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Loss of cortical integration and changes in the dynamics of electrophysiologi-

cal brain signals characterize the transition from wakefulness towards

unconsciousness. In this study, we arrive at a basic model explaining these

observations based on the theory of phase transitions in complex systems.

We studied the link between spatial and temporal correlations of large-scale

brain activity recorded with functional magnetic resonance imaging during

wakefulness, propofol-induced sedation and loss of consciousness and

during the subsequent recovery. We observed that during unconsciousness

activity in frontothalamic regions exhibited a reduction of long-range temporal

correlations and a departure of functional connectivity from anatomical con-

straints. A model of a system exhibiting a phase transition reproduced our

findings, as well as the diminished sensitivity of the cortex to external pertur-

bations during unconsciousness. This framework unifies different observations

about brain activity during unconsciousness and predicts that the principles

we identified are universal and independent from its causes.
1. Introduction
Anaesthetic drugs transiently impair awareness and thus offer a unique opportu-

nity to investigate the neural correlates of conscious wakefulness. In contrast to

other reversible unconscious states (such as sleep), anaesthetics simultaneously

reduce arousal and awareness and—except in the rare event of intraoperative

awareness—result in a brain state incompatible with conscious content [1].

Studies of the transition from wakefulness to loss of consciousness induced by

propofol (a presumed GABA agonist anaesthetic agent) consistently report

decreased cortical integration [1–6] and changes in the dynamics of electro-

physiological brain signals, such as delta (1–4 Hz) and gamma oscillations

(30–70 Hz) [7,8]. Despite many experimental reports at different temporal and

spatial scales, the precise mechanisms underlying propofol-induced unconscious-

ness remain poorly understood. The need for a mechanistic understanding of this

phenomenon is non-trivial, because it could contribute to unravelling how

consciousness is constructed and preserved by the brain.

During conscious wakefulness, the cortex spontaneously generates a flurry of

ever changing activity [9–11]. In the temporal domain, this activity is character-

ized by long-range temporal correlations, meaning that signal fluctuations at the

present time influence dynamics up to several minutes in the future [12,13]. Lack-

ing any distinctive scale (scale-free), these temporal correlations can be

characterized by the computation of scaling exponents, such as the Hurst expo-

nent [14]. In the spatial domain, these fluctuations are coordinated across
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networks of regions commonly coactivated during stimulation

and cognitive performance, termed resting state networks

(RSNs) [15,16]. While functional connectivity can transiently

dissociate from interareal anatomical connections [17], brain

activity correlations computed over extended periods of time

seem to be partially explained by the underlying anatomy

[18–21]. This suggests that spontaneous brain activity can be

understood as an ever-transient (or metastable) exploration

of the wide repertoire of paths offered by the underlying struc-

tural connectivity, the extent of such exploration potentially

depending on the brain state, with variable repertoires

corresponding to different degrees of awareness.

Here, we put forward an interpretation of propofol-induced

loss of consciousness in analogy to the dynamics and connec-

tivity of fluctuations seen on a diversity of complex systems

exhibiting different phases. As a system explores the space of

possible configurations, its spatio-temporal correlations behave

in characteristic ways. In particular, the dynamical changes

underlying different degrees of awareness could be analogous

to the qualitative changes observed in the dynamics of complex

systems when they move away from a phase transition [22].

Experimental evidence gathered from functional magnetic res-

onance imaging (fMRI) data supports the view that during

conscious wakefulness the human brain operates near the criti-

cal point of such a transition [9,23]. A robust feature of the critical

state is the phenomenon of critical slowing down, which is mani-

fest as increased temporal autocorrelation (i.e. long-range

temporal correlations) of fluctuations throughout the system

[9,24,25]. Far from the critical transition, the variables describing

the system are very stable. As a consequence, any perturbation

from equilibrium is dissipated quickly (i.e. dynamics rapidly

return to equilibrium). Conversely, near the transition the effects

of any disturbance last longer, thus the dynamics slow down.

Because far from the transition the system is stuck in a stable

state, its dynamics cannot explore the wider repertoire allowed

by structural constraints. The opposite occurs near the phase

transition at which the system can switch between a large

number of locally stable or metastable states [24], and fully

explore its structural connectivity [26,27]. Thus, if unconscious-

ness results in a departure from critical dynamics, then we

expect to see these two inter-related signatures: (i) loss of tem-

poral correlations in brain activity time series and (ii) a less

complete exploration of the activity patterns allowed by the

underlying structural connectivity.

Previous experimental results are consistent with a loss of

critical slowing down in large-scale brain activity during

unconsciousness. For instance, magnetic and electric pertur-

bation of the cortex during different states of consciousness

elicits equally different responses: conscious wakefulness is

characterized by prolonged and spatio-temporally correlated

responses (disturbances last longer), whereas unconsciousness

is characterized by a smaller repertoire of rapidly vanishing

and spatially localized responses [28–31]. The response to

endogenous fluctuations during deep sleep is also rapidly van-

ishing, resulting in the loss of temporal long-range correlations

[14]. Finally, spontaneous electrophysiological activity

recorded during unconsciousness presents increased stability

[32]. A mechanistic account of the action of propofol on

large-scale brain activity should provide a unified explanation

for these seemingly different experimental results.

To propose such an explanation, we studied fMRI data

acquired during wakefulness, propofol-induced sedation and

loss of consciousness, as well as during the subsequent
recovery of awareness. We evaluated the presence of two

large-scale signatures of a departure from the critical point of

a phase transition: loss of long-range temporal correlations

and the uncoupling of functional and anatomical connectivity

[26,27], measured using diffusion tensor imaging (DTI) and

diffusion spectrum imaging (DSI). Finally, we developed a

conceptual model presenting a phase transition to assist in

the mechanistic interpretation of the experimental results.
2. Methods
2.1. Experimental design and participants
Participants were scanned with fMRI during wakefulness (W),

propofol sedation (S), propofol-induced loss of consciousness

(LOC) and finally during the recovery of wakefulness (R). Seda-

tion corresponded to Ramsay level 3 [33]. Loss of consciousness

corresponded to Ramsay levels 5–6 (subjects did not exhibit

responses to verbal instructions). Recovery corresponded to

Ramsay level 2.

Twenty healthy right-handed volunteers aged between 18 and

31 years (22.4+2.4 years) were initially included in the study. Fol-

lowing Monti et al. [5], subjects with head displacements exceeding

3 mm during any of the four conditions were discarded from the

analysis, resulting in a final set of 12 participants. For all conditions,

the resulting average head movement amplitudes did not exceed

1 mm (wakefulness: 0.38 mm, sedation: 0.25 mm, loss of conscious-

ness: 0.17, recovery: 0.36 mm). No significant effect of condition on

head displacement was found (F3,44 ¼ 2.63, p ¼ 0.062). As noted by

Monti et al., this is a conservative approach to limit the impact of

head movement. Other methods, such as scan nulling [34], could

affect the estimation of blood oxygen level-dependent (BOLD)

signal spectral power and long-range temporal correlations and

therefore were not applied. As an additional control, the presence

of significant residual correlations between absolute and relative

head movement time series and voxel-wise BOLD time series

was evaluated after data pre-processing, with no significant

residual correlations being detected.

Details on fMRI, DTI and DSI data acquisition and pre-

processing are provided in the electronic supplementary

material, Methods.
2.2. Estimation of long-range temporal dependencies
DFA [35] was applied to study the temporal correlations of

BOLD fluctuations. This method was developed to obtain esti-

mates of long-range temporal dependence in time series, while

accounting for the possibility of non-stationarities. In the elec-

tronic supplementary material, Methods, we provide a formal

definition of the procedure followed in the DFA algorithm.

Briefly, time series were first de-trended by subtracting the

mean, and the cumulative sum was then computed. Afterwards,

the signal was divided into non-overlapping windows, and the

intensity of the fluctuations was computed by averaging the stan-

dard deviation of the signal across all windows (de-trended

within each window). This procedure was repeated for different

window sizes, and the slope of the standard deviation of the fluc-

tuations versus the window size (‘fluctuation function’, in

logarithmic scale) was identified with the Hurst exponent (H).

Based on the value of H, three qualitatively different scenarios

can be distinguished: long-range temporal correlations (slow

decay of the autocorrelation function) with 0.5 , H , 1, uncorre-

lated temporal activity (exponential decay of the autocorrelation

function) with H ¼ 0.5 and long-range anti-correlations (switch-

ing between high and low values in consecutive time steps)

with 0 , H , 0.5.

http://rsif.royalsocietypublishing.org/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20151027

3

 on January 27, 2016http://rsif.royalsocietypublishing.org/Downloaded from 
We applied DFA to the first 150 volumes of the BOLD time

series of every voxel for each subject and condition, obtaining

spatial maps of H-values. To compute H, windows of length

10, 15, 25 and 30 volumes were used, as the logarithmic plot of

the fluctuation function showed linear behaviour within this

range. We also estimated H in the frequency domain following

a wavelet-based method. The steps followed for the wavelet esti-

mation of H are extensively presented and discussed in the

electronic supplementary material, Methods.

2.3. Functional network construction
We constructed functional networks by extracting average BOLD

signals from all regions of interest and computing the linear cor-

relation between all pairs of signals, resulting in the correlation

matrix Cij.

For comparison with the underlying anatomical connectivity

networks, the correlation matrices Cij were thresholded to yield

binary adjacency matrices Aij such that Aij ¼ 1 if Cij � r and

Aij ¼ 0 otherwise. The parameter r was chosen to fix the ratio

of the connections in the network (Si . j Aij) to the total possible

number of connections (termed link density). It is important to

fix the link density when comparing networks, as otherwise

differences could arise because the means of the respective Cij

are different (and therefore the number of non-zero entries in

Aij) and not because connections are topologically reorganized

across conditions.

We performed all analyses for a range of link densities

between 0.01 and 0.3 in steps of 0.01. When comparing func-

tional networks with their anatomical counterparts, the chosen

link density ranges always included the link density of the DTI

and DSI anatomical networks.

2.4. Similarity between functional and anatomical
connectivity neighbourhoods

We defined the connectivity neighbourhood of node i as nj ¼ Aij

(i.e. the ith column of the adjacency matrix for a fixed local link

density). According to this definition, the jth entry of nj is 1 if

nodes i and j share a direct connection in the network, and it is

zero otherwise. We obtained the connectivity neighbourhood

of all nodes in the anatomical and functional networks across

all conditions and participants, as well as for a range of local

link densities. To estimate the similarity between the anatomical

and functional connectivity neighbourhoods of each node, we

computed the Hamming distance between the anatomical and

functional versions of vectors nj (normalized by their total

length). The Hamming distance is defined as the number of

symbol substitutions (in this case 0 or 1) needed to transform

one sequence into another and vice versa, and in this case, it is

equal to twice the number of connections that must be re-wired

to turn the functional connectivity neighbour into the anatomical

connectivity neighbour.

2.5. Fluctuations in functional connectivity and
repertoire of functional networks

We investigated if the fluctuations in the transient connectivity

within the frontal executive control RSN were more widespread

during wakefulness versus propofol-induced unconsciousness

by computing the average functional connectivity of all nodes

in the RSN over short non-overlapping windows of different dur-

ations. Afterwards, we computed the variance of the time series

of dynamical functional connectivity fluctuations.

We investigated the repertoire of functional networks

explored over time by means of a new methodology (see elec-

tronic supplementary material, figure S7 for a schematic). We

first computed the connectivity matrices of all nodes within the
executive control RSN (electronic supplementary material,

figure S7a) over non-overlapping segments of 20 volumes.

After thresholding at a given link density (ranging from 0.01 to

0.4), this defined a series of binary networks explored over

time (electronic supplementary material, figure S7b). Afterwards,

we computed the average correlation between the adjacency

matrices of all these binary networks (electronic supplementary

material, figure S7c). If the repertoire of explored networks is

very constrained, then this average correlation is high (i.e. all

transient networks are very similar). On the other hand, if the

system explores a wide range of different transient networks,

this average correlation is lower. We termed this index the

transient network similarity (TNS) index.

2.6. Computational model
The computational model is based on the previous work of [36]

(see also a posteriori similar formulation by Stam et al. [26]). It

consists of an underlying anatomical network of connections

(DSI network) and rules for the transition between three states:

inactive, active and refractory. The rules for the transitions at

the ith node are as follows

(1) inactive to active: either spontaneously with a probability of

1023 or if S j is activeWij . T;

(2) active to refractory always occurs and

(3) refractory to inactive with a probability of 1021.

These rules were used to simulate time series that were sub-

sequently binarized by setting the active state to 1 and the

other two to 0, and convolved with the standard haemodynamic

response function mimicking brain neurometabolic coupling. As

shown in [36], a second-order phase transition exists at TC � 0.05.

At this point, activity becomes self-sustained, spatial and tem-

poral correlations are maximized, and an optimal agreement

with the empirical fMRI data are obtained (including an approxi-

mate reproduction of the major RSN reported in the work of

Beckmann et al. [15]).
3. Results
We first obtained the Hurst exponent and the low-frequency

(0.01–0.1 Hz) power for each participant and condition (W, S,

LOC and R). In addition, we investigated the same metrics in

a phantom made of water (see electronic supplementary

material, figure S1).

The anatomical distribution of Hurst exponent values and

low-frequency power reflected the division of cortical anat-

omy into grey and white matter and cerebrospinal fluid.

BOLD signals from grey matter voxels were characterized

by long-range temporal correlations (H . 0.65), whereas

white matter and cerebrospinal fluid voxels generally

presented relatively weaker temporal correlations and 0.01–

0.1 Hz frequency power (figure 1a). A shift towards reduced

H and low-frequency power can be observed in the LOC con-

dition (third row). We computed the global Hurst exponent

and low-frequency power values (averaged across all grey

matter voxels) and observed reduced values for the LOC

condition relative to W (figure 1b). We also observed reduced

values of the metrics in the frequency domain for R relative to

W, suggesting that the recovery from propofol-induced loss

of consciousness might not have been complete. Histograms

for H and low-frequency power are shown in electronic sup-

plementary material, figure S1. H-values peaked at around

0.5 (corresponding to temporally uncorrelated dynamics)

for the water phantom and at H . 0.5 for grey matter brain

http://rsif.royalsocietypublishing.org/
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voxels, i.e. as opposed to brain dynamics, those of the water

phantom were temporally uncorrelated.

We conducted voxel-wise statistical tests to assess the effect

of the condition on H and low-frequency power (figure 2). We

observed a significant effect of the condition (W, S, LOC and

R) on H (both DFA and wavelet-estimated) and 0.01–0.1 Hz

power. This was observed in a set of regions comprising the

thalamus, the ventromedial and orbitofrontal cortices, the fron-

tal and rolandic operculi, the superior and medial frontal gyri

and the anterior cingulate and bilateral insular cortices. Post

hoc t-tests between W and all other conditions revealed signifi-

cant decreases only for the comparison versus LOC. Similar

results can also be observed in the first-order autoregressive

coefficient of BOLD signals (electronic supplementary material,

figure S2). Statistical parametric maps are presented in figure 2a
(bottom panel). Figure 2b shows a ranking of the top 10 auto-

mated anatomical labelling (AAL) atlas [37] regions based on

the statistical significance of the contrast W versus LOC. The

extent of the overlap between the three different metrics is

shown in figure 2c as a joint rendering of differences in H

(both DFA and wavelet-estimated) and 0.01–0.1 Hz power.

No significant differences were observed in terms of the good-

ness of fit (R2) of the DFA fluctuation function. The
covariance between the statistical significance maps derived

from all three metrics is shown in electronic supplementary

material, figure S3.

We then studied the coupling between anatomical and

functional connectivity. At first, we restricted both functional

and anatomical connectivity networks to a subnetwork

encompassing the executive control network reported in

reference [15], because this RSN overlapped with the regions

where we found a breakdown of long-range temporal corre-

lations during LOC (see electronic supplementary material,

figure S4). For both DTI and DSI anatomical connectivity net-

works and almost all link densities, we observed decreased

similarity between anatomical and functional connectivity

networks during LOC relative to W (figure 3a).

Afterwards, we studied the local similarity between the ana-

tomical and functional first neighbours of all individual nodes in

whole-brain networks. The network nodes associated with

decreased anatomical–functional coupling during LOC relative

to W are shown in figure 3b. Differences encompassed the thala-

mus, as well as the medial prefrontal cortex, anterior cingulate

cortex, frontal and rolandic operculi and the bilateral insular

cortex. A ranking of AAL regions by their percentage of nodes

with significant differences is presented in figure 3c. The

http://rsif.royalsocietypublishing.org/
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robustness of the results with respect to the two anatomical con-

nectivity networks is manifest in the joint rendering of the nodes

presenting significant differences (figure 3d). Similar results

were obtained using partial correlations instead of linear

correlations (see electronic supplementary material, figure S6).

As discussed in the Introduction, we hypothesized that

during LOC the decorrelation of temporal dynamics should be

seen together with a less thorough exploration of the repertoire

of possible states allowed by anatomical constraints. To address

this possibility, we investigated whether changes in H and low-

frequency power during LOC were correlated with the degree

of anatomy–function coupling. We computed the average

anatomy–function Hamming distance within the significant

regions in figure 3b (bottom panel) as a function of the link den-

sity, as well as the average H (DFA and wavelet-estimated) and

0.01–0.1 Hz frequency power in the same regions. This was per-

formed for each participant in the LOC condition. We then

computed the correlation coefficients and associated p-values

between H, low-frequency power and the mean Hamming dis-

tance as a function of the link density. Results are shown in

figure 4a (note that this correlation is against structural–func-

tional network distance, not similarity). For both anatomical

connectivity networks and almost all link densities, a significant

negative correlation between H and the mean Hamming dis-

tance was found. Correlations involving low-frequency power

were also negative but, in most cases, slightly above the
threshold of statistical significance. Negative correlations

imply that the stronger the decorrelation in temporal dynamics,

the stronger the uncoupling between anatomical and functional

connectivity. Figure 4b shows example scatterplots obtained at

the reference link density of 0.15.

We then investigated the variabilityof functional connectivity

over time to determine if unconsciousness was characterized by

diminished fluctuations in dynamic connectivity, as predicted

by a departure from criticality (see [36]). Results presented in

figure 5a reveal that the variance of functional connectivity fluctu-

ations (over a wide range of window sizes) was diminished

during propofol-induced loss of consciousness. Furthermore, a

wider range (repertoire) of functional networks was explored

during conscious wakefulness compared with unconsciousness

(figure 5b), as quantified by the TNS index computed using

windows of 20 volumes.

To further gauge the significance of our observations, we

introduced a simple dynamical model to evaluate which quali-

tative aspects of the propagation of information in anatomical

networks were more relevant to replicate our empirical obser-

vations. The model allows three possible states for each node

in the DSI network. The possible node states and transitions

between them are illustrated in electronic supplementary

material, figure S5.

The threshold in the model controls the propensity of exci-

tations to propagate throughout the anatomical network.
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Figure 3. Regional dissociation of anatomical and functional connectivity during loss of consciousness. Results in the left column were obtained using the DTI
network with 401 nodes, those in the right column using the DSI network with 998 nodes. (a) Similarity (correlation coefficient) between anatomical and functional
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obtained using the DTI and DSI anatomical connectivity networks. (Online version in colour.)
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Values higher than the critical threshold of TC � 0.05 hinder

the propagation of activity, which eventually dies out. On the

other hand, lower thresholds result in self-sustained activity.

Very low values result in the extreme of many nodes becoming

rapidly activated and then transitioning towards the refractory

(‘hyperpolarized’) state. A critical point exists at TC � 0.05,

marked by self-sustained activity allowing the reproduction

of many features of large-scale brain activity, such as long-

range temporal correlations in space and time and the emer-

gence of coordinated structures strongly resembling RSN. The

critical point corresponds to a second-order phase transition,

characterized by maximal variability in the intrinsic dynamics

of the system, critical slowing down and an optimal exploration

of the repertoire of metastable state (i.e. states in which the

system transiently resides). Examples of the temporal dynamics
during the sub-, super- and critical regimes are shown in

electronic supplementary material, figure S5.

We found that the similarity between functional and

structural connectivity was maximal near the critical point.

This was evident from computing the correlation between

functional and anatomical adjacency matrices at each

threshold value (figure 6a, left) or by computing the Ham-

ming distance between the binarized functional and

anatomical connectivities of each node (figure 6a, right).

The frequency at which activations occurred correlated nega-

tively with the threshold. As shown in figure 6b (left), low

values facilitated the propagation of activity and induced

higher activation rates, whereas higher thresholds caused

the opposite effect by hindering the propagation of activity.

In the supercritical (T . TC) regime, the frequency of
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activations also correlated negatively with the anatomical–

functional distance (figure 6b, right). The same result was

observed for the Hurst exponent of the average activity gen-

erated by the model. Both are consistent with the changes

observed under propofol: the higher the uncoupling between

anatomical and functional connectivity, the faster and less

temporally correlated the dynamics of the system.
The critical slowing down observed when dynamics are

close to the phase transition maximizes the response of the

model to external perturbations. We studied the average

response of the system to a sudden excitation of 60% of the

nodes. This computation is of interest to evaluate which

phases of the model better correspond to the diminished

response to magnetic perturbations of cortical activity

http://rsif.royalsocietypublishing.org/
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observed during loss of consciousness. In figure 7 (left), we show

the average time course after a perturbation (computed over

100 simulations) both for TC � 0.05 and for TC , T¼ 0.01.

The response in the critical case was characterized by a sustai-

ned oscillation, with temporally persistent activity observed

after the perturbation. On the other hand, the perturbation in

the supercritical case induced a transient response rapidly

giving way to a baseline of uncorrelated oscillations. We

measured the decay of the variance in the activity over short

temporal windows of 20 time steps. The activity decay after

the perturbations is shown in figure 7 (centre) for all thresholds.

By measuring the time elapsed until a level of low variance

(1025) was crossed, we estimated the time necessary for the

activity to decay to its baseline. The decay time peaked near

the critical point and quickly decreased both in the super- and

subcritical cases (figure 7, right).
4. Discussion
We studied how propofol-induced loss of consciousness

affected the temporal dynamics of BOLD signals and how

the changes in large-scale dynamics were related to the

exploration of the underlying anatomical connectivity. Loss

of consciousness was paralleled by a shift towards faster

and temporally uncorrelated BOLD signals in the frontal

lobe, the salience network and the thalamus. Within the

same regions, functional connectivity departed from the
underlying anatomical constraints; this departure covaried

with loss of long-range temporal correlations.

An interpretation for our results is given in figure 8. We

show a schematic depiction of an elementary system com-

posed of interacting units, the state of the system being

symbolized by the position of a particle within a potential

landscape with several local equilibria (potential wells). In

reality, this potential would span a high-dimensional space,

with the state vector describing a multitude of independent

variables characterizing the system at each time point. How-

ever, we adopt this simplified schematic for illustration

purposes. Far from the critical point of a phase transition

(left panel), the system is more stable, and the local minima

are deeper; in consequence, any external perturbation or

internal fluctuation rapidly vanishes and the particle returns

quickly to the same local equilibrium. For the same reason,

the dynamics of the system do not allow the exploration of

all possibilities offered by the structural connectivity and

thus functional correlations reflect only a portion of the ana-

tomical connections. Near the phase transition (right panel),

the landscape becomes shallower, the stability decreases

and perturbations can induce a more widespread exploration

of the potential landscape (see also figure 5), resulting in

more sustained changes. As the system explores the neigh-

bourhood of different local equilibria (or metastable states),

spatial correlations better reproduce its structural connec-

tivity. Our observations of large-scale fMRI dynamics and

connectivity during loss of consciousness can be interpreted

as a departure from a critical state (near the transition)

towards more stable fluctuations (far from the transition).

Our model also allowed us to simulate the effect of per-

turbations near and far from its phase transition and thus

to connect two robust but seemingly unrelated findings char-

acterizing states of reduced awareness: loss of temporal

complexity (i.e. long-range temporal correlations [14]) and

rapidly vanishing responses to direct magnetic and electric

stimulation of the cortex [28–30,38]. Within our framework,

both arise as a result of increased stability, with endogenous

as well as exogenous fluctuations failing to displace the

system between different metastable states.

The mechanisms by which propofol could result in

dynamics compatible with a departure from a phase tran-

sition deserve further investigation. Most likely, these

consist of alterations in the properties of individual units

(neurons or groups of neurons) translating into dramatically

different collective behaviours. For instance, our model

suggests that facilitated spreading of activity results in a

state of global hyperpolarization (see electronic supplemen-

tary material, figure S5) impairing the propagation of

external perturbations throughout the system. A possible cor-

relate of this facilitated spreading is the increased power in

the gamma frequency band observed during propofol-

induced unconsciousness [7,8], which is also a main driver

of BOLD activity fluctuations [39].

Contemporary theories postulate that consciousness is an

emergent phenomenon of physical processes in the brain. The

explanation of subjective experiences from the objective

observation of these processes has remained elusive to neuro-

science. However, it is possible to ask what features of brain

activity are compatible with the rich subjective phenomenol-

ogy of consciousness. An aspect common to different theories

is that consciousness can be associated with a state of high

neural complexity [40,41]. This can be understood as a state
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between the extremes of very high differentiation without

information integration (the dynamics of each unit in the

system become independent, like in a ‘disordered’ or

‘random’ system at the supercritical state) and very low

differentiation (the system presents few possible states, as in

an ‘ordered’ or ‘regular’ subcritical system). At the—between

ordered and disordered—critical state, dynamics are both

integrated (the units of the system present long-range corre-

lations both in time and space) and segregated (the system

allows the exploration of a large number of possible meta-

stable states), suggesting this is the state that could

maximize the standard definition of neural complexity.

Future work will need to formally address a possible
equivalence between metrics of neural complexity and metrics

of criticality (i.e. order parameters).

Our research provides evidence that the ‘baseline’ state of

wakeful rest presents critical dynamics and that unconscious

brain states depart from this kind of dynamics. Thus, we

identify critical dynamics with the state of consciousness.

Because the possibility of having conscious, reportable con-

tent (‘I see X, hear Y, feel Z’) is in general conditional to

being in a conscious state; critical dynamics could also be a

necessary requirement for conscious content to emerge.

This is supported by the observation of comparable neural

complexity at rest and during conscious information access

[42]. Furthermore, the role that critical dynamics play in

http://rsif.royalsocietypublishing.org/
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conscious information access could be related to the obser-

vation that at criticality the response of the system to

external stimuli is maximized (figure 7). Because conscious

perception requires the engagement of a distributed set of

neurons (dynamical core; [41], as well as in the concept of

the global workspace; [43]), a prerequisite is a high sensitivity

to incoming stimuli (high susceptibility). Conversely, at the

sub- or supercritical states, sensory stimulation results in a

local and transient perturbation failing to propagate to

more widespread networks related to conscious perception.

At other spatial and temporal scales, evidence for an

association between consciousness and critical dynamics

has been obtained in the context of deep sleep [44], anaesthe-

sia [45,46] and epileptic seizures [47]. Here, we introduced

the coupling between anatomical and functional connectivity

as a signature of the critical state, which is particularly fit for

fMRI recordings, because both can be measured at the same

spatial resolution using this technique. Propofol-induced

loss of consciousness resulted in diminished anatomical–

functional coupling, interpreted here as a departure from the

critical regime characteristic of conscious wakeful rest [23,48].

Changes in function–anatomy uncoupling can be understood

in terms of the emergence of long-range correlations at criti-

cality. The term ‘long-range’ must be treated with caution

when discussing the human brain, because regions far away

in Euclidean space may be close together in a topological

sense (i.e. directly connected anatomically). Thus, we did not

expect to see a breakdown of long-range functional connec-

tivity as a function of Euclidean distance following the

departure from criticality, but a separation from the structural

connectivity backbone instead.

Recent work on anaesthetized primates [49] found that

transient patterns of functional connectivity strongly resem-

bling the anatomical constraints were more frequent during

loss of consciousness relative to wakefulness, which appears

to contradict our results. However, two important differences

must be taken into account. First, we found diminished

anatomy–function coupling over extended periods of time,

which is related to the average of the functional connectivity

states visited over time (as an analogy, mapping the average

route traced by cars in a city throughout an entire day, as

opposed to taking instantaneous snapshots). Second, the

effect we report was regionally localized to a set of frontal

regions and the thalamus, as opposed to the global effect

reported in [49]. This last distinction is very important,

because the richness of anatomical connectivity varies

throughout the brain, from the regular structure of the cer-

ebellum and primary cortices to the highly complex,

variable and phylogenetically advanced frontal and parietal

associative cortices [50,51]. Indeed, we observed that the

functional exploration of frontothalamic anatomical connec-

tivity was hindered under propofol, highlighting its

importance for the maintenance of conscious awareness. We

note that decreased similarity between anatomical and func-

tional connectivity could also result from the selective

enhancement of functional connections that are not associ-

ated with structural links (as an analogy, cars taking

‘shortcuts’ across regions not directly connected by roads).

This possibility is ruled out by the breakdown of within-

and between-network functional connectivity observed

during propofol-induced unconsciousness [3].

We also studied the dynamics of BOLD signals, which

have received comparatively less attention in the context of
anaesthesia than electrophysiological recordings. We observed

a departure from slow and temporally correlated dynamics in

frontal regions and in the thalamus. These areas strongly over-

lap with those where decreased metabolism under anaesthesia

was reported [52–55]. Breakdown of long-range temporal cor-

relations was also reported in other unconscious brain states

such as deep non-rapid eye movement sleep [14]. This led us

to hypothesize that long-range temporal correlations of spon-

taneous activity fluctuations are a primary characteristic of

brain activity during conscious wakeful rest. Phenomenologi-

cally, the subjective feeling of continuity during conscious

wakefulness (‘stream of consciousness’, as famously phrased

by James [56]), cannot be supported by short-range temporal

correlations as exhibited, for example, in Markovian dynamics

(when the state of the system depends only on the immedi-

ately previous state). The short-term persistence of conscious

information is impossible under these dynamics unless struc-

tural changes occur, which likely belong to a completely

different temporal scale [57].

The main limitation of our work arises from the indirect

nature of fMRI recordings and the possibility of propofol influ-

encing other physiological variables that are not directly

related to the level of consciousness. Experimental evidence

shows that the effects of propofol on arterial blood pressure

and cerebral blood flow are small [58–61], ruling out con-

founding effects related to pressure-dependent changes in

BOLD signals. As discussed by Hudetz et al. [62], confounding

effects owing to alterations in neurovascular coupling are also

unlikely given the preservation of functional responses during

propofol-induced loss of consciousness [63]. Experiments

measuring cardiac and respiration rates simultaneously with

fMRI during propofol-induced loss of consciousness did not

find a significant difference versus conscious wakefulness

[64]. Another possibility is that our results reflect the con-

centration of propofol in blood but not the responsiveness

of the participants [65]. One argument against our results

reflecting the increasing concentration of propofol in blood is

the fact that we did not observe any significant effects under

propofol-induced sedation (a state characterized by responsi-

veness in spite of non-zero propofol plasma concentration).

Our results were specific to unconsciousness, as determined

by the onset of the state of unresponsiveness [33].

In summary, we achieved an empirical characterization of

large-scale brain activity during propofol-induced uncon-

sciousness in terms of inter-related changes in spatial and

temporal correlations. In analogy to other complex systems

undergoing phase transitions, the dynamics became tem-

porally uncorrelated during unconsciousness and failed to

efficiently explore the underlying structural connections.

Because the proposed interpretation is based on general prin-

ciples of complex systems, further research should reveal the

universality of our findings across other brain states of dimin-

ished awareness, as well as investigate their applicability for

the objective assessment of levels of consciousness.

Author contributions. E.T. and D.R.C. analysed data and wrote the paper;
M.S., E.A. and H.L. edited the paper; J.F.B., V.B. and Q.N. contribu-
ted to data collection; S.L. designed the study, contributed to data
collection and edited the paper.

Competing interests. We declare we have no competing interests.

Funding. This work was supported by the Bundesministerium für
Bildung und Forschung (grant no. 01 EV 0703) and the LOEWE Neu-
ronale Koordination Forschungsschwerpunkt Frankfurt (NeFF). E.T.
is supported by an AXA Research Fund postdoctoral fellowship.

http://rsif.royalsocietypublishing.org/


11

 on January 27, 2016http://rsif.royalsocietypublishing.org/Downloaded from 
Acknowledgements. We thank Ben Palanca and two anonymous
reviewers for valuable comments on this manuscript, Ed Bullmore
and Nicolas Crossley for sharing the DTI data and Patric Hagmann
and Olaf Sporns for sharing the DSI data.
rsif.royalsocie
References
typublishing.org
J.R.Soc.Interface

13:20151027
1. Alkire MT, Hudetz AG, Tononi G. 2008 Consciousness
and anesthesia. Science 322, 876 – 880. (doi:10.
1126/science.1149213)

2. Lee U, Mashour GA, Kim S, Noh GJ, Choi BM. 2009
Propofol induction reduces the capacity for neural
information integration: implications for the
mechanism of consciousness and general
anesthesia. Conscious. Cogn. 18, 56 – 64. (doi:10.
1016/j.concog.2008.10.005)

3. Boveroux P et al. 2010 Breakdown of within- and
between-network resting state functional
magnetic resonance imaging connectivity during
propofol-induced loss of consciousness.
Anesthesiology 113, 1038 – 1053. (doi:10.1097/
ALN.0b013e3181f697f5)

4. Schrouff J et al. 2011 Brain functional integration
decreases during propofol-induced loss of
consciousness. Neuroimage 57, 198 – 205. (doi:10.
1016/j.neuroimage.2011.04.020)

5. Monti MM et al. 2013 Dynamic change of global
and local information processing in propofol-
induced loss and recovery of consciousness. PLoS
Comput. Biol. 9, e1003271. (doi:10.1371/journal.
pcbi.1003271)

6. Amico E et al. 2014 Posterior cingulate cortex-
related co-activation patterns: a resting state fMRI
study in propofol-induced loss of consciousness.
PLoS ONE 30, e0100012. (doi:10.1371/journal.pone.
0100012)

7. Murphy M et al. 2011 Propofol anesthesia and
sleep: a high-density EEG study. Sleep 34, 283.

8. Boly M et al. 2012 Connectivity changes underlying
spectral EEG changes during propofol-induced loss
of consciousness. J. Neurosci. 32, 7082 – 7090.
(doi:10.1523/JNEUROSCI.3769-11.2012)

9. Chialvo DR. 2010 Emergent complex neural
dynamics. Nat. Phys. 6, 744 – 750. (doi:10.1038/
nphys1803)

10. Raichle ME. 2011 The restless brain. Brain Connect.
1, 3 – 12. (doi:10.1089/brain.2011.0019)

11. Sporns O. 2011 The non-random brain: efficiency,
economy, and complex dynamics. Front. Comp.
Neurosci. 5. (doi:10.3389/fncom.2011.00005)
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S, Jääskeläinen S, Hinkka S, Scheinin H. 2002 Effects
of surgical levels of propofol and sevoflurane
anesthesia on cerebral blood flow in healthy
subjects studied with positron emission
tomography. Anesthesiology 96, 1358 – 1370.
(doi:10.1097/00000542-200206000-00015)

54. Laitio RM et al. 2007 Effects of xenon anesthesia
on cerebral blood flow in humans: a positron
emission tomography study. Anesthesiology 106,
1128 – 1133. (doi:10.1097/01.anes.0000267596.
57497.92)

55. Bonhomme V, Maquet P, Phillips C, Plenevaux A, Hans
P, Luxen A, Lamy M, Laureys S. 2008 The effect of
clonidine infusion on distribution of regional cerebral
blood flow in volunteers. Anesthesia Analgesia 106,
899– 909. (doi:10.1213/ane.0b013e3181619685)

56. James W. 1890 The principles of psychology (ed. GA
Miller). Cambridge, MA: Harvard University Press.
57. Bullmore E, Sporns O. 2009 Complex brain
networks: graph theoretical analysis of structural
and functional systems. Nat. Rev. Neurosci. 10,
186 – 198. (doi:10.1038/nrn2575)

58. Fiset P, Plourde G, Backman SB. 2005 Brain imaging
in research on anesthetic mechanisms: studies with
propofol. Prog Brain Res 150, 245 – 598. (doi:10.
1016/S0079-6123(05)50018-9)

59. Liu X, Pillay S, Li R, Vizuete JA, Pechman KR,
Schmainda KM, Hudetz AG. 2013 Multiphasic
modification of intrinsic functional connectivity of
the rat brain during increasing levels of propofol.
Neuroimage 83, 581 – 592. (doi:10.1016/j.
neuroimage.2013.07.003)

60. Veselis RA, Feshchenko VA, Reinsel RA, Beattie B,
Akhurst TJ. 2005 Propofol and thiopental do not
interfere with regional cerebral blood flow response
at sedative concentrations. Anesthesiology 102,
26 – 34. (doi:10.1097/00000542-200501000-00008)

61. Johnston AJ et al. 2003 Effects of propofol on
cerebral oxygenation and metabolism after head
injury. Br. J. Anaesth. 91, 781 – 786. (doi:10.1093/
bja/aeg256)

62. Hudetz AG, Liu X, Pillay S. 2015 Dynamic repertoire
of intrinsic brain states is reduced in propofol-
induced unconsciousness. Brain Connect. 5, 10 – 22.
(doi:10.1089/brain.2014.0230)

63. Franceschini MA, Radhakrishnan H, Thakur K, Wu
W, Ruvinskaya S, Carp S, Boas DA. 2010 The effect
of different anesthetics on neurovascular coupling.
Neuroimage 51, 1367 – 1377. (doi:10.1016/j.
neuroimage.2010.03.060)
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