼

266666666664

vz
vx1

vz
vx2

…

vz
vxn

377777777775
(5)

The variance in the errors of z is then given by:

s2z ¼ jT Sx j (6)

where Sx (size n � n) is the error covariance matrix for vector x. Eq.
(6) is useful for describing the changes in the uncertainty that take
place when a transformation is applied to the measurement vector
x, producing a new scalar y. For example, if y ¼ cT x, with c being a
transformation vector, the variance in errors of y is:

s2y ¼ cTSxc (7)

An interesting feature of the latter expression is that it can be
applied to a variety of situations including smoothing, differentia-
tion, subspace projection and wavelet transform. Moreover, it can
be used to track how the errors in the original measurements are
carried through different data analysis steps as is the case of PCR
and PLS regression. From the prediction eq. (1), error propagation
can be performed assuming that the main source of error is the
instrumental signal of the unknown sample. In this case, eq. (1) can
be conveniently expressed as:

by ¼ tv (8)

where v is the vector of regression coefficients in the latent variable
space (size a � 1). Since t is the projection of the unknown sample
measurement vector x onto the subspace defined by the loadings V,
eq. (8) can also be written as:

by ¼ vTVþ x ¼ bTx (9)

where b is the regression vector in the original variables space. If
error propagation is performed on the latter equation, by analogy
with eq. (7), the uncertainty in the predicted concentration, due to
the uncertainty in the instrumental signal of the unknown sample,
will be given by:

s2by ¼ bT
Sx b (10)

2.4. General scheme for uncertainty estimation

It has been previously shown that the global uncertainty in
prediction in inverse multivariate models can be estimated as a
sum of three independent terms. They account for the propagation
of uncertainties derived from: (1) instrumental signals which are
measured for the test sample (s1), (2) instrumental signals
measured to build the calibration data set (s2), and (3) calibration
concentrations for the analyte or property of interest (s3) [22]. This
can be expressed in a general way as a variance propagation
expression:
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s2by ¼ s21 þ s22 þ s23 (11)

From this starting point, the error propagation can be performed
based on the initial assumptions about the error structure of the
data set under analysis. There are three possible scenarios with
respect to instrument noise, as summarized in Table 1: (1) iid noise
(Case 1), (2) non-iid noise with all calibration and test samples
having the same error structure (Case 2), (3) non-iid noise with
calibration and test samples having different error structures (Case
3). Table 1 also shows the final expressions obtained for each of the
previously described scenarios. The principles to derive these ex-
pressions have been briefly presented in the previous section, and a
more detailed explanation is presented in the Supplementary
Material. To the best of our knowledge, the obtained expressions
for the second term of eq. (11) in Cases 2 and 3 are novel, as well as
their specific application to the field of analytical chemistry. The
expression for the first term has already been discussed, although
in the context of classical and inverse least-squares multivariate
calibration [28].

As expected for Case 1, where the error structure is iid (Table 1),
the error covariance matrix is an identity matrix multiplied by the
measurement error variance, and the equation for s2by agrees with
the one proposed by Faber and Kowalski [23]. The iid assumption is,
however, not necessary for the derivation of a more general
expression based on the estimation of the covariance matrix, as
proposed in the present report for cases 2 and 3 (Table 1 and
Supplementary Material).

The expressions for terms 2 and 3 in Case 2 (Table 1) are natural
extensions of Case 1. It may be noticed that the error covariance
matrices are representedwith different symbols: the subscript ‘x’ in
Sx indicates the error covariance matrix for the test sample,
whereas ‘X’ in SX is reserved for the calibration data. However, in
Case 2 all samples are assumed to have the same error structure,
and hence the error covariance matrices for test and calibration
samples will normally match. The nomenclature in Table 1 aims at
distinguishing the independence that in principle exists between
terms 1 and 2.

Case 3 of Table 1 is the most general of the presently analyzed
situations. Of particular interest, because of its complexity, is the
expression corresponding to term 2 in Case 3. Here the error
structure varies from sample to sample in the calibration set,
making it necessary to include individual error covariance matrices
belonging to the calibration samples (see Supplementary Material).
The result is an expression closely related to the analogous one for
Case 2, replacing the common calibration error covariance matrix
by an effective one. The latter is the weighted average of all cali-
bration error covariance matrices, i.e.:
Table 1
Expressions derived by error propagation for each of three possible error structure
cases.a

s2by s21 s22 s23

Case 1 bTbs2x ¼ s2
x

SEN2 hbTbs2x ¼ h s2
X

SEN2 h s2ycal
Case 2 bT Sx b h bT SX b h s2ycal
Case 3 bT Sx b h bT SX,eff b h s2ycal

a SEN ¼ analyte sensitivity (see Supplementary Material), h ¼ sample leverage,
s2x ¼ error variance in test sample signals, s2X ¼ error variance in calibration signals,
s2ycal ¼ error variance in calibration concentrations, b ¼ vector of regression co-
efficients, ycal ¼ vector of calibration concentrations, Sx, SX ¼ error covariance
matrices for test sample signals and calibration signals respectively, and SX,eff,
effective error covariance matrix for the calibration set. For further details on the
latter parameter, see Supplementary Material.
SX;eff ¼
1
h

�
SX;1h

2
1 þSX;2h

2
2 þ…þSX;mh

2
m

�
(12)

where SX,1, SX,2, … are the error covariance matrices for each
calibration sample, h1, h2, … are the elements of the (1 � m) vector
h ¼ tTþ, and h is the test sample leverage, as detailed in the
Supplementary Material.

3. Data sets

3.1. Simulated data

Synthetic data sets were created by mimicking a three-
component analytical system, with component 1 being the ana-
lyte of interest. Individual calibration and test spectra (x) were built
using the following expression:

x ¼ y1 s1 þ y2 s2 þ y3 s3 (13)

where s1, s2 and s3 are the pure component spectra at unit con-
centration defined in a range of 200 data points and y1, y2 and y3 are
the sample component concentrations. The pure component sig-
nals s1, s2 and s3 are Gaussian shaped functions, with the analyte to
be quantified centered at sensor 100 and the other two components
varying their positions to generate different sensitivity values
depending on the degree of overlap. For more information about
the way these data are generated, the reader is referred to refer-
ences 24 and 35. In all simulated cases, calibration sets were
created with 50 samples, and test sets with 4 samples, in all cases
having component concentrations taken randomly from the range
0e1.

3.2. Noise addition

For the present noise addition simulations, uncertainty was
added in four different manners: (1) in calibration concentrations
only [ERRCON, leading to s3 in eq. (11) and Table 1], (2) in cali-
bration signals only (ERRCAL, leading to s2), (3) in test sample
signals only (ERRTST, leading to s1), (4) in all concentrations and
signals (ERRALL). This strategy makes it possible to analyze the
error propagation results for each of the terms presented in eq. (11)
separately and in combination.

To test each of the cases presented in Table 1, three typical
measurement noise structures were selected. For each of these, the
standard deviation in the calibration concentrations (when required
for ERRCON and ERRALL) was set to 0.2% of the mean calibration
concentration. Otherwise, the structures differed only in the char-
acteristics of the noise in the calibration and test signals when this
was included (ERRCAL, ERRTST, ERRALL). For the first structure
(designated as IID, consistent with the Case 1 equations), Gaussian
iid noise was added in such a way that the signal standard deviation
was 4% of the mean spectral intensity value for the calibration
samples. This value was selected to balance the relative impacts of
calibration instrumental uncertainty (term 2) and the concentration
uncertainty (term 3). For the second structure (designated as COR,
consistent with Case 2), we chose partially correlated 1/f noise, also
known as pink noise [17,29,30]. This low frequency noise corre-
sponds to systems where the errors in adjacent measurements are
more correlated than those which are farther apart. In the time
domain, it is often associated with low frequency drift in a source or
detector [17]. Given the nature of this noise, it can be assumed that
its correlation structure will not change significantly from sample to
sample. The magnitude of the 1/f noise standard deviationwas 2% of
themean spectral intensity and the noise sequences were generated
using a MATLAB [31] function written by the authors (see
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Supplementary Material). Finally, for the third error structure
(designated as HET and consistent with Case 3), heteroscedastic
proportional noise was added with a proportionality factor of 0.001
with respect to the signal at each sensor. This error shows a non-
uniform standard deviation which is proportional to the signal
magnitude, and therefore each specific sample will have a unique
error covariance matrix.

For each of the above noise types, 100 different systems were
created, with different calibration and test concentrations
(randomly selected in the range 0e1), and different degrees of
overlap among component spectra (see above). This generated 100
different sensitivity values. In each of these 100 systems, the cali-
bration/prediction process was repeated 1000 times for each
sensitivity value, using different random seeds for the signal and/or
concentration uncertainty but keeping the same component pro-
files, calibration concentrations and test concentrations. PCR and
PLS gave very similar results; we report here those obtained using
PCR. Once the concentrations of the analyte of interest (constituent
1 in all cases) were estimated, the corresponding variance was
computed across the 1000 test samples of each of the 100 systems.
A flow chart summarizing the applied noise addition procedure is
presented in Fig. 1. All calculations were done using MATLAB
version 7.0 [31], using in-house routines.

3.3. Experimental data

This data set was generated by Shreyer et al. [32] to test the
application of MLPCR to fluorescence emission spectra. The spec-
troscopic data were obtained for 27 mixtures of three polycyclic
aromatic hydrocarbons, acenapththylene, naphthalene and phen-
anthrene, using a three level, three-factor factorial design with five
replicates per mixture. The replicates were scanned in a random-
ized order of five blocks. The emission spectra were obtained
through a 1 cm quartz cuvette on a Shimadzu RF-5301PC spectro-
fluorometer with a xenon lamp excitation source. The excitation
wavelength was 278 nm, and the emission wavelength was scan-
ned at 0.2 nm intervals between 310 and 460 nm. A medium scan
speed was used, and the excitation and emission slit widths were
both set to 3.0 nm. This data set is included in MATLAB format with
the Supplementary Material.
Fig. 1. Flow chart summarizing the noise addition simulations.
4. Results and discussion

4.1. Estimation of the error covariance matrix

As discussed in the theoretical section, it is apparent that the
error covariance matrix plays a fundamental role for estimating the
prediction uncertainty in the presence of non-iid noise. For this
reason, it is important to discuss the way in which this matrix can
be estimated. There are three main alternatives: (1) experimental
replication, (2) theoretical prediction and (3) empirical modeling
[17].

Experimental replication consists in taking N replicate mea-
surement vectors xj and then calculating the error covariance ma-
trix as:

Sx ¼ 1
N e 1

XN
j¼1

�
xj e x

��
xj e x

�T (14)

There are two crucial issues in this procedure. One is the level of
replication used, which refers to the way in which replicates are
defined. For example, a replicate could refer to repeated scans
without removing the sample from the instrument, or to replicate
subsamples prepared and measured separately. Another important
factor to consider is the number of replicates that is required to
avoid a high uncertainty in the estimated values of variance, i.e. to
minimize the “noise in the noise”. It is well known that a high
number of replicates (more than 100) is needed to reach reasonable
standard deviations in the variance [17]. However, as this number is
not realistic in practical terms, the best solution involves pooling the
error covariance estimates by averaging the calculated covariance
matrix from different subsets of samples, each of which has a rela-
tively small number of replicates [16]. This is only possible as long as
measurement vectors do not significantly change between samples,
a typical situation formany analytical instruments. This strategywas
employed for the experimental data set used in this work.

Theoretical prediction of the error covariance matrix is also
possible for simulated data and for certain experimental data sets
in which the error sources are well characterized. This strategy was
employed for the simulated data sets used in this work. Fig. 2 shows
typical error sequences and theoretical error covariance matrices
(presented as image plots) for each of the signal noise structures
discussed earlier (IID, COR, HET), as well as their combination.

Finally, empirical modeling represents an intermediate alter-
native between the previous approaches. It aims to find a model
capable of providing a reliable estimate of the error covariance
[16,17]. Although this option is not as simple and direct as experi-
mental replication and requires some expertise from the analyst, it
has several advantages such as a better understanding of the
limiting measurement error in the system under study, a reduction
in the need for replicates, and a smoothing of the stochastic vari-
ations inherent in the estimation of experimental error covariance
matrices. While this approach was not used here, it could prove to
be the most practical method for future applications, highlighting
the importance and potential of the proposed expressions for real
world applications. This is due to the fact that once a reliable
covariance matrix model has been achieved through calibration
samples, it can be further applied to estimate uncertainty in test
samples without the requirement of new replicates.

A complementary concept, useful to analyze the error structure,
is the correlation matrix, obtained by dividing each element of the
error covariance matrix by the two contributing standard de-
viations [16,17]. The diagonal elements of the correlationmatrix are
all ones, while the off-diagonal elements indicate the degree of
measurement error correlation.



Fig. 2. Typical noise sequences (A1, B1, C1 and D1) and theoretical error covariance matrices (A2, B2, C2 and D2) used in the simulations. The matrices are illustrated with images
resulting from scaling the data to the full range of the current color map. The different sub-panels illustrate iid noise (A1 and A2), proportional noise (B1 and B2) pink noise (C1 and
C2) and the sum of the three noise sequences (D1 and D2).
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4.2. Simulated data

To check the performance of the equations shown in Table 1, a
noise addition calibration/prediction procedure was applied (see
Fig.1). For each signal error structure (IID, COR, HET), this was done,
as discussed above, in four different situations, including noise in
calibration concentrations only (ERRCON), in calibration signals
only (ERRCAL), in test sample signals only (ERRTST), and in all of
them (ERRALL). To test the adequacy of the equations in a reliable
way, the theoretical error covariance matrices were used (see
Fig. 2).

Because of the large number of systems studied, a convenient
way to summarize the results is by plotting the concentration un-
certainties estimated by the corresponding expression in Table 1 vs.
those estimated by computing the variance of the predicted con-
centrations in the 1000 samples of each of the 100 simulated sys-
tems. The different uncertainty sources are identified using specific
symbols. This strategy has already been used to test sensitivity
expressions in multiway systems [33e35]. Fig. 3 corresponds to the
presently simulated data sets under the effect of the above
described noise types.

The overall results presented in Fig. 3 suggest that the error
propagation approach based on the inclusion of the proper error
covariance matrix to estimate prediction uncertainty is appro-
priate, since noise addition uncertainties reasonably match those
computed from the corresponding derived equation (Fig. 3A, C and
3F). As expected, when iid noise is assumed in systems with a
different noise structure, the classical Case 1 expressions notori-
ously fail in estimating the uncertainty except when errors are
present only in the calibration concentrations (easily appreciated in
Fig. 3B and D). The differences with respect to expressions taking
into account correlation and heteroscedasticity are of at least an
order of magnitude.

It is interesting to note that, for the simulation conditions
employed here, the prediction uncertainty calculation assuming iid
errors (Case 1) underestimates the true prediction uncertainty
when correlated errors are present (Fig. 3B), whereas for propor-
tional noise this relationship is not straightforward (Fig. 3D). The
former observation can be qualitatively understood with reference
to eq. (4), where the iid equations exclude the contribution of the
error covariance, which is positive in this case. In other words, the
correlation means that the random errors do not cancel in the way
that is assumed. The prediction uncertainty results for proportional
noise can be appreciated by recognizing that the regression vector
gives differential weights to different spectral regions in the pre-
diction uncertainty eq. (10). Consequently, if spectral regions where
the regression vector is significant show higher intensities than
other regions, smaller uncertainties will be calculated using an
averaged measurement uncertainty assuming iid errors. The
opposite will be true for high spectral intensities in regions where



Fig. 3. Plots of calculated uncertainties in predicted concentrations, as a function of noise addition results. The different panels show the results for the addition of: iid noise (A),
pink noise (B and C), and proportional noise (D, E and F). The theoretical values were estimated using the following information from Table 1: (A), (B) and (D), expressions for Case 1,
(C) and (E), expressions for Case 2 and (F), expressions for Case 3. In plot (E), corresponding to uncertainties in calibration signals, SX was given the value of the average error
covariance matrix over the calibration set. In all plots, the symbols identify the following cases: blue circles, noise only in calibration concentration, green down triangles, noise only
in calibration signals, red up triangles, noise only in test sample signals, and black squares, noise in all concentrations and signals. The thin solid line indicates perfect correlation. All
axes are in logarithmic scale.
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the regression vector is small, due to sample components other
than the analyte.

Proportional noise deserves special attention. The correspond-
ing expression is shown in Table 1 for Case 3, and includes a second
term accounting for the variation in error covariance matrices
within the calibration set of samples. A simpler approach involves
the use term 2 of Case 2 instead, which depends on the mean error
covariance for all calibration samples. This represents an approxi-
mation to Case 2 when the calibration spectra are similar and re-
sults in a much more straightforward calculation. However, as the
individual error covariancematrices deviate further from themean,
the accuracy of the predicted uncertainties diminishes, as shown in
Fig. 3E, and the Case 3 expressions should be used (Fig. 3F).

A final integrated system was studied by adding all of the pre-
viously mentioned error sources together to analyze the combined
effect of different noise sources. For this purpose, the relative
proportion of each kind of noise was varied, leading to three
different cases: (1) iid noise dominant (Fig. 4A), (2) partially
correlated noise (pink noise) dominant (Fig. 4B) and (3) propor-
tional noise dominant (Fig. 4C). In each of these cases, the predic-
tion uncertainty was estimated using four different covariance
matrices: one including all the error sources (green circles), and the
remaining three separately considering each error source (blue,
black and pink circles respectively). From Fig. 4, it is apparent that
the latter three equations underestimate the prediction uncer-
tainty, as expected, and the largest deviation from the ideal line
corresponds to estimations based on the covariance matrix for the
error source which is in the lowest relative proportion. Conversely,
if only the most important error source is taken into account, the
estimation is still good, despite the fact that other error sources are
present in relatively smaller proportions.

4.3. Experimental data

The impact of the specific noise structure in uncertainty esti-
mation should be apparent in experimental data sets, where the
noise is rarely homoscedastic. In these systems, the noise addition
calibration/prediction strategy is not viable, because error-free
reference values are not available. Therefore, it is necessary to
find a reliable way to assess which expression is more realistic.

An interesting alternative is the approximation proposed by
Faber and Bro, based on the consideration of the following random
variable [18]:

t ¼ by e yref
sby (15)

where yref and by are the reference and predicted concentration
values and sby is the standard deviation estimated from the equation
for prediction uncertainty. When valid estimates of prediction
uncertainty are obtained, the values of t for a group of prediction
samples should be approximately distributed as a Student's t co-
efficient, which, for a large number of degrees of freedom, has a
standard deviation close to 1 [18]. Consequently, demanding that
the true prediction error to be correctly estimated on average
amounts to demanding the expected standard deviation of t,



Fig. 4. Plot of uncertainties in predicted concentrations as a function of noise addition
results when a combination of iid, pink and proportional noise is added in different
relative proportions. The main error sources are: (A) iid noise, (B) pink noise, and (C)
proportional noise. The green circles identify the standard deviation calculated using
the expressions in Table 1, with an error covariance matrix which is the sum of the
three individual sources of error. Black circles correspond to uncertainties calculated
when only iid noise is considered in the covariance matrix, pink circles when only pink
noise is included, and blue circles when only proportional noise is taken into account.

Fig. 5. Error covariance matrix (A) and correlation matrix (B) for experimental fluo-
rescence emission data.
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calculated from the pool of predicted samples, to approach unity.
The error covariance matrix of the fluorescence emission data

set analyzed in this work is shown in Fig. 5 together with the cor-
relation matrix. These matrices have already been characterized
and modeled by Wentzell et al. using a target testing approach to
determine the most significant error sources, together with prin-
cipal component analysis to calculate the corresponding contri-
butions [16]. The most important conclusions were that the main
contributions to the noise structure are: (1) the proportional noise
related to the well-known shot noise in fluorescence spectroscopy,
(2) a constant offset noise which arises from cell positioning or
blank measurement, and (3) an offset noise proportional to the
square root of the spectrum.

For each of the calibration samples, the five replicates were left
out from the data set, and calibration together with the covariance
matrix estimation was carried out using the remaining samples
with their corresponding replicates. Predictionwas then performed
using PCR and PLS with four latent factors, with very similar results.
Those for PCR are reported below. Although one might expect an
optimum of three latent variables on the basis of the sample
composition, other factors such as baseline offset may increase this
number [32]. Table 2 shows the root mean square errors of pre-
diction (RMSECV) (estimated using cross-validation) and mean
standard deviations (MSD) (calculated using equations in Table 1
for Case 2) for the experimental samples under different assump-
tions of noise structure. As can be seen, the standard prediction
error is notoriously underestimated under the iid assumption
(consistent with Fig. 3B in the simulations). However, if uncorre-
lated heteroscedastic errors are assumed, i.e., considering only the
diagonal elements of the error covariance matrix calculated by
pooling replicates, the MSD value increases and approaches the
experimental RMSECV. The relative improvement is greatest for
acenaphthylene, suggesting that the heteroscedasticity is relatively
more important than correlated noise in this case. The uncertainty
estimation improves even more if the complete error covariance
matrix is considered, and achieves remarkably good agreement
with the experimentally observed value.

Table 2 also shows the standard deviation of the t values (st)
given by eq. (14). A value of st less than unity implies over-
estimation of the standard prediction error and vice-versa. The
results agree with those discussed above when comparing RMSECV
and MSD values. The value of st calculated for the three analytes
under the iid assumption is ca. 2, implying a significant underes-
timation of the standard prediction error. However, st moves closer
to unity when heteroscedasticity is included, and close to the ideal
value for all three analytes when the correlated noise is accounted
for as well. As was the case for the MSD values, the presence of
correlated errors seems to have the greatest effect on for naph-
thalene and phenanthrene. For all three analytes, the prediction
uncertainty appears to be slightly underestimated, and this may be
due to the use of an average covariance matrix instead of individual
values, as implied in Fig. 3E.

The presently discussed trends clearly show the importance of



Table 2
Uncertainty estimation assessment for the models built for each of the compounds used of the fluorescence emission data set.a

a RMSECV (mg/g) MSD (mg/g) st (mg/g)

iid het niid iid het niid

Acenaphthylene 4 0.0081 0.0036 0.0072 0.0075 2.27 1.14 1.10
Naphthalene 4 0.0011 0.0004 0.0008 0.0011 2.63 1.46 1.07
Phenanthrene 4 0.0003 0.0001 0.0002 0.0003 2.46 1.83 1.02

a a ¼ number of latent variables, RMSECV ¼ root mean square error of prediction, MSD ¼mean standard deviation, st, standard deviation of t values, het ¼ heteroscedastic
and uncorrelated, niid ¼ non-iid, i.e., heteroscedastic and correlated.
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drawing attention to the different contributions affecting the error
structure of the data under analysis to estimate reliable uncertainty
values. It is important to note that proposed approach allows one to
estimate prediction uncertainties for different error sources,
without depending on the RMSECV value, which is not sample
specific. The estimator is also useful to analyze the influence of
specific error sources. Since in this experimental case a replication
strategy was used to build the error covariance matrix, the error
covariance effects were analyzed only in terms of heteroscedastic
errors (diagonal elements) or correlated ones (non-diagonal ele-
ments). However, if an empirical noise modeling strategy is used, a
comparison can be performed on a source by source basis, as pre-
viously done for the simulated data sets.

5. Conclusions

Since the beginning of chemometrics as a discipline assisting
analytical chemistry, pioneers have remarked that the de-
velopments made in this field should help as a decision making
guide to instrument manufacturers in order to improve equipment
performance. In this sense, a better understanding of the origins of
error sources for a particular instrument can be used to improve the
quality of measurements. With this aim, we have investigated an
estimator for prediction uncertainty based on the determination of
the error covariance matrix. To quantify the impact of different
error sources, the multivariate error structure has been propagated
to the final result. Comparison of the proposed expressionswith the
classical iid formula shows significant differences in the prediction
uncertainty, depending on the variation of the error structure for
test and calibration samples. Finally, an important conclusion
regarding experimental data, is that the use of a reasonable number
of replicate measurements during the calibration stage, combined
either with a pooling strategy (if possible) or an empirical model,
allows the estimation of the prediction uncertainty of future test
samples even in the absence of replicates. Future research work
would involve extending the present analysis to maximum likeli-
hood methods such as MLPCR, which take into account the error
structure for building the multivariate models.
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