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Abstract

The aim of this paper is to study the Lovász-Schrijver PSD operator N+ applied to the edge relaxation of
the stable set polytope of a graph. We are particularly interested in the problem of characterizing graphs for
which N+ generates the stable set polytope in one step, called N+-perfect graphs. It is conjectured that the
only N+-perfect graphs are those whose stable set polytope is described by inequalities with near-bipartite
support. So far, this conjecture has been proved for near-perfect graphs, fs-perfect graphs, and webs. Here,
we verify it for line graphs, by proving that in an N+-perfect line graph the only facet-defining subgraphs are
cliques and odd holes.
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1. Introduction

The context of this paper is the study of the stable set polytope. Our focus lies on N+-perfect graphs:
those graphs where a single application of the Lovász-Schrijver positive semidefinite (PSD) operator
N+ to the edge relaxation yields the stable set polytope.

The “stable set polytope” STAB(G) of a graph G = (V, E ) is defined as the convex hull of the
incidence vectors of all stable sets of G (in a stable set all nodes are mutually nonadjacent).

Two canonical relaxations of STAB(G) are the “fractional” or “edge constraint stable set
polytope”

ESTAB(G) =
{

x ∈ R|V |
+ : xi + xj ≤ 1, i j ∈ E

}
,

and the “clique constraint stable set polytope”

QSTAB(G) =
⎧⎨
⎩x ∈ R|V |

+ :
∑
i∈Q

xi ≤ 1, Q ⊆ V clique

⎫⎬
⎭
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(in a clique, all nodes are mutually adjacent, hence a clique and stable set share at most one node).
We have

STAB(G) ⊆ QSTAB(G) ⊆ ESTAB(G)

for any graph, where STAB(G) equals ESTAB(G) for bipartite graphs, and QSTAB(G) for perfect
graphs only (Chvátal, 1975).

According to a famous characterization achieved by Chudnovsky et al. (2006), perfect graphs
are precisely the graphs without chordless cycles C2k+1 with k ≥ 2, termed as “odd holes,” or their
complements, the “odd antiholes” C2k+1 (the complement G has the same nodes as G, but two nodes
are adjacent in G if and only if they are nonadjacent in G).

Perfect graphs turned out to be an interesting and important class with a rich structure and
nice algorithmic behavior (Grötschel et al., 1988). However, solving the stable set problem for a
perfect graph G by maximizing a linear objective function over QSTAB(G) does not work directly
(Grötschel et al., 1981), but only via a detour involving a geometric representation of graphs (Lovász,
1979) and the resulting “theta-body” TH(G) introduced in Grötschel et al. (1988).

An orthonormal representation of a graph G = (V, E ) is a sequence (ui : i ∈ V ) of unit-length vec-
tors ui ∈ RN , where N is some positive integer, such that ui

T uj = 0 for all i j �∈ E . For any orthonormal
representation of G and any additional unit-length vector c ∈ RN , the corresponding orthonormal
representation constraint is

∑
i∈V (cT ui)

2xi ≤ 1. TH(G) denotes the convex set of all vectors x ∈ R|V |
+

satisfying all orthonormal representation constraints for G. For any graph G, we have

STAB(G) ⊆ TH(G) ⊆ QSTAB(G)

and approximating a linear objective function over TH(G) can be done with arbitrary precision
in polynomial time (Grötschel et al., 1988). Most notably, the same authors proved a beautiful
characterization of perfect graphs:

G is perfect ⇔ TH(G) = STAB(G)

⇔ TH(G) = QSTAB(G)

⇔ TH(G) is polyhedral,
(1)

which even shows that optimizing a linear function on polyhedral TH(G) can be done in polynomial
time.

For all imperfect graphs G, it follows that STAB(G) does not coincide with any of the above
relaxations. It is, thus, natural to study further relaxations and combinatorially characterize those
graphs where STAB(G) equals one of them.

1.1. A linear relaxation and rank-perfect graphs

Rank-perfect graphs are introduced in Wagler (2000) in order to obtain a superclass of perfect
graphs in terms of a further linear relaxation of STAB(G). As natural generalization of the clique
constraints describing QSTAB(G), we consider rank constraints

x(G′) =
∑
i∈G′

xi ≤ α(G′)

C© 2016 The Authors.
International Transactions in Operational Research C© 2016 International Federation of Operational Research Societies



M. Escalante et al. / Intl. Trans. in Op. Res. 00 (2016) 1–13 3

Fig. 1. The antiwebs Ak
9.

Fig. 2. A graph and its line graph.

associated with arbitrary induced subgraphs G′ ⊆ G. By the choice of the right-hand side α(G′),
denoting the size of the largest stable set in G′, rank constraints are obviously valid for STAB(G).
The “rank constraint stable set polytope”

RSTAB(G) =
{

x ∈ R|V | :
∑
i∈G′

xi ≤ α(G′), G′ ⊆ G

}

is a further linear relaxation of STAB(G). As clique constraints are special rank constraints (namely
exactly those with α(G′) = 1), we immediately obtain

STAB(G) ⊆ RSTAB(G) ⊆ QSTAB(G).

A graph G is “rank perfect” by Wagler (2000) if and only if STAB(G) = RSTAB(G) holds. By
definition, rank-perfect graphs include all perfect graphs (where rank constraints associated with
cliques suffice). In general, by restricting the facet set to rank constraints associated with certain
subgraphs only, several well-known graph classes are defined. For example, a graph is “near-perfect”
(Shepherd, 1994) if the only rank constraints are associated with cliques and the whole graph. In
the same line, a graph is “t-perfect” (Chvátal, 1975) (“h-perfect”; Grötschel et al., 1988) if rank
constraints are associated with edges, triangles, and odd holes (cliques of arbitrary size and odd
holes, respectively). Further classes of rank-perfect graphs are antiwebs (Wagler, 2004) and line
graphs (Edmonds, 1965; Edmonds and Pulleyblank, 1974).

An “antiweb” Ak
n is a graph with n nodes 0, . . . , n − 1 and edges i j if and only if k ≤ |i − j| ≤ n − k

and i �= j. Antiwebs include all complete graphs Kn = A1
n, all odd holes C2k+1 = Ak

2k+1, and their
complements C2k+1 = A2

2k+1 (e.g., see Fig. 1).
As common generalization of perfect, t-perfect and h-perfect graphs as well as antiwebs, the class

of “a-perfect graphs” was introduced in Wagler (2005) as those graphs whose stable set polytopes
are provided by nonnegativity constraints and rank constraints associated with antiwebs only.
Antiwebs are a-perfect by Wagler (2004), further examples of a-perfect graphs were presented in
Wagler (2005).

A “line graph” is obtained by taking the edges of a graph as nodes and connecting two nodes
if and only if the corresponding edges are incident (for illustration, see Fig. 2). Since matchings of
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the original graph correspond to stable sets of the line graph, the results on the matching polytope
by Edmonds (1965), and Edmonds and Pulleyblank (1974) imply that line graphs are also rank
perfect (for details, see Section 3).

1.2. A semidefinite relaxation and N+-perfect graphs

In the early nineties, Lovász and Schrijver (1991) introduced the PSD operator N+ that, applied
over the edge relaxation ESTAB(G), generates the positive semidefinite relaxation N+(G) stronger
than TH(G). We denote by e0, e1, . . . , en the vectors of the canonical basis of Rn+1 (where the first
coordinate is indexed zero), 1 is the vector with all components equal to 1, and Sn+ the space of
(n × n) symmetric and positive semidefinite matrices with real entries. Given a convex set K in
[0, 1]n, let

cone(K ) =
{(

x0
x

)
∈ Rn+1 : x = x0y; y ∈ K

}
.

Then, we define the set M+(K ) =
{
Y ∈ Sn+1

+ : Y e0 = diag(Y ),

Y ei ∈ cone(K ),

Y (e0 − ei) ∈ cone(K ), i = 1, . . . , n
}
,

where diag(Y ) denotes the vector whose ith entry is Yii, for every i = 0, . . . , n. Projecting this lifting
back to the space Rn results in N+(K ) =

{
x ∈ [0, 1]n :

(
1
x

)
= Y e0, for some Y ∈ M+(K )

}
.

Lovász and Schrijver (1991) proved that N+(K ) is a relaxation of the convex hull of integer
solutions in K and Nn+(K ) = conv(K ∩ {0, 1}n), where N0+(K ) = K and Nk+(K ) = N+(Nk−1

+ (K ))

for k ≥ 1. In this work, we focus on the behavior of a single application of the N+ operator to the
edge relaxation of the stable set polytope of a graph.

In order to simplify the notation, we write N+(G) = N+(ESTAB(G)). In Lovász and Schrijver
(1991), it is shown that

STAB(G) ⊆ N+(G) ⊆ TH(G) ⊆ QSTAB(G).

Similar to the case of perfect graphs, the stable set problem can be solved in polynomial time for
the class of graphs for which N+(G) = STAB(G) (Grötschel et al., 1981, 1988). We will call these
graphs “N+-perfect.” A graph G that is not N+-perfect is called “N+-imperfect.”

C© 2016 The Authors.
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Fig. 3. The graphs GLT (on the left) and GEMN (on the right).

In Bianchi et al. (2011), the authors consider the characterization of N+-perfect graphs similar
to the characterizations of perfect graphs provided in (1). More precisely, they intend to find an
appropriate polyhedral relaxation P(G) of STAB(G) such that

G is N+ − perfect ⇔ N+(G) = STAB(G)

⇔ N+(G) = P(G). (2)

Following this line, the following conjecture has recently been proposed in Bianchi et al. (2013).

Conjecture 1 (Bianchi et al., 2013). (N+-perfect graph conjecture) The stable set polytope of every
N+-perfect graph can be described by facet-defining inequalities with near-bipartite support.

“Near-bipartite” graphs, defined in Shepherd (1995), are those graphs in which removing all
neighbors of an arbitrary node and the node itself leaves the resulting graph bipartite. Antiwebs and
complements of line graphs are examples of near-bipartite graphs. Again from results in Lovász
and Schrijver (1991), we know that graphs for which every facet-defining inequality of STAB(G)

has a near-bipartite support is N+-perfect. Thus, Conjecture 1 states that these graphs are the only
N+-perfect graphs. In particular, near-bipartite and a-perfect graphs are N+-perfect.

In addition, it can be proved that every subgraph of an N+-perfect graph is also N+-perfect. This
motivates the definition of “minimally N+-imperfect graphs” as these N+-imperfect graphs whose
proper induced subgraphs are all N+-perfect.

In Escalante et al. (2006) and Lipták and Tunçel (2003), it was proved that all the imperfect
graphs with at most six nodes are N+-perfect, except the two imperfect near-perfect graphs
depicted in Fig. 3. The graph on the left is denoted by GLT and the other graph is denoted by
GEMN . So, GLT and GEMN are the two smallest minimally N+-imperfect graphs. Characterizing
all minimally N+-imperfect graphs within a certain graph class can be a way to attack Conjecture
1 for this class. Thus, Conjecture 1 has been already verified for near-perfect graphs by Bianchi
et al. (2011), fs-perfect graphs (where the only facet-defining subgraphs are cliques and the graph
itself) by Bianchi et al. (2013), and webs (the complements of antiwebs) by Escalante and Nasini
(2014).

In this paper, we verify Conjecture 1 for line graphs. For this purpose, we present three infinite
families of N+-imperfect line graphs (Section 2) and show that all facet-defining subgraphs of a line
graph different from cliques and odd holes contain one of these N+-imperfect line graphs (Section
3). Finally, we note that the graphs in the three presented families are minimally N+-imperfect and,
in fact, the only minimally N+-imperfect line graphs. Finally, we provide some concluding remarks
and lines of further research.

C© 2016 The Authors.
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2. Three families of N+-imperfect line graphs

In this section, we provide three infinite families of N+-imperfect line graphs. For this purpose, we
apply an operation preserving N+-imperfection to the two smallest N+-imperfect graphs GLT and
GEMN (note that both graphs are line graphs).

In Lipták and Tunçel (2003), the “stretching” of a node v is introduced as follows: Divide its
neighborhood N(v) into two nonempty, disjoint sets A1 and A2 (so that A1 ∪ A2 = N(v) and
A1 ∩ A2 = ∅). A stretching of v is obtained by replacing v by two adjacent nodes v1 and v2, joining vi
with every node in Ai for i ∈ {1, 2}, and either subdividing the edge v1v2 by one node w or subdividing
every edge between v2 and A2 with one node. Moreover, Lipták and Tunçel (2003) show that the
stretching of a node preserves N+-imperfection.

For this purpose, we will use the stretching of node v in the case of subdividing the edge v1v2 by
one node w. If |A1| = 1 or |A2| = 1, the stretching corresponds to the “3-subdivision” of an edge
(i.e., when an edge is replaced by a path of length 3).

Next, we establish a connection between subdivisions of edges in a graph H and stretchings of
nodes in its line graph L(H ). Let G be the line graph of H and consider an edge e = u1u2 in H
together with its corresponding node v in G. If e is a simple edge of H (i.e., if there is no edge parallel
to e in H), then the neighborhood N(v) of its corresponding node v in G is divided into two cliques,
U1 and U2, representing the edges in H incident to e in u1 and u2, respectively. Accordingly, we call
a stretching of a node v in a line graph “canonical,” if these cliques U1 and U2 are selected as the
partition of N(v).

For illustration, see Fig. 4 that shows the graph C5 + c (a 5-hole with one chord c), graph C5 + E3
(obtained from C5 + c by subdividing c into a path E3 of length 3), and their line graphs, where
L(C5 + E3) results from L(C5 + c) by a canonical stretching of the node corresponding to c.

In fact, we have in general:

Lemma 2. Let e be a simple edge in H and v be the corresponding node in its line graph G. If H ′ is the
graph obtained after a 3-subdivision of e in H then L(H ′) is the canonical stretching of v in G.

Fig. 4. This figure shows (a) the graph C5 + c (a 5-hole with one chord c), (b) the graph C5 + E3 (obtained from C5 + c
by a 3-subdivision of c), (c) the line graph L(C5 + c), and (d) the line graph L(C5 + E3), where L(C5 + E3) results from

L(C5 + c) by a canonical stretching of the (black-filled) node corresponding to c.

C© 2016 The Authors.
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Proof. Let e = u1u2 be a simple edge of H and H ′ be the graph obtained from H by replacing e by
the path u1, u′

1, u′
2, u2.

The line graph L(H ′) contains a node v1 representing the edge u1u′
1 of H ′, a node w corresponding

to the edge u′
1u′

2 of H ′, and a node v2 for the edge u′
2u2 of H ′.

In L(H ′), v1 is adjacent to w and to a clique U1 corresponding to all edges different from u1u′
1

incident to u1, w has only v1 and v2 as neighbors, and v2 is adjacent to w and to a clique U2
corresponding to all edges different from u′

2u2 incident to u2.
All other nodes and adjacencies in L(H ′) are same as in L(H ), hence L(H ′) corresponds exactly

to the graph obtained from L(H ) by the canonical stretching of the node v representing the
edge e. �

This enables us to show the following theorem.

Theorem 3. A line graph L(H ) is N+-imperfect if H is

� an odd hole with one double edge,
� an odd hole with one chord,
� an odd hole with one odd path attached to nonadjacent nodes of the hole.

Proof. Let C2k+1 + d (resp. C2k+1 + c, resp. C2k+1 + E�) denote the graph obtained from an odd hole
C2k+1 with k ≥ 2 by adding one edge d parallel to an edge of the hole (resp. adding one chord c to
the hole, resp. attaching one path of length � to two nonadjacent nodes of the hole).

To establish the N+-imperfection of the three families, we first observe that the two minimally N+-
imperfect graphs GLT and GEMN are line graphs: indeed, we have GLT = L(C5 + d ) and GEMN =
L(C5 + c).

Clearly, the graph C2k+3 + d can be obtained from C2k+1 + d by 3-subdivision of a simple edge
(not being parallel to d) of the hole. Thus, any odd hole with one double edge can be obtained from
C5 + d by repeated 3-subdivisions of simple edges.

According to Lemma 2, their line graphs are obtained by repeated canonical stretchings of GLT ,
which yields the first studied family of graphs.

Analogously, C2k+3 + c can be obtained from C2k+1 + c by 3-subdivision of an edge of the hole.
Thus, any odd hole with one chord can be obtained from C5 + c by repeated 3-subdivisions of
edges different from c. Moreover, applying repeated 3-subdivisions of the chord c yields graphs
C2k+1 + E�, where E� is a path of arbitrary odd length � attached to two nonadjacent nodes of the
hole at arbitrary distance.

According to Lemma 2, their line graphs are obtained by repeated canonical stretchings of GEMN ,
which yields the two remaining families of graphs. GLT and GEMN are minimally N+-imperfect and
canonical stretchings preserve N+-imperfection; this completes the proof. �

3. Characterizing N+-perfect line graphs

A combination of results by Edmonds (1965) and Edmonds and Pulleyblank (1974) about the
matching polytope implies the following description of the stable set polytope of line graphs.

C© 2016 The Authors.
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Fig. 5. A graph and an ear decomposition.

Theorem 4 (Edmonds, 1965; Edmonds and Pulleyblank, 1974). If G is the line graph of a graph H, then
STAB(G) is described by nonnegativity constraints, maximal clique constraints, and rank constraints

x(L(H ′)) ≤ |V (H ′)| − 1
2

(3)

associated with the line graphs of 2-connected hypomatchable induced subgraphs H ′ ⊆ H.

A graph H is “hypomatchable” if, for all nodes v of H , the subgraph H − v admits a perfect
matching (i.e., a matching meeting all nodes) and is “2-connected” if it remains connected after
removing an arbitrary node.

Due to the result in Lovász (1972), a graph H is hypomatchable if and only if there is a sequence
H0, H1, . . . , Hk = H of graphs such that H0 is a chordless odd cycle, and for 1 ≤ i ≤ k, Hi is obtained
from Hi−1 by adding an odd path Ei that joins two (not necessarily distinct) nodes of Hi−1 and has all
internal nodes outside Hi−1. The odd paths Ei = Hi − Hi−1 are called “ears” for 1 ≤ i ≤ k and the
sequence H0, H1, . . . , Hk = H an “ear decomposition” of H (for illustration, see Fig. 5). Moreover,
we call an ear of length at least three “long,” and “short” otherwise.

Hypomatchable graphs have an odd number of nodes, are nonbipartite and connected, but neither
necessarily 2-connected (since an ear Ei may be attached to a single node of Hi−1) nor simple (since
a short ear Ei may become an edge parallel to one edge of Hi−1).

However, if H is 2-connected, Cornuéjols and Pulleyblank (1983) proved that H admits an ear
decomposition H0, H1, . . . , Hk = H with Hi 2-connected for every 0 ≤ i ≤ k. If, in addition, H has
at least five nodes, Wagler (2000) later proved that H admits an ear decomposition H0, H1, . . . , Hk =
H , where H0 has at least five nodes and Hi is 2-connected for every 0 ≤ i ≤ k. Since the latter result
is a key property for our argumentation, we provide its proof for the sake of completeness.

Lemma 5 (Wagler, 2000). Let H be a 2-connected hypomatchable graph and |V (H )| ≥ 5. Then there
is an ear decomposition H0, H1, . . . , Hk = H of H such that each Hi is 2-connected and H0 is an odd
cycle of length at least 5.

Proof. Since H is 2-connected, it admits an ear decomposition H0, H1, . . . , Hk = H with Hi 2-
connected for 0 ≤ i ≤ k by Cornuéjols and Pulleyblank (1983). We are ready if H0 is an odd cycle
of length ≥5, hence assume, for the sake of contradiction, that H0 is a triangle.

From |V (H )| > 3 follows that there is an ear with at least three edges. Let i ∈ {1, . . . , k} be the
smallest index such that Ei has length ≥3. Then V (Hi−1) = V (H0) holds and Ei has two distinct
nodes v, v′ ∈ V (H0) as endnodes (since Hi is 2-connected). Hence, (H0 − vv′) ∪ Ei, vv′, E1, . . . , Ei−1
is an ear decomposition of Hi starting with an odd cycle of length ≥5 and defining only 2-connected
intermediate graphs. The ears Ei+1, . . . , Ek complete this ear decomposition to the studied decom-
position of H . �

C© 2016 The Authors.
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Using these results, we can provide the following characterization of 2-connected hypomatchable
graphs.

Theorem 6. If H is a 2-connected hypomatchable graph, then exactly one of the following conditions
is true:

� H has only three nodes;
� H equals an odd hole;
� H contains one of the following subgraphs:

— an odd hole with one double edge;
— an odd hole with one chord;
— an odd hole with one long ear, attached to nonadjacent nodes of the hole.

Proof. Consider a 2-connected hypomatchable graph H and distinguish the following cases.
If H has more than three nodes, then H admits an ear decomposition H0, H1, . . . , Hk = H , where

H0 has at least five nodes and Hi is 2-connected for every 0 ≤ i ≤ k by Wagler (2000).
If H = H0, then H equals an odd hole.
If H �= H0, then H1 equals one of the above-mentioned graphs:

� an odd hole with one double edge (if E1 is a short ear attached to adjacent nodes of H0);
� an odd hole with one chord (if E1 is a short ear attached to nonadjacent nodes of H0 or if E1 is a

long ear attached to adjacent nodes of H0);
� an odd hole with one long ear E1, attached to nonadjacent nodes of H0 (otherwise).

(Recall that E1 cannot be attached to a single node of H0 since H1 is 2-connected.) �
Combining Theorems 3 and 6, we can further prove:

Lemma 7. If H is a 2-connected hypomatchable graph, then L(H ) is either a clique, an odd hole, or
N+-imperfect.

Proof. Consider a 2-connected hypomatchable graph H and distinguish the following cases.
If H has only three nodes, then H has an ear decomposition
H0, H1, . . . , Hk = H , where H0 is a triangle and all ears are short, becoming edges parallel to one

edge of H0. In this case, L(H ) is clearly a clique.
If H has more than three nodes, then H admits an ear decomposition H0, H1, . . . , Hk = H , where

H0 is an odd hole with at least five nodes and Hi is 2-connected for every 0 ≤ i ≤ k by Wagler (2000).
If H = H0, then H equals an odd hole and L(H ) is clearly an odd hole, too.
If H �= H0, then H1 equals one of the graphs from proof of Theorem 6:

� an odd hole with one double edge;
� an odd hole with one chord;
� an odd hole with one long ear, attached to nonadjacent nodes of H0.

According to Theorem 3, the line graph L(H1) is N+-imperfect, hence L(H ) is N+-imperfect. �
Combining Lemma 7 and the description of stable set polytopes of line graphs from Theorem 4

further yields the following characterization of N+-perfect line graphs.

C© 2016 The Authors.
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Theorem 8. A line graph L(H ) is N+-perfect if and only if all 2-connected hypomatchable induced
subgraphs H ′ ⊆ H either have only three nodes or are odd holes.

Thus, the definition of h-perfect graphs finally implies the following characterization of N+-perfect
line graphs.

Corollary 9. A line graph is N+-perfect if and only if it is h-perfect.

Since both class of line graphs and class of N+-perfect graphs are hereditary (i.e., closed under
taking induced subgraphs), we can derive also a characterization of minimally N+-imperfect line
graphs from a characterization of N+-perfect line graphs.

In fact, combining the statements from Theorem 3, Theorem 4 by Edmonds (1965) and Edmonds
and Pulleyblank (1974), Theorems 6 and 8 lead to the following characterization of minimally
N+-imperfect line graphs.

Corollary 10. A line graph L(H ) is minimally N+-imperfect if and only if H is an odd hole with one
ear attached to distinct nodes of the hole.

Proof. On the one hand, each of the line graphs L(H ) with H ∈ {C2k+1 + d,C2k+1 + c,C2k+1 + E�}
from Theorem 3 has, by construction, the property that H is a 2-connected hypomatchable graph
and admits an ear decomposition H0, H1 = H with H0 = C2k+1, k ≥ 2.

Removing any edge e from H yields a graph H − e, which is either an odd hole (if e ∈ {c, d}) or
else not hypomatchable anymore. In all cases, H − e is bipartite or contains at most one odd cycle
so that L(H − e) has cliques and odd holes as only facet-defining subgraphs.

Hence, L(H ) is N+-imperfect by Theorem 3, but all proper induced subgraphs are h-perfect (and,
thus, N+-perfect). This implies that L(H ) is minimally N+-imperfect for all graphs within the three
studied families.

On the other hand, any minimally N+-imperfect graph needs to have a full-support facet. Thus,
any minimally N+-imperfect line graph L(H ) is the line graph of a 2-connected hypomatchable
graph H (by Theorem 4), which has more than three nodes and is different from an odd hole (by
Theorem 6).

Then H admits an ear decomposition H0, H1, . . . , Hk = H with k ≥ 1 where H0 has at least five
nodes and Hi is 2-connected for every 0 ≤ i ≤ k by Wagler (2000).

We conclude that k = 1 holds: since H1 is 2-connected, H1 ∈ {C2k+1 + d,C2k+1 + c,C2k+1 + E�}
follows and, therefore, L(H1) is N+-imperfect by Theorem 3. Also, since L(H1) is a node-induced
subgraph of L(H ) and L(H ) is minimally N+-imperfect, L(H ) = L(H1).

Finally, H1 has the stated property: it is an odd hole H0 with one ear attached to distinct nodes
of H0. �

4. Conclusion and further results

In this paper, we addressed the problem of verifying Conjecture 1 for line graphs. For this purpose,
we presented three infinite families of N+-imperfect line graphs (Section 2) and showed that all
facet-defining subgraphs of a line graph different from cliques and odd holes contain one of these
N+-imperfect line graphs (Section 3). Since cliques and odd holes are clearly near-bipartite, Corollary
9 shows that Conjecture 1 is true for line graphs.
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Fig. 6. A perfect (and, thus, joined a-perfect) graph with a node v such that removing v and its neighbor(s) leaves a
nonbipartite graph.

In the following, we will discuss a reformulation of Conjecture 1.
As superclass of a-perfect graphs, “joined a-perfect graphs” were introduced in Coulonges et al.

(2009) as those graphs whose only facet-defining subgraphs are complete joins of a clique and prime
antiwebs (an antiweb Ak

n is “prime” if k + 1 and n are relatively prime integers). The inequalities
obtained from complete joins of antiwebs, called “joined antiweb constraints,” are of the form∑

i≤k

1
α(Ai)

x(Ai) + x(Q) ≤ 1,

where A1, . . . , Ak are different antiwebs and Q is a clique (note that the inequalities are scaled to
have the right-hand side equal to 1). We denote by ASTAB∗(G) the linear relaxation of STAB(G)

obtained by all joined antiweb constraints. Then, a graph G is joined a-perfect if STAB(G) equals
ASTAB∗(G).

In particular, Shepherd (1995) showed that the stable set polytope of a near-bipartite graph has
only facet-defining inequalities associated with complete joins of a clique and prime antiwebs. Thus,
every near-bipartite graph is joined a-perfect (but the converse is not true since there exist perfect
graphs that are not near-bipartite, e.g., see Fig. 6).

Moreover, Conjecture 1 identifies N+-perfect graphs and graphs for which its stable set polytope
can be described by inequalities with near-bipartite support. It is known that, given a graph G,
every facet-defining inequality of STAB(G) with support graph G′ is a facet-defining inequality of
STAB(G′). Then, again by Shepherd’s results (Shepherd, 1995), those graphs for which its stable set
polytope can be described by inequalities with near-bipartite support are joined a-perfect graphs.

Taking this into account, Conjecture 1 can be reformulated as follows.

Conjecture 11. Every N+-perfect graph is joined a-perfect.

The results of Lovász and Schrijver (1991) prove that joined a-perfect graphs are N+-perfect,
thus, the conjecture states that both graph classes coincide and ASTAB∗(G) shall be the studied
polyhedral relaxation P(G) of STAB(G) in (2).

In particular, in this paper we have proved that every N+-perfect line graph is h-perfect. Then,
combining these results, we obtain that a line graph is joined a-perfect if and only if it is h-perfect.
However, it seems natural to consider a proof of the latter result independent of the N+-operator.

Theorem 12. A line graph is joined a-perfect if and only if it is h-perfect.

Proof. A joined a-perfect graph has as only facet-defining subgraphs complete joins of a clique and
prime antiwebs.

Following the same argumentation as in Shepherd (1995) that odd antiholes are the only prime
antiwebs in complements of line graphs, we see that odd holes are the only prime antiwebs in line
graphs.
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Analogous arguments, as in Wagler (2004, 2005), yield that in a line graph, no complete join of
a clique and odd holes or of two or more odd holes can occur: every such complete join would
particularly contain an odd wheel W2k+1, that is, the complete join of a single node and an odd hole
C2k+1.

The W5 is one of the minimal forbidden subgraphs of line graphs by Beineke (1968), larger odd
wheels contain a claw, another minimal forbidden subgraph of line graphs by Beineke (1968).

Thus, the only remaining facet-defining subgraphs in a joined a-perfect line graph are cliques and
odd holes.

Conversely, an h-perfect line graph is clearly joined a-perfect. �
Our future lines of further research include:

� to look for new families of graphs where the conjecture holds (e.g., by characterizing the minimally
N+-imperfect graphs within the class);

� to find new subclasses of N+-perfect or joined a-perfect graphs.

In all cases, the structural results would have algorithmic consequences since the stable set problem
could be solved in polynomial time for the whole class or its intersection with N+-perfect or joined
a-perfect graphs by optimizing over N+(G).

Acknowledgment

This work was supported by an ECOS-MINCyT cooperation France-Argentina, A12E01, MATH-
AmSud Project 2014: “Packing versus Covering: Structural Aspects,” PIP-CONICET 0241, PICT-
ANPCyT 0361, PID-UNR 415 and 416.

References

Beineke, L.W., 1968. Derived graphs and digraphs. In Sachs, H., Voss, H., Walther, H. (eds) Beiträge zur Graphentheorie.
Teubner Verlag, Leipzig, pp. 17–33.
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