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Abstract. 

In the context of process capability analysis, the results of most processes are dominated by two 

or even more quality characteristics, so that the assessment of process capability requires that all of 

them are considered simultaneously. In recent years, many researchers have developed different 

alternatives of multivariate capability indices using different approaches of construction.    

In this paper, four of them are compared through the study of their ability to correctly distinguish 

capable processes from incapable processes under a diversity of simulated scenarios, defining 

suitable minimum desirable values that allow decide whether the process meets or does not meet 

specifications. In this sense, properties analyzed can be seen as sensitivity and specificity, assuming 

that a measure is sensitive if it can detect the lack of capability when it actually exists, and specific 

if it correctly identifies capable processes. Two indices based on ratios of regions and two based on 

the principal component analysis have been selected for the study. The scenarios take into account 

several joint distributions for the quality variables, normal and non-normal, several numbers of 

variables and different levels of correlation between them, covering a wide range of possible 

situations.  

The results showed that one of the indices has better properties across most scenarios, leading to 

right conclusions about the state of capability of processes and making it a recommendable option 

for its use in real-world practice. 
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1. Introduction. 

Over the past thirty years, a wide variety of measures have been developed to compare the actual 

performance of a process with its specifications; these measures are called capability indices.  

In most situations, the process under study is assumed to have only one characteristic of interest. 

For such situations there are plenty of available capability indices. However, the success of a 

process is most commonly tied to two or more characteristics. In these cases, they need to be 

evaluated simultaneously in order to assess the global capability of the process. This is currently 

possible thanks to the advances in multivariate analysis techniques that have occurred in recent 

decades. The advantage of this treatment compared with the usual approach that analyze 

individually each variable, is that the correlation structure among variables could be incorporated 

and taken into account in the analysis.  

Depending on the approach adopted to build multivariate capability indices, the proposals can be 

classified in four groups: 1) indices based on ratios of a tolerance region to a process region (Hubele 

et al.
1
, Taam et al.

2
, Shahriari et al.

3,4
); 2) indices defined making use of the principal component 

analysis (Wang et al.
5,6

, Xekalaki and Perakis
7
, Shinde and Khadse

8
, Tano and Vännman

9
); 3) 

indices based on the probability of producing items out of specifications  (Pal
10

, Chen
11

); 4) other 

approaches such as those based on extensions of univariate capability indices (Chen et al.
12

) and the 

proposals of multivariate capability vectors (Hubele et al.
1
, Shahriari et al.

3,4
). 

Most of these proposals are based on the assumption of multivariate normality for the underlying 

distribution, hence the regions of natural variation of processes are considered ellipsoidal in shape, 

not having found in literature studies considering how the indices are affected by moderate 

departures from this assumption. Besides, most studies comparing the behavior of various indices 

have done it by setting out the comparisons from a particular perspective, considering real-world 

situations or proposing simulation studies on very specific scenarios (Wang et al.
13

, García et al.
14

, 

Pan and Lee
15

).  

Therefore, the purpose of this research was to carry out a comparative study involving 

simultaneously some of the available proposals to build capability indices, in its original and 

modified versions, in order to evaluate their ability to correctly indicate the actual status of the 

process regarding the imposed specifications, through a diversity of scenarios. The scenarios 

considered take into account variations in the underlying multivariate distribution of data, the 

number of variables and the levels of correlation among them. 

Hypothetical processes with different states of capability were defined on each scenario. The 

indices under study were calculated for those processes, noting whether the values lead to correctly 
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conclude about the state of process capability. Although all of the capability indices are measured 

on a quantitative scale, as a practical rule, it is always defined a cutoff point from which decide 

whether the process meets or does not meet the specifications. This cutoff point is used to classify 

processes on a dichotomous scale and in this sense, properties analyzed can be seen as properties of 

sensitivity and specificity, assuming that a measure is sensitive if it can detect the lack of capability 

when it actually exists, and it is considered specific if it has the ability to classify a process as 

capable when it is capable. 

Two options among those based on ratios of regions and other two based on the principal 

component analysis have been selected for the study. The first two are the initial proposal due to W. 

Taam et al.
2
, the      index, and the improved version proposed by H. Shahriari and M. 

Abdollahzadeh
4
, the       index. The principal component based indices considered are the 

original proposal by F. K. Wang and J. Chen
5
, the     

   
 index, and the proposal by R. L. Shinde 

and K. Khadse
8
, which is supposed to improve the former, the     index.  

The following two sections make a brief methodological review of these indices.  

 

2. Indices based on ratios of relative volumes.  

Let   be a     vector representing   quality characteristics from a multivariate normal distribution, 

with     mean vector   and     variance-covariance matrix  . Let define    ,     and   as the 

    vectors containing lower specification limits, upper specification limits and target values for 

each quality characteristic, respectively. This means that specifications are given individually for 

each variable.  

The index proposed by Taam et al.
2
,     , is defined as a ratio of two volumes. The numerator is 

the volume of the modified tolerance region (  ) and the denominator is the volume of the scaled 

         percent process region (scaled by the process mean square error) (  ).  

The tolerance limits of each characteristic taken together form a hyper-rectangular tolerance region 

in the  -dimensional space of the variables, whereas the process region, under the assumption of 

multivariate normality, is ellipsoidal in shape. In order to compare both regions, the authors 

proposed to modify one of them so that both regions have the same geometric shape. These authors’ 

proposal consists in modifying the hyper-rectangular tolerance region considering the largest 

ellipsoid that is centered at the target and completely within the original tolerance region. Hence,    

is the ellipsoid centered in   with semi-axes of length 
           

 
          . Meanwhile, region  

   is represented by the quadratic form         
             where        
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         is the mean squared error matrix from the process and      is the (   )100th 

percentile of    distribution with   degrees of freedom (Figure 1). The index is then computed as:  

 

     
       

       
 

                              

   (        
              

 )
                                  

 

Figure 1: Example of the modified tolerance region for Taam et al.’s method, with    . 

 

 

From its construction, this index is a measure of actual, not only potential, process capability. In 

fact, it is possible to re-write equation (1) as a product of two terms: one representing the process 

variability relative to the modified tolerance region, and the other reflects the process deviation 

from target (Taam et al.
2
). 

From index definition it is deduced that for processes centered at the target and having       

    of their values inside the tolerance region, the index takes the value 1.  

After Taam et al.’s proposal, several authors have suggested modifications to the      index, 

mainly arguing that the variance-covariance structure of the process is ignored when modifying the 

tolerance region. In fact, two processes having the same specifications but different correlation 

structures would be evaluated by      over the same modified tolerance region.  

Shahriari and Abdollahzadeh
4
 proposed the       as an improved version of     , which 

differs from the first precisely in the method used to modify the tolerance region. In this new index, 

the modified tolerance region    
   is defined as the largest ellipsoid centered at target with its axes 

parallel to the axes of the process ellipsoid (  ) and completely within the actual tolerance region. 

This way, the direction of the tolerance ellipsoid axes goes with the direction of the process 

ellipsoid axes, which depend completely on the process variance-covariance structure (Figure 2). 
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Figure 2: Example of the modified tolerance region for Shahriari et al.’s method, with    . 

 

 

Hence, region    is determined by the expression:                   where   is a constant 

to be determined so that the region is fully contained within the original tolerance region. It can be 

shown (Härdle and Simar
16

) that: 

     ,
       

√   

          -                                                   

 

where     is the ith diagonal element of   matrix. 

Then,       is obtained as a ratio, similar to (1), but considering in the numerator the volume of 

this new modified tolerance region   
  and taking the pth root to capture the number of quality 

characteristics and to obtain a measure comparable with any univariate index: 

      *
       

       
+

 
 

 [                ] 
 
  *

       

       
+

 
 

                      

 

Values equal to or greater than 1 signal processes with at least           of products within 

tolerance region.  

 

3. Indices based on principal component analysis.  

Using principal component analysis (PCA) to derive one-dimensional measures of process 

capability in multivariate domains was an original idea of the authors Wang and Chen
5
. 

These authors proposed applying PCA technique to the process data to transform the original 

related measurements variables into a set of uncorrelated linear functions, namely the principal 
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components (PC),                , where    is the ith eigenvector of the variance-

covariance matrix related to its ith eigenvalue   . Besides, this technique allows reducing the 

dimensionality of the problem, since the index is built considering only the number of principal 

components accounted for much of the total variability (commonly 80-90%), which can be 

identified using one of various criteria (Kaiser criterion, Scree test, percentage of variance criterion, 

etc. (Eriksson et al.
17

).   

The transformation used to obtain the principal components, is also applied to the vectors 

containing the specification limits and target values (     
       ,      

       ,    
 

     , so that the whole problem is “moved” to a new system of coordinate axes defined by the 

principal components.  

If the original variables come from a multivariate normal distribution, the principal components will 

also be normally distributed, since they are linear combinations of normal variables, and so they are 

also independent due to the no correlation.  

In this new context, the multivariate capability index is simply defined as the product of univariate 

measures of process capability for each of the   principal components identified as important and 

taking the vth root to capture the dimensionality of the problem:  

    
   

 (∏      

 

   

+

   

                                                            

where       
 is the traditional     univariate capability index (Kane

18
) for the ith principal 

component   : 

      
 

     
      

   √   

  (   
    

)
 
                                                          

with    
 y    

   being the mean and variance of   , respectively.  

In addition,       
 can be replaced by      

,       
 or        

, in order to generate multivariate 

versions of the most popular univariate indices.  

As in the univariate case, the minimum desirable value for this index is 1, in which case the process 

is assumed to be working according to the required specifications.  

Shinde and Khadse
8
 made an observation to the method proposed by Wang et al

5
, arguing that the 

formulas they used to obtain specification limits for the principal components are incorrect. With 

Wang et al.’s procedure, the tolerance region in the principal component space is obtained assuming 
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that specification limits of different PCs are independent from each other, when actually, only the 

distribution of PCs are independent. Their specification limits are interrelated. 

In fact, if the original tolerance region is the hyper-rectangle with edges are parallel to the 

coordinate axes   {                              }, then the tolerance region for the 

new variables    corresponds to a new region in a rotated space which edges are no longer parallel 

to the coordinate axes, defined by    {                                     

      }, where                is the orthonormal matrix of eigenvectors of  . However, 

Wang and Chen’s proposal considers that the specification region for the PCs is    {      

  
           

     } (Figures 3 and 4), which is the result of combining the projections of two 

points of the original region.  

 

Figure 3: Examples of the original and modified tolerance region for PCs according to Wang and 

Chen’s method (   ). 

 

Figure 4: Examples of the original and modified tolerance region for PCs according to Shinde and 

Khadse’s method (   ). 

 

 

From this observation, the authors have proposed an alternative method for assessing multivariate 

process capability based on the empirical probability distribution of PCs. In the general case of   

quality characteristics, the specification region    is a really complex region, since it is defined by a 

set of    linear inequalities in   variables. Hence, authors propose probability-based indices: 
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     (         (                       ))                             

     (         (                      ))                             

If            the process is potentially capable, and if            the process is actually 

capable.  

If only the first   PCs are selected for further analysis, the specification region is then defined by 

taking                       : 

  
  {                                                                     } 

Then, the indices are defined by means of the proportion of conforming products over this new 

reduced region:  

     (    
      (                        ))                            

     (    
      (                        ))                            

The exact calculation of these indices involves the evaluation of multiple integrals on complicated 

regions hence authors propose to estimate them based on the empirical approach using simulation 

procedures.  

 

4. Design of the comparative study.  

The design of the hypothetical scenarios under which the indices were evaluated took into account 

in first place the probability distribution of the variables of interest. Three variants were chosen: 

multivariate normal distribution, mixture of multivariate normal distribution with three different 

contamination levels (            and     ), and multivariate gamma distributions with 

different (slight) levels of marginal asymmetry. The choice of these three particular models is 

justified by the fact that they are able to represent situations commonly found in the context of 

quality improvement.  

In addition, different number of variables (      and  ) and different correlation levels, assuming 

a structure of equicorrelation among variables (                            ) were 

considered.  

Variables with zero mean vector,     , and variance-covariance matrix    with elements       

      and             were assumed for the multivariate normal distribution case. Mixture of 

multivariate normal distributions were obtained combining the normal variables mentioned above 

with   percent of normal variables with mean vector      and covariance matrix         , so 
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that the resulting variables in the mixture have also zero mean vector and variance-covariance 

matrix            . Finally, the multivariate gamma variables were obtained through the 

combination of marginal gamma variables, each with different level of asymmetry considering 

shape parameters       or 30 and scale parameters                .  

Assuming as capable processes those which proportion of conforming products is at least 0.9973, 

for each scenario six sets of specifications were defined in order to generate capable processes 

(Situation I) as well as incapable processes. Five situations of non-capability were considered: no 

capability due to departures of the process mean from the target in one or more than one variables, 

no capability in process variability in one or more than one variables, and no capability in both 

mean and dispersion at the same time (situations II to VI, respectively). This comparative study has 

a total of 1710 scenarios under which each index is evaluated, so covering a wide spectrum of 

possible situations. 

The parameters assumed for each simulated processes and the specifications (target values   and 

specification limits   ) chosen in order to generate capable as well as incapable processes under 

each scenario, are detailed in Table 1(a to c). 

It is important to mention that, under the multivariate gamma distribution, since it assumes only 

positive values, it was not possible, for     and    , to define sets of symmetrical 

specifications generating capable processes in the sense adopted in this paper, i.e., tolerance regions 

covering at least 99.73 percent of data. Therefore, the analysis under this distribution is carried out 

assuming a more flexible definition of capable processes: a process is classified as capable if its 

proportion of conforming products is at least 0.9900. 

Under each scenario, theoretical proportions of conforming items were obtained, which reflect the 

actual state of capability of the process according to the definition adopted. In order to use them as a 

reference value to compare with the multivariate capability indices     ,       and     
   

, 

these proportions were turned into the traditional univariate    index. This way, in this new scale, 

capable processes are represented by values equal or greater than unity for normal and mixture of 

normal distributions, and equal or greater than 0.8586 for gamma distribution.  

For     index, since it is measured directly in terms of proportions of conforming products, 

capable processes are represented by reference values equal or greater than 0.9973 for normal and 

mixture of normal distributions, and by reference values equal or greater than 0.9900 for gamma 

distribution.  
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Finally, the population values of the four indices under study were obtained under each of the 

defined scenarios.  

R 3.0.1 software was used to calculate the indices, with algorithms based on some functions already 

defined in the MPCI R-package (Santos Fernández
 
and Scagliarini

19
). Multivariate gamma variables 

were generated using the algorithm proposed by Bustos et al.
20

, which offers great flexibility 

allowing to generate variables with different marginal parameters and different correlations for each 

pair of variables as well, both positive and negative. 

The following section shows the results obtained for the four studied indices in each scenario. 

 

5. Results.  

The nature of capability indices is quantitative; they measure process capability on a continuous 

scale. However, for the purposes of its application to a given problem it is necessary to define a 

cutoff value, which allows "dichotomizing" the decision about the state of the process, indicating 

whether it meets or does not meet specifications. This value represents the minimum desirable value 

of capability, and its choice depends on what is defined as a capable process in each case. Without a 

cutoff point that allows for this classification capability indices only serve as a means of 

comparison between processes, and would be useless for individual situations. Hence, suitable 

cutoff points for each index are discussed prior to the presentation of results. 

 

5.1. Multivariate normal distribution.  

5.1.1. Index     . 

The authors of      index use the value 1 as cutoff point
2
. Indeed, it is possible to deduce that the 

value 1 does not necessarily signals capable processes. For a process centered on target, the value 1 

only indicates that the modified tolerance region      and the process region      have the same 

volume, regardless of whether the process region is within the tolerance region or not. Figure 5 

shows an example of this situation for    . Nevertheless, because of the way this index is built it 

is not possible to define a cutoff point that avoids this type of situations, although they are not 

frequent unless the performance of the process is completely unknown. Hence, for the purposes of 

this work, value 1 is assumed as the cutoff point.  

 

 

 



12 
 

Figure 5: Illustration of an incapable process for which       . 

 

Figure 6 shows the population values of the indices under each scenario, the reference    values 

and the cutoff point. The main characteristic of this index is that it is highly affected by changes in 

the level of correlation among variables, showing a tendency to overvalue the real capability of 

process when correlation is high, and to undervalue it for low correlation levels. This feature 

becomes more evident as the number of variables under study increases and it can be seen as a 

consequence of a failure in the index definition, since it does not take into account the correlation 

among variables in modifying the tolerance region. This way, when correlation is high, the 

modified tolerance ellipsoid contains areas of rare observations, leading to overvaluations of the 

real capability (areas A and B in Figure 7, for       ). The volume of those areas will increase as 

the number of variables increases and therefore the overvaluation will be increased as well.  

Regarding the ability of      index to distinguish between capable and incapable processes, this 

index is able to correctly classified capable processes when only two quality characteristics are 

evaluated. When     and correlation is low capable processes are wrongly classified as 

incapable. 

On the other hand, the index is not always able to identify when the process is not meeting the 

specifications. In several situations of incapable processes, the index takes values greater than 1 

leading to erroneous conclusions about the actual process capability.  

From these results, it can be concluded that      is neither sensitive nor specific to distinguish 

processes by their state of capability. Table 2 shows an extract of the values represented in Figure 6.  
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Figure 6: Values of      index, reference values (  ) and cutoff point for each scenario, under 

multivariate normal distribution.  

 

 

Figure 7: Example of process region and Taam et al.’s modified tolerance region for     and 

correlations        and        . 
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5.1.2. Index      . 

This index definition does take into account the structure of correlation among variables in 

modifying the tolerance region, so it seems reasonable to assume the value 1 as the limit value to 

classify the processes. Indeed, when the index takes the value 1 then at least           of 

process data falls inside the tolerance region. However, values lower than 1 do not necessarily 

indicate lack of capability, at least in the sense adopted in this paper. In fact, the analysis reveals 

that the index can take values less than 1 even when the proportion of conforming products is 

greater than 0.9973. This is indeed what happens in Situation I for     and     (Figure 4.5). In 

fact, a process may have more than           of conforming products, but the           

process region can overflow the modified tolerance region. Figure 8 shows an example of this 

situation for a bivariate process, in which the 0.9973 process region overflows the modified 

tolerance region, leading to an index value lower than 1 (            ), eventhough the 

process has 99.76% of conforming products, according to the initial tolerance region.  

Since the index assumes isodensity ellipsoids for representing the process region, the ellipsoid of 

probability 0.9973 may have to exceed the tolerance region, although the proportion of conforming 

products according to the initial tolerance region is greater than 0.9973. This means that by using 

the value 1 as cutoff point, this index classify as capable those processes whose central       

    of data fall inside the tolerance region, which is a more demanding rule than the assumed for 

this work.  

The index values obtained in Situation I (shown in Table 3) correspond to processes with the 

following proportion of conforming products: 0.9990 for    , 0.9985 for     and 0.9977 for 

   , and therefore these could be used as the cutoff points for        0, 0      and 0      

for           respectively, if it can be assumed that every product within the original tolerance 

region is conforming regardless of its probability of occurrence. In order to be consistent with the 

definition of capable process that has been adopted for this work, suitable cutoff points for   

       were deduced. That is, for each of the processes defined in Table 1(a), specifications limits 

proportional to the original ones were sought such that, under multivariate normal distribution, they 

lead to 99.73% of conforming product. Those limits were then used to compute the index and the 

resulting value was assumed as the cutoff point. Resulting values (     ) are shown in Table 3. 

Figure 9 shows that the index has the ability of correctly classify both capable and incapable 

processes, so it can be said that       index is a measure both sensitive and specific to 

distinguish between capable and incapable processes.  
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Figure 8: Modified tolerance region and 99.73% process region for a process with        .   

 

 

Figure 9: Values of       index, reference values (  ) and cutoff point for each scenario, under 

multivariate normal distribution.  
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5.1.3. Index     
   

. 

Figure 10 shows the results of Wang et al’s index. The first noticeable thing is that there are 

situations in which the index takes the value zero, and this is a consequence of the failure in 

transforming the tolerance region, as it has been highlighted by Shinde and Khadse
8
. In fact, Wang 

et al’s method sometimes transforms the original tolerance region, causing null values for the 

univariate capability index for some of the principal components. This is the case, for example, of 

bivariate processes whose variables have the same dispersion and tolerances of the same width, in 

which both principal components has to be used. In these particular situations, the original tolerance 

region is a square region which is degenerated into a segment of straight line after applying the 

transformation suggested by Wang and Chen
5
. Then      

      
   for the degenerated 

dimension and so       
   and     

   
  , no matter the real process capability.  

Consider, for example, a bivariate normal process with mean vector     and covariance matrix 

  (
  
  

*. The eigenvalues of   are        and       , and the eigenvectors are 

  
  

 

√ 
     and   

  
 

√ 
     . If components explaining more than 80% of total variability 

are retained, then both principal components will be retained whenever       . In such case,  

              
       

     
 

√ 
[                       ]   .   

Anyway, even when these kinds of situations are not the case, the index is not able to correctly 

classify capable and incapable processes. Since the index is based on the product of univariate 

indices for which a value equal or greater than one indicates that at least           of process 

data is conforming, it is expected that this multivariate index leads to values lower than 1 whenever 

the multivariate process does not operate at the required quality level and this does not always 

happen in some of the situations of incapability proposed. An extract of the results are shown in 

Table 4. 
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Figure 10: Values of     
   

 index, reference values (  ) and cutoff point for each scenario, under 

multivariate normal distribution.  

 

 

5.1.4. Index    . 

Unlike previous indices, this measure is expressed in terms of proportion of conforming products, 

so the choice of a cutoff point to differentiate capable and incapable processes depends exclusively 

on the desired quality level, being 0.9973 the value commonly used, and indeed is the value 

selected by the author of this index.     

The reference values shown in Figure 11 represent the real proportion of conforming products under 

each scenario. For capable processes (Situations I) the index always takes values higher than the 

cutoff point (0.9973), correctly indicating that the process meets the specifications.  

On the contrary, the index has problems to identify incapable processes, mainly when the lack of 

capability is mild or moderate. Situations II to V represent processes with mild anomalies in 

meeting the specifications, and in many of those scenarios the index take values higher than 0.9973 
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leading to a wrong conclusion about process capability. Moreover, this failure seems to worsen as 

the number of variables studied increases. Table 5 shows an extract of the numeric results.  

 

Figure 11: Values of     index, reference values (  ) and cutoff point for each scenario, under 

multivariate normal distribution. 

 

 

The results exposed until this point show that the initial proposals on both index construction 

approaches fail to identify the true process capability state. Meanwhile, subsequent proposals do 

show an improved performance, so they are more suitable alternatives to evaluate multivariate 

process capability. The effect of departures from normality is analyzed only for these recent 

proposals.   
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5.2. Mixture of multivariate normal distributions.  

5.2.1. Index      . 

Figure 12 shows the results of       index applied to variables with mixture of multivariate 

normal distributions, as well as the reference values and the cutoff points. It is shown that under 

capable processes (Situations S-I) the index overvalues the true process capability, as a consequence 

of the contamination in the underlying data distribution. The original multivariate normal variables 

were mixed with a certain percentage of variables also normal but with a greater dispersion, so 

creating a distribution with heavier tails than the normal. Under this mixed distribution, it is 

necessary to define a greater tolerance region in order to cover           of data than it would 

be necessary under a normal distribution with the same covariance matrix. In addition, since the 

index assumes normality to compute the process region, it has lower volume than the true process 

region (see Figure 13), leading to an overvaluation of the true process capability.  

Figure 12: Values of       index, reference values (  ) and cutoff point for each scenario, under 

mixture of multivariate normal distributions (      ).  
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This overvaluation affects the ability of the index to identify incapable processes. The index does 

not detect processes having problems regarding its variability (Situations SII and SIII), since the 

overvalued values are great enough to wrongly conclude that the process is capable.  

Similar results were found for        and       , noting that the signaled effect becomes more 

noticeable as the contamination level increases.  

It is then seen that departures from normality, even among the range of symmetric distributions, 

affects the ability of the index to correctly detect the true process capability state. An extract of 

numeric results is shown in Table 6. 

 

Figure 13: Example of process region and Shahriari et al’s modified tolerance region for data 

coming from a mixture of multivariate normal distributions              ). 

 

 

5.2.2. Index    . 

The index based on principal components is also affected if the underlying distribution has heavier 

tails than normal distribution, and the effect is similar to that observed for        index. As a 

consequence of the departures from normality the true process capability is overvalued leading to 

the conclusion that the process is capable when actually it is not (Figure 14). The index does not 

detect the lack of capability unless the process is operating really far from its specifications (as in 

Situations S-VI). This is reasonable, since in the index computation it is assumed that principal 

components inherit the normality of original variables, which is not true in this case. So the 

probabilities are calculated under a more concentrated distribution than the real one, then the 

tolerance region is wide enough to allow movements of the process or increases in variability 

without being detected. This effect, again, is accentuated with increasing contamination levels.   

Table 7 shows an extract of the numeric results.  
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Figure 14: Values of     index, reference values (  ) and cutoff point for each scenario, under 

mixture of multivariate normal distributions (      ). 

 

 

5.3. Multivariate gamma distribution.   

5.3.1. Index      . 

Process regions are assumed to be ellipsoidal in shape to build this index, hence when the real 

distribution has a slight asymmetry the ellipsoidal           process region will cover a zone 

where the process does not produce outcomes. Therefore the volume of the process region under the 

real distribution will be overvalued by the volume of that ellipsoid. However, the same happens 

with the modified tolerance region, since specifications are assumed to be symmetrical around the 

target. This way, the index is not affected by this kind of departures from normality (Figure 15). 

Figure 16 shows the results of the index when applied on processes with multivariate gamma 

distributions, with mild levels of asymmetry. As explained before, the cutoff points were derived 

for       , i.e., a tolerance region proportional to the original one was sought such that it covers 
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99% of process data under a multivariate normal distribution with parameters defined in Table 1 (c), 

and then it was used to calculate the index value. The results are shown in Table 8. 

 

Figure 15: Example of process region and Shahriari et al’s modified tolerance region for data 

coming from a multivariate gamma distribution. 

 

Figure 16: Values of       index, reference values (  ) and cutoff point for each scenario, under 

multivariate gamma distributions. 
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From Figure 16 it is seen that both capable and incapable processes are correctly identified by this 

index, so even when some of the variables are slightly asymmetric the index is still sensitive and 

specific to distinguish processes.  

 

5.3.2. Index    . 

In this case, the index has shown an erratic performance, sometimes overvaluing and undervaluing 

others. The advantage of this index is that it is expressed as proportion of conforming products so 

its values can be directly compared with the actual proportion of conforming products of the 

process to evaluate its ability to reflect the true process capability.  

 

Figure 17: Values of      index, reference values (  ) and cutoff point for each scenario, under 

multivariate gamma distributions.  

 

Under capable processes (Situations S-I), the index gives values greater than the real ones, but this 

does not represent a problem since the conclusion about the state of the process will be correct 
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anyway. However, for the definition of capable process assumed under this distribution, processes 

in situations II and IV are also capable despite the anomaly considered and the index fails, giving 

false alarms in some of the scenarios of situation IV.   

In addition, when processes are incapable because of an excessive variability (situation III) the 

index leads wrongly to the conclusion that the process is capable (Figure 17).  

Therefore, this index is neither sensitive nor specific to distinguish capable processes from 

incapable ones. Table 9 shows an extract of the numeric results.    

 

6. Discussion: 

This research was intended to gain some insight into the performance of some of the several 

multivariate capability indices that have been developed in the past few years. Although there is a 

growing interest in this topic, there is no consensus about a methodology for assessing capability in 

the multivariate domain.  

Among the available indices proposed in the literature we have selected four of them to be assessed 

for their ability to correctly signal the actual state of capability of a process.  

Two of them are constructed following the ratio of relative volumes approach,      (Taam et al.
2
) 

and       (Shahriari and Abdollahzadeh
4
). This type of indices can be thought as extensions of 

the traditional univariate indices, where ratios of interval lengths in univariate domain are turned 

into ratios of region volumes in the multivariate case. The attractiveness of this kind of indices is 

that they provide a procedure to partition the information in terms of process variation and target 

deviation, so helping users to define appropriate corrective actions when the indices indicate poor 

process capability. 

The other two selected indices are based on the principal component analysis,     
   

 (Wang and 

Chen
5
) and     (Shinde and Khadse

8
). As it is already known, this multivariate statistical 

technique allows converting a set of observations of correlated variables into a set of values of 

linearly uncorrelated variables. Based on that, multivariate indices are defined using univariate 

process capability indices of the principal components. This approach is attractive because it offers 

the possibility of reduce the dimensionality of the data sets, so it is particularly useful in analyzing 

high-dimensional problems, even though each component has a more complex interpretation. 

All these indices have been object of comparisons and discussion in several papers, between them 

or even with others available indices, however most of those comparisons were done in simpler 
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situations, such as just bivariate problems, or considering data coming from a real-world problem 

(Wang et al.
13

, García et al.
14

, Shinde and Khadse
8
, Pan and Lee

15
). 

In our opinion, there was a need for practical rules that guide the choice of either index, taking into 

account the context and the characteristics of each particular problem. The large number of 

scenarios under which the four selected indices were evaluated in this work allows deriving certain 

patterns of their performances. 

As a general result, we have found that the initial versions on both approaches, ratios of relative 

volumes and principal components, are not recommendable for their use in real-world practice. 

Even in the best scenarios (capable processes under multivariate normal distribution) they do not 

perform as it is desirable. Moreover, the construction of those indices has shown some failures that 

affect their performance, such us the case of Taam’s index for which is not possible to deduce a 

cutoff value to decide whether a process meets specifications or not. 

The newer indices,       and    , have notably improved the performance of the former 

capability measures, although there still are some unsolved issues, like the cutoff points in 

Shahriari’s index to distinguish between capable and incapable processes. We have found 

that       is a sensitive and specific measure to identify the actual capability of processes. On the 

other hand, Shinde’s index has shown to be specific but not always sensitive. It has the ability to 

correctly identify capable processes, but for incapable processes, the anomaly in process has to be 

very noticeable in order to be detected by this measure, if not, it would be unnoticed and the process 

will be wrongly classified as capable. 

Both measures are defined under the assumption of multivariate normality. However it is very 

common in practice that processes do not follow an exact normal distribution. In order to 

investigate how these measures are affected by moderate departures from the multivariate 

normality, we have considered data coming from symmetrical distributions with heavier tails than 

normal, mixing two multivariate normal distributions, one more spread than the other; as well as 

data coming from distributions with certain level of asymmetry, assuming a multivariate gamma 

distribution. The idea behind the selection of these kinds of distributions was to introduce 

departures from normality moderate enough to be unnoticed in a practical situation. Otherwise, it 

would be meaningless to study normality dependent measures in those situations. 

Regarding this, neither index has found robust under both kinds of departures from multivariate 

normality that we have considered.  

When the underlying distribution is heavy-tailed, the index based on ratios of relative volumes is 

specific but not sensitive.       has shown troubles to signal incapable processes, mainly when 
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the source of lack of capability is related to excessive variability. However, when the departure 

from normality is due to a moderate asymmetry, the index does preserve its sensitivity and 

specificity to distinguish capable processes from incapable ones. On the other hand, Shinde’s index 

is only specific under heavy-tailed distributions, and it loses sensitivity when applied under heavy-

tailed or asymmetrical distributions. In those situations, as in the case of normal distribution, the 

anomaly in process has to be very noticeable in order to be detected by this measure. 

Having briefly done this summary, it is reasonable to suggest the use of the index based on ratio of 

volumes instead of that based on principal components. Even so, careful should be taken with the 

distributional characteristics of variables under study, considering that this measure may not be 

reliable in cases of heavy-tailed distributions. Besides its performance, one advantage of       is 

that its expression can be written as the product of two terms, separating the process performance 

regarding variability from the performance regarding centeredness. This way, the measure provides 

information about the source of lack of capability when processes are incapable.  

Beyond       has a better performance, Shinde’s index might be preferred by operators who do 

not have a deep statistical knowledge, since its values have a direct meaning in terms of proportion 

of conforming products, while there is no way to translate       index’s values into proportions 

of conforming products. Furthermore, as its authors have remarked, the empirical approach used to 

estimate the index enables to consider other than hyper-rectangular specification region
8
, widening 

its fields of application. In addition, as a general result, we have seen that increasing the number of 

variables involved in the analysis causes poorer index performances. The failures an index could 

have seem to be exaggerated as more variables are simultaneously studied, not to mention the 

greater complexity that carries a higher problem dimension. Situations involving more than 3 

quality characteristics are not even possible to be plotted, so there is a really need for reliable 

capability measures applicable to that cases. 

We have seen that there is a lot of researchers working on this topic, and every time more and more 

capability indices for the multivariate domain are available, but only few of them were subjected to 

comparative studies in order to prove their properties across the many factors arising in this kind of 

contexts. This was what encouraged and motivated the work done and presented in this paper, even 

though there is still much work to be done.  
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Table 1: Parameters and specifications (T and SL) of simulated processes (S-I to S-VI). 

Part a) Multivariate normal distribution case.  

  

                    

Parameters 

         

  (
  
  

* 

         

  (

   
   
   

+ 

           

  

(

 
 

   
   

     
  
  

   
   

     
  
  

          )

 
 

 

S-I 
  

   

  

            

  

             

  

               

S-II 
  

   

  

      ( 
 

√ 
*
 

 

  

      (
 

√ 
  *

 

 

  

      (
 

√ 
    *

 

 

S-III 
  

   

  

      (
 

√ 

 

√ 
*
 

 

  

       (
 

√ 
 

 

√ 
*
 

 

  

      (
 

√ 
 

 

√ 
 

 

√ 
*

 

 

S-IV 
  

   

        

               

        

               

          

                 

S-V 
  

   

         

              

          

               

             

                 

S-VI 
  

   

         

      (
 

√ 

 

√ 
*
 

   

         

       (
 

√ 
 

 

√ 
*
 

   

           

     (
 

√ 
 

 

√ 
 

 

√ 
*

 

   

 

 

 

 

 

 

 

 

 

 

 

 



30 
 

Table1-Part b) Mixture of multivariate normal distributions case.  
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           for       ,            for        y            for       . These values were determined 

so that the individual specifications over each variable contain approximately 99.95% of process data, under capable 

processes. 

 

 

 

 

 

 

 

 

 

 

 

 



31 
 

Table1-Part c) Multivariate gamma distribution case.  
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            and            for      y             and            for     . The     values were 

determined in order to obtain, under capable processes and for each individual variable, symmetric specification 

intervals containing a proportion of process data as close to 0.9995 as possible. The    values were determined so that 

the individual specification width for each variable is twice the distance between the process mean and the 0.02333th 

percentile of the corresponding marginal gamma distribution (                ). 
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Table 2: Values of      index, reference values (  ) and cutoff point for each scenario, under 

multivariate normal distribution.  
             

Correlation   0,10 0,50 0,90 0,10 0,50 0,90 0,10 0,50 0,90 
           1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

S-I 
     1,0408 1,1958 2,3758 0,8165 1,1384 4,8106 0,3875 0,8577 17,3172 
   1,1036 1,1051 1,1237 1,0653 1,0598 1,1328 1,0152 1,0236 1,0936 

S-II 
     0,7360 0,8456 1,6799 0,5773 0,8050 3,4016 0,2740 0,6065 12,2451 
   0,8209 0,8219 0,8248 0,8170 0,8193 0,8248 0,8096 0,8138 0,8247 

S-III 
     0,5204 0,5979 1,1879 0,4082 0,5692 2,4053 0,1370 0,3033 6,1225 
   0,7399 0,7462 0,7773 0,7377 0,7445 0,7776 0,6839 0,6972 0,7522 

S-IV 
     0,7341 0,7828 0,9493 0,5747 0,7200 1,7241 0,2719 0,5253 5,7585 
   0,9042 0,9051 0,9080 0,8968 0,8980 0,9061 0,8833 0,8848 0,9082 

S-V 
     0,6200 0,7828 1,6583 0,4835 0,6573 1,6858 0,2037 0,4289 4,7322 

   0,8340 0,8398 0,8681 0,8298 0,8356 0,8673 0,7799 0,7923 0,8442 

S-VI 
     0,3100 0,3914 0,8291 0,2417 0,3286 0,8429 0,0720 0,1516 1,6731 

   0,4997 0,5167 0,5577 0,4992 0,5164 0,5578 0,4350 0,4669 0,5342 

 

Table 3: Values of       index, reference values (  ) and cutoff points for each scenario, under 

multivariate normal distribution.  
             

Correlation   0,10 0,50 0,90 0,10 0,50 0,90 0,10 0,50 0,90 

           0,9319 0,9319 0,9319 0,8824 0,8824 0,8824 0,8109 0,8109 0,8109 

S-I 
      1,0176 1,0176 1,0176 0,9302 0,9302 0,9302 0,8203 0,8203 0,8203 

   1,1036 1,1051 1,1237 1,0653 1,0598 1,1328 1,0152 1,0236 1,0936 

S-II 
      0,7196 0,7196 0,7196 0,6578 0,6578 0,6578 0,5800 0,5800 0,5800 

   0,8209 0,8219 0,8248 0,8170 0,8193 0,8248 0,8096 0,8138 0,8247 

S-III 
      0,7196 0,7196 0,7196 0,6578 0,6578 0,6578 0,5800 0,5800 0,5800 

   0,7399 0,7462 0,7773 0,7377 0,7445 0,7776 0,6839 0,6972 0,7522 

S-IV 
      0,5856 0,5314 0,2997 0,6548 0,5883 0,3334 0,5755 0,5023 0,2728 

   0,9042 0,9051 0,9080 0,8968 0,8980 0,9061 0,8833 0,8848 0,9082 

S-V 
      0,4726 0,5314 0,5775 0,5508 0,5371 0,3260 0,4312 0,4101 0,2242 

   0,8340 0,8398 0,8681 0,8298 0,8356 0,8673 0,7799 0,7923 0,8442 

S-VI 
      0,3342 0,3758 0,4083 0,3895 0,3798 0,2305 0,3049 0,2900 0,1585 

   0,4997 0,5167 0,5577 0,4992 0,5164 0,5578 0,4350 0,4669 0,5342 

 

Table 4: Values of     
   

 index, reference values (  ) and cutoff points for each scenario, under 

multivariate normal distribution. 
             

Correlation   0,10 0,50 0,90 0,10 0,50 0,90 0,10 0,50 0,90 

           1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 

S-I 
    

   
 0,0000 0,0000 1,1970 0,0000 0,0000 1,2076 0,0000 0,0000 1,2163 

   1,1036 1,1051 1,1237 1,0653 1,0598 1,1328 1,0152 1,0236 1,0936 

S-II 
    

   
 0,5848 0,6268 1,0217 0,2012 0,4496 1,0897 0,1804 0,2968 1,1451 

   0,8209 0,8219 0,8248 0,8170 0,8193 0,8248 0,8096 0,8138 0,8247 

S-III 
    

   
 0,0000 0,0000 0,8464 0,3773 0,5200 0,9718 0,2782 0,3236 1,0026 

   0,7399 0,7462 0,7773 0,7377 0,7445 0,7776 0,6839 0,6972 0,7522 

S-IV 
    

   
 0,0000 0,0000 1,0650 0,0000 0,0000 1,1416 0,0000 0,0000 1,1907 

   0,9042 0,9051 0,9080 0,8968 0,8980 0,9061 0,8833 0,8848 0,9082 

S-V 
    

   
 0,0000 0,0000 0,8355 0,0000 0,0000 0,9939 0,0000 0,0000 1,0312 

   0,8340 0,8398 0,8681 0,8298 0,8356 0,8673 0,7799 0,7923 0,8442 

S-VI 
    

   
 0,0000 0,0000 0,5908 0,3020 0,4154 0,7999 0,2296 0,2709 0,8500 

   0,4997 0,5167 0,5577 0,4992 0,5164 0,5578 0,4350 0,4669 0,5342 
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Table 5: Values of     index, reference values (  ) and cutoff points for each scenario, under 

multivariate normal distribution. 
             

Correlation   0,10 0,50 0,90 0,10 0,50 0,90 0,10 0,50 0,90 

           0,9973 0,9973 0,9973 0,9973 0,9973 0,9973 0,9973 0,9973 0,9973 

S-I 
    0,9995 0,9995 0,9999 0,9984 0,9992 0,9994 0,9982 0,9980 0,9998 

Reference 0,9991 0,9991 0,9993 0,9986 0,9985 0,9993 0,9977 0,9979 0,9990 

S-II 
    0,9880 0,9873 0,9878 0,9870 0,9947 0,9898 0,9774 0,9811 0,9890 

Reference 0,9862 0,9863 0,9867 0,9858 0,9860 0,9866 0,9848 0,9854 0,9866 

S-III 
    0,9723 0,9725 0,9866 0,9692 0,9859 0,9884 0,9708 0,9561 0,9905 

Reference 0,9736 0,9748 0,9803 0,9731 0,9745 0,9803 0,9598 0,9635 0,9760 

S-IV 
    0,9927 0,9936 0,9934 0,9922 0,9979 0,9966 0,9873 0,9908 0,9933 

Reference 0,9933 0,9934 0,9936 0,9929 0,9929 0,9934 0,9919 0,9921 0,9936 

S-V 
    0,9881 0,9884 0,9950 0,9893 0,9919 0,9951 0,9859 0,9781 0,9966 

Reference 0,9877 0,9882 0,9908 0,9872 0,9878 0,9907 0,9807 0,9825 0,9887 

S-VI 
    0,8679 0,8714 0,9350 0,8594 0,9129 0,9379 0,8679 0,8320 0,9368 

Reference 0,8662 0,8789 0,9057 0,8658 0,8787 0,9058 0,8081 0,8387 0,8910 

 

Table 6: Values of       index, reference values (  ) and cutoff points for each scenario, under 

mixture of multivariate normal distribution (       . 
             

Correlation   0,10 0,50 0,90 0,10 0,50 0,90 0,10 0,50 0,90 

           0,9246 0,9246 0,9246 0,8747 0,8747 0,8747 0,8051 0,8051 0,8051 

SI 
      1,8984 1,8984 1,8984 1,7354 1,7354 1,7354 1,5303 1,5303 1,5303 

   1,1084 1,1109 1,1272 1,0704 1,0768 1,1039 1,0210 1,0300 1,0751 

SII 
      1,3415 1,2263 1,0814 1,3415 1,2263 1,0814 1,3415 1,2263 1,0814 

   0,9389 0,9409 0,9473 0,9300 0,9340 0,9462 0,9140 0,9218 0,9439 

SIII 
      1,3415 1,2263 1,0814 1,3415 1,2263 1,0814 1,3415 1,2263 1,0814 

   0,8751 0,8813 0,9047 0,8699 0,8778 0,9046 0,8238 0,8382 0,8812 

SIV 
      0,6356 0,5609 0,2920 0,5789 0,4858 0,2357 0,5075 0,4080 0,1912 

   0,9230 0,9242 0,9267 0,9152 0,9179 0,9241 0,9010 0,9068 0,9190 

SV 
      0,4860 0,5609 0,6240 0,4405 0,4249 0,2298 0,3297 0,3090 0,1544 

   0,8577 0,8673 0,8915 0,8532 0,8632 0,8893 0,8076 0,8262 0,8663 

SVI 
      0,3434 0,3964 0,4410 0,3113 0,3002 0,1624 0,2330 0,2184 0,1091 

   0,6559 0,6692 0,6961 0,6551 0,6685 0,6952 0,6089 0,6314 0,6741 

 

Table 7: Values of     index, reference values (  ) and cutoff points for each scenario, under 

mixture of multivariate normal distribution (       . 
             

Correlation   0,10 0,50 0,90 0,10 0,50 0,90 0,10 0,50 0,90 

           0,9973 0,9973 0,9973 0,9973 0,9973 0,9973 0,9973 0,9973 0,9973 

SI 
    1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

Reference 0,9991 0,9987 0,9978 0,9991 0,9988 0,9980 0,9993 0,9991 0,9987 

SII 
    1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

Reference 0,9951 0,9947 0,9939 0,9952 0,9949 0,9943 0,9955 0,9955 0,9954 

SIII 
    1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

Reference 0,9913 0,9909 0,9865 0,9918 0,9915 0,9881 0,9934 0,9933 0,9918 

SIV 
    0,9999 1,0000 0,9999 0,9999 0,9997 1,0000 0,9997 0,9999 0,9999 

Reference 0,9944 0,9944 0,9946 0,9940 0,9941 0,9944 0,9931 0,9935 0,9942 

SV 
    0,9999 0,9998 0,9999 0,9998 1,0000 1,0000 0,9997 0,9997 0,9998 

Reference 0,9899 0,9907 0,9925 0,9895 0,9904 0,9924 0,9846 0,9868 0,9906 

SVI 
    0,9300 0,9353 0,9684 0,9392 0,9500 0,9694 0,9224 0,9176 0,9684 

Reference 0,9509 0,9553 0,9632 0,9506 0,9551 0,9630 0,9323 0,9418 0,9568 
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Table 8: Values of       index, reference values (  ) and cutoff points for each scenario, under 

multivariate gamma distribution. 
             

Correlation   0,10 0,50 0,90 0,10 0,50 0,90 0,10 0,50 0,90 

         0,7831 0,7831 0,7831 0,7603 0,7603 0,7603 0,7028 0,7028 0,7028 

SI 
      1,0150 1,0150 1,0150 0,9278 0,9278 0,9278 0.8181 0.8181 0.8181 

   1,0174 1,0153 1,0444 0,9702 0,9762 1,0153 0,9129 0,9250 0,9785 

SII
 (*)

 
      0,8249 0,8249 0,8249 0,7541 0,7541 0,7541 0,6650 0,6650 0,6650 

   0,8916 0,8928 0,9022 0,8817 0,8862 0,9070 0,8579 0,8665 0,9030 

SIII 
      0,7500 0,7500 0,7500 0,6856 0,6856 0,6856 0,6045 0,6045 0,6045 

   0,7830 0,7903 0,8119 0,7781 0,7870 0,8200 0,7407 0,7542 0,8003 

SIV 
(*)

 
      0,5224 0,4700 0,2581 0,4760 0,4100 0,2093 0,4178 0,3464 0,1702 

   0,9604 0,9610 0,9615 0,9256 0,9313 0,9383 0,8901 0,8919 0,9246 

SV 
      0,4315 0,4872 0,5243 0,3915 0,3789 0,2135 0,3027 0,2851 0,1471 

   0,8129 0,8141 0,8354 0,8007 0,8017 0,8213 0,7297 0,7394 0,7800 

SVI 
      0,3188 0,3600 0,3874 0,2893 0,2800 0,1578 0,2236 0,2106 0,1087 

   0,3925 0,4092 0,4437 0,3909 0,4078 0,4399 0,3471 0,3814 0,3814 

     (*) Under this distribution, these situations correspond to capable processes (reference    value > 0.8586). 

 

Table 9: Values of     index, reference values (  ) and cutoff points for each scenario, under 

multivariate gamma distribution. 

             

Correlation   0,10 0,50 0,90 0,10 0,50 0,90 0,10 0,50 0,90 

         0,9900 0,9900 0,9900 0,9900 0,9900 0,9900 0,9900 0,9900 0,9900 

SI 
    0,9994 0,9996 0,9993 0,9992 0,9985 0,9989 0,9984 0,9991 0,9999 

Reference 0,9977 0,9977 0,9983 0,9964 0,9966 0,9977 0,9938 0,9945 0,9967 

SII 
(*)

 
    0,9954 0,9952 0,9949 0,9955 0,9947 0,9966 0,9935 0,9963 0,9968 

Reference 0,9925 0,9926 0,9932 0,9918 0,9922 0,9935 0,9899 0,9907 0,9933 

SIII 
    0,9863 0,9859 0,9929 0,9954 0,9954 0,9934 0,9860 0,9890 0,9933 

Reference 0,9812 0,9823 0,9823 0,9804 0,9818 0,9861 0,9737 0,9763 0,9837 

SIV 
(*)

 
    0,9868 0,9858 0,9879 0,9988 0,9993 0,9909 0,9964 0,9978 0,9896 

Reference 0,9960 0,9961 0,9961 0,9945 0,9948 0,9951 0,9924 0,9925 0,9945 

SV 
    0,9639 0,9658 0,9767 0,9745 0,9748 0,9757 0,9445 0,9533 0,9786 

Reference 0,9853 0,9854 0,9878 0,9837 0,9838 0,9863 0,9714 0,9735 0,9807 

SVI 
    0,7466 0,7762 0,8380 0,9066 0,9059 0,9097 0,7226 0,8249 0,8363 

Reference 0,7610 0,7804 0,8169 0,7591 0,7789 0,8131 0,7022 0,7475 0,8102 

     (*) Under this distribution, these situations correspond to capable processes (reference    value > 0.8586).  

 

 


