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Abstract

We consider a nonlinear one-dimensional Stefan problem for a semi-infinite material
x > 0, with phase change temperature Tf . We assume that the heat capacity and the
thermal conductivity satisfy a Storm’s condition and we assume a convective boundary
condition at the fixed face x = 0. An unique explicit solution of similarity type is
obtained. Moreover, asymptotic behavior of the solution when h→ +∞ is studied.
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1 Introduction

As in [4, 8, 10] we consider the following one phase nonlinear unidimensional Stefan problem
for a semi-infinite material x > 0, with phase change temperature Tf

s(T )
∂T

∂t
=

∂

∂x

[
k(T )

∂T

∂x

]
, 0 < x < X(t) , t > 0 , (1)

k(T (0, t))
∂T

∂x
(0, t) =

h√
t
[T (0, t)− Tm] , h > 0 , t > 0 , (2)

T (X(t), t) = Tf , (3)

∗All correspondence concerning this paper should be sent to first author.
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k(Tf )
∂T

∂x
(X(t), t) = α

•
X (t) , t > 0 , (4)

X(0) = 0 (5)

where the positive constant α is ρL, L is the latent heat of fusion of the medium, ρ is the
density (assumed constant), Tm is the temperature of the medium Tm < T (0, t) < Tf and h0
is the positive heat transfer coefficient.

We assume that the metal exhibits nonlinear thermal characteristics such that the heat
capacity cp(T ) > 0 and the thermal conductivity k(T ) > 0 satisfy a Storm’s condition
[1, 2, 5, 6, 7, 9]

d
dT

(√
s(T )
k(T )

)
s(T )

= λ = const. > 0 , (6)

where s(T ) = ρcp(T ).
Condition (6) was originally obtained by [9] in an investigation of heat conduction in

simple monoatomic metals. There, the validity of the approximation (6) was examined for
aluminium, silver, sodium, cadium, zinc, copper and lead.

In [7] the free boundary problem (1) − (6) (fusion case) for the particular case k(T ) =
ρc/ (a+ bT )2 and s(T ) = ρc = constant was studied. The explicit solution of this problem
was obtained through the unique solution of an integral equation with time as a parameter.
A similar case with the constant temperature at the fixed face x = 0 was also studied.

In [2] two nonlinear Stefan problems analogous to (1)−(5) with phase change temperature
Tf and the Storm’s condition (6) are considered. In one case a heat flux boundary condition
of the type q(t) = q0√

t
and in the other case a temperature boundary condition T = Ts < Tf

at the fixed face x = 0 are assumed. Solutions of similarity type are obtained in both cases
and the equivalence of the two problems is demonstrated.

The goal of this paper is to determine the temperature T = T (x, t) and the position of
the phase change boundary at time t, X = X(t), which satisfy the problem (1)− (6) . In the
section 2 we show how to find a unique solution of the similarity type for this problem. In
Section 3 we study the asymptotic behavior when h → +∞. We prove that the solutions
T = Th(x, t), X = Xh(t) of (1) − (5) converges to the solution T = T∞(x, t), X = X∞(t) of
an analogous Stefan problem with temperature condition T (0, t) = Tm when h→ +∞.

2 Existence and uniqueness of the solution to the Ste-

fan problem with convective boundary condition on

the fixed face

We consider the problem (1)−(6) and we propose a similarity type solution given by [2, 3, 4]

T (x, t) = Φ(ξ) , ξ =
x

X(t)
(7)
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where
X(t) =

√
2γt , t > 0 (8)

is the free boundary and γ is assumed a positive constant to be determined.
Then we have that the problem (1)− (5) is equivalent to

k(Φ)Φ′′(ξ) + k′(Φ)Φ′2(ξ) + γs(Φ)Φ′(ξ)ξ = 0 , 0 < ξ < 1 , (9)

k(Φ(0))Φ′(0) = h
√

2γ[Φ(0)− Tm] , (10)

φ(1) = Tf , (11)

k(Φ(1))Φ′(1) = αγ . (12)

If we define

y(ξ) =

√
k

s
(Φ(ξ)) , (13)

then a parametrization of the Storm condition (6) is

s(Φ) = − 1

λy2
dy

dΦ
, k(Φ) = −1

λ

dy

dΦ
(14)

and then we have that the following problem is equivalent to (9)− (12)

d2y

dξ2
+
γξ

y2
dy

dξ
= 0 , 0 < ξ < 1 , (15)

y′(0) = −λh
√

2γ
[
P (y2(0))− Tm

]
, (16)

y′(1) = −αλγ , (17)

y(1) = y1 =

√
k(Tf )

s(Tf )
. (18)

where P is the inverse function of the decreasing function k
s
.

Lemma 1 A parametric solution to the problem (15)− (18) is given by

ξ = ϕ1(u) =
Fu0(u)

Fu0(u1)
, (19)

y = ϕ2(u) =

√
γ
√

π
2

[
erf

(
u√
2

)
− g

(
u0√
2
, 1√

π

)]
Fu0(u1)

, (20)

for
u0 ≤ u ≤ u1
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where the function Fu0 = Fu0(u) was defined in [2] as follow

Fu0(u) = exp(−u2

2
)+u

 u∫
u0

exp(− z2

2
)dz − exp(−

u20
2
)

u0

 =
√

π
2
u
[
g
(

u√
2
, 1√

π

)
− g

(
u0√
2
, 1√

π

)]
, u ≥ u0

where u0, u1 are the parameter values which verify that ξ = ϕ1(u0) = 0 and ξ = ϕ1(u1) = 1,

g(x, p) = erf(x) + p
exp(−x2)

x
, p > 0, x > 0 (21)

and

erf(x) =
2√
π

x∫
0

exp(−z2)dz, x > 0.

The unknowns γ, u0 and u1 must verify the following system of equations

u0 =
√

2λh

[
P

(
γexp(−u20)
[u0Fu0(u1)]

2

)
− Tm

]
, (22)

√
γ =

exp(−u21
2

)√
π
2
αλ
[
g
(
u0√
2
, 1√

π

)
− erf

(
u1√
2

)] (23)

y1 =
− exp(−u21

2
)

αλFu0(u1)
(24)

Proof. A parametric solution of (15) was deduced in [4] and it is given by

ξ = ϕ1(u) = C2

exp(−u
2

2
) + u

 u∫
0

exp(−x
2

2
)dx+ C1

 (25)

y = ϕ2(u) =
√
γC2

 u∫
0

exp(−x
2

2
)dx+ C1

 , u > 0 (26)

where C1 and C2 are integration constants to be determined.
We choose u0 and u1 be such that ϕ1(u0) = 0 and ϕ1(u1) = 1, we obtain that

C1 = −
exp(−u20

2
)

u0
−

u0∫
0

exp(−x
2

2
)dx , (27)

C2 =

exp(−u
2
1

2
) + u1

−exp(−u20
2

)

u0
+

u1∫
u0

exp(−x
2

2
)dx


−1

. (28)
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Then, we have

ξ = ϕ1(u) =

exp(−u2

2
) + u

(
u∫
u0

exp(−x2

2
)dx− exp(−u

2
0
2
)

u0

)

exp(−u21
2

) + u1

(
− exp(−

u20
2
)

u0
+

u1∫
u0

exp(−x2

2
)dx

) , u0 ≤ u ≤ u1 (29)

and

y = ϕ2(u) =

√
γ

{
− exp(−u

2
0
2
)

u0
+

u∫
u0

exp(−x2

2
)dx

}

exp(−u21
2

) + u1

(
− exp(−

u20
2
)

u0
+

u1∫
u0

exp(−x2

2
)dx

) , u0 ≤ u ≤ u1 (30)

that is (15)− (18).

Next we prove that the unknowns u0, u1 and γ must satisfy (22)− (24). From (29) and
(30) we have

y′(ξ) =
ϕ′2(u)

ϕ′1(u)
=

√
γ exp(−u2

2
)

u∫
u0

exp(−x2

2
)dx− exp(−

u20
2
)

u0

(31)

then

y′(0) = −√γu0 (32)

and taking into account that

y(0) =
−√γexp(−u20

2
)

u0Fu0(u1)

and from (16) we have (22).

Analogously we have

y′(1) =
ϕ′2(u1)

ϕ′1(u1)
=

√
γ exp(−u21

2
)

u1∫
u0

exp(−x2

2
)dx− exp(−

u20
2
)

u0

(33)

and by (17) we have
√
γ exp(−u21

2
)

u1∫
u0

exp(−x2

2
)dx− exp(−

u20
2
)

u0

= −αλγ (34)
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that is (23).
Last, we have

y(1) = ϕ2(u1) =

√
γ

{
− exp(−u

2
0
2
)

u0
+

u1∫
u0

exp(−x2

2
)dx

}

exp(−u21
2

) + u1

(
− exp(−

u20
2
)

u0
+

u1∫
u0

exp(−x2

2
)dx

) (35)

and taking into account (18) and (23) we obtain (24).

Next we want to find u0, u1 and γ the solutions to the equations (22) − (24). We can
rewrite the system (22)− (24) as follow

P−1
(

u0√
2hλ

+ Tm

)
=

γexp(−u20)
[u0Fu0(u1))]

2 (36)

√
γ =

exp(−u21
2

)

αλ
√

π
2

[
g
(
u0√
2
, 1√

π

)
− erf

(
u1√
2

)] (37)

M(u1) = g

(
u0√

2
,

1√
π

)
(38)

where

M(x) = g

(
x√
2
,

1√
π

(
1

αλy1
+ 1

))
(39)

Lemma 2 The real function Fu0 and M satisfy the following properties:

Fu0 (u0) = 0 , F (+∞) = −∞ (40)

F ′u0(x) =

√
π

2

{
erf

(
x√
2

)
− g

(
u0√
2
, 1√

π

)}
< 0 (41)

M(0) = +∞ , M(+∞) = 1 and M ′(x) < 0. (42)

Proof. See [1] and [2].

Lemma 3 (Existence of the solution)
There exists a solution of the system (36)− (38) given by

ũ1 = M−1
(
g

(
ũ0√

2
,

1√
π

))
(43)
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γ̃ =
exp(−ũ21)

α2λ2

(
exp(−

ũ20
2
)

ũ0
−

ũ1∫̃
u0

exp(−x2

2
)dx

)2 (44)

where ũ0 is a solution of

P−1
(

u0√
2hλ

+ Tm

)
=

γexp(−u20)[
u0Fu0

(
M−1

(
g
(
u0√
2
, 1√

π

)))]2 . (45)

Proof. Because M is a decreasing function there exists the inverse function M−1 and from
(38) for each u0 there exists a unique u1 given by

u1(u0) = M−1
(
g

(
u0√

2
,

1√
π

))
. (46)

If we replace (46) in (37) and (36) we have

γ(u0) =
exp(−u21(u0))

α2λ2

(
exp(−

u20
2
)

u0
−

u1(u0)∫
u0

exp(−x2

2
)dx

)2 (47)

and

P−1
(

u0√
2hλ

+ Tm

)
=

γ(u0)exp(−u20)
[u0Fu0(u1(u0))]

2 . (48)

We define the function

G(u0) := P−1
(

u0√
2hλ

+ Tm

)
which satisfies G(0) = k

s
(Tm) and G′(u0) < 0, and let

H(u0) :=
γ(u0)exp(−u20)
[u0Fu0(u1(u0))]

2 .

From (24), (46) and (47) it follows that

H(u0) =
2y21exp(−u20)

u20π

[
erf

(
M−1

(
g
(
u0√
2
, 1√
π

))
√
2

)
− g

(
u0√
2
, 1√

π

)]2 ,
H(0) = y21, H(+∞) = +∞ and H(u0) ≥ y21,∀u0 ≥ 0.

Since Tm < Tf we conclude G(0) =
k

s
(Tm) >

k

s
(Tf ) = y21 = H(0). Taking into account

that the properties of G and H there exists ũ0 < u∗0 = (Tf − Tm)
√

2hλ which satisfies (48).
Then by (46) and (47) we complete the solution ũ1 = u1(ũ0) and γ̃=γ(ũ0) to the system
(36)− (38) .
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Lemma 4 (Uniqueness of the solution)
The solution (ũ0, ũ1, γ̃) to the system (22)− (24) is unique.

Proof. Suppose the assertion of the lemma is false. That is there exist two solutions
(ũ0, ũ1, γ̃) and (u∗0, u

∗
1, γ
∗) to (22)− (24).

We assume that ũ0 < u∗0, then by (19) we have

ξ =
Fu∗0(u)

Fu∗0(u∗1)
=

Fũ0(u)

Fũ0(ũ1)
, for u∗0 ≤ u ≤ min(ũ1, u

∗
1). (49)

For u = u∗0 we have

0 =
Fu∗0(u∗0)

Fu∗0(u∗1)
=
Fũ0(u

∗
0)

Fũ0(ũ1)
(50)

then Fũ0(u
∗
0) = 0. This is a contradiction because Fũ0(u

∗
0) = 0 if and only if u = ũ0.

Theorem 5 The problem (1)− (6) has a similarity type solution given by

T (x, t) = P
((
ϕ2

(
ϕ−11 (x/X(t))

))2)
, 0 < x < X(t) (51)

where
X(t) =

√
2γ̃t, t > 0 (52)

is the free boundary,

ϕ1(u) =
Fũ0(u)

Fũ0(ũ1)
, (53)

ϕ2(u) =

√
γ̃
√

π
2

[
erf

(
u√
2

)
− g

(
ũ0√
2
, 1√

π

)]
Fũ0(ũ1)

, (54)

(ũ0, ũ1, γ̃) is the unique solution of (22)− (24) and P =
(
k
s

)−1
is the inverse function of the

function k
s
.

Proof. Fixed the data: α, λ, h, Tf of the problem (1) − (6) , we obtain the solutions of
the equations (22)− (24) given by (43), (44) and ũ0 is the solution of (45).

Next, we obtain ϕ1 and ϕ2 given by (53) , (54) respectively and the free boundary is

X(t) =
√

2γ̃t. Taking into account that ϕ1 is an increasing function we determine ϕ−11

(
x

X(t)

)
.

Finally, we invert the relation (13) and from (7) we obtain (51).

Remark 1 Si T (0, t) = Ts is constant, the convective condition (2) at the fixed face x = 0
of the problem (1)− (6) becomes a Neumann boundary condition given by

k(T (0, t))
∂T

∂x
(0, t) =

q0√
t

(55)

with
q0 = h[Ts − Tm].

The Stefan problem (1)− (6) with the condition (55) instead (2) was studied in [2].

8



3 Asymptotic behavior of the solution when h→ +∞
Let h > 0 and T = Th(x, t), X = Xh(t) denote the solution to the problem (1) − (6) given
by (51) − (54). We will study the behavior of this solution when the transfer coefficient
h → +∞. We will prove that Th, Xh converges to the solution T∞, X∞ of the following
parabolic free boundary problem:

s(T )
∂T

∂t
=

∂

∂x

[
k(T )

∂T

∂x

]
, 0 < x < X(t) , t > 0 , (56)

T (0, t) = Tm , t > 0 , (57)

T (X(t), t) = Tf , t > 0 , (58)

k(Tf )
∂T

∂x
(X(t), t) = α

•
X (t) , t > 0 , (59)

X(0) = 0 (60)

with the Storm’s condition
d
dT

(√
s(T )
k(T )

)
s(T )

= λ . (61)

The problem (56)− (61) was studied in [2]. The solution is given by

T∞(x, t) = P
((
ϕ2∞

(
ϕ−11∞ (x/X∞(t))

))2)
(62)

X∞(t) =
√

2γ∞t (63)

where

ϕ1∞(u) =
Fv0(u)

Fv0(v1)
, (64)

ϕ2∞(u) =

√
γ∞
√

π
2

[
erf

(
u√
2

)
− g

(
v0√
2
, 1√

π

)]
Fv0(v1)

(65)

with v0 ≤ u ≤ v1. The parameters v0, v1 and γ∞ satisfy the following equations

y1 =
√
γ∞

Fv0(v1)− exp
(
−v21

2

)
v1Fv0(v1)

(66)

√
γ∞ =

v1y1
1 + αλy1

(67)

k

s
(Tm) = y0 = −√γ∞

exp
(
−v20

2

)
v0Fv0(v1)

(68)
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which are equivalent to

k

s
(Tm) = H(v0) =

2y21exp (−v20)

v20π

[
erf

(
M−1

(
g
(
v0√
2
, 1√
π

))
√
2

)
− g

(
v0√
2
, 1√

π

)]2 (69)

√
γ∞ =

exp(−v21
2

)

αλ
√

π
2

[
g
(
v0√
2
, 1√

π

)
− erf

(
v1√
2

)] (70)

v1 = M−1
(
g

(
v0√

2
,

1√
π

))
. (71)

For simplicity of notation, we wright (u0h, u1h, γh) instead of (ũ0h, ũ1h, γ̃h) which is the
solution of (36)− (38). Firstly we will prove that (u0h, u1h, γh) converges to (v0, v1, γ∞) when
h→ +∞. The proof of this statement is based on the following lemma:

Lemma 6 The sequences {u0h}, {u1h} and {γh} are increasing and bounded. Moreover

lim
h→+∞

u0h = v0, lim
h→+∞

u1h = v1, and lim
h→+∞

γh = γ∞.

Proof. From properties of function G = Gh(x) = P−1
(

x√
2hλ

+ Tm

)
we have

a) h1 ≤ h2 ⇒ Gh1(x) ≤ Gh2(x), ∀x ≥ 0
b) Gh(x) ≤ k

s
(Tm), ∀x ≥ 0, h > 0.

We consider h1 < h2 , if u0h1 and u0h2 are the solutions of Gh1(x) = H(x) and Gh2(x) =
H(x) respectively, by a) and properties of function H we have that u0h1 < u0h2 . Moreover
from b) results u0h ≤ v0 for all h > 0 . Then, {u0h} is an increasing bounded sequence and
there exists ũ0 such that

lim
h→+∞

u0h = ũ0.

Letting h→ +∞ on Gh(u0h) = H(u0h) yields k
s
(Tm) = H(ũ0). By uniqueness of the solution

of (69) results ũ0 = v0.
From (38) we have

u1h = M−1
(
g

(
u0h√

2
,

1√
π

))
(72)

Because {u0h} is increasing, M and g are decreasing functions we have that the sequence
{u1h} is increasing. Moreover taking into account u0h ≤ v0 and (71) follows

u1h = M−1
(
g

(
u0h√

2
,

1√
π

))
≤M−1

(
g

(
v0√

2
,

1√
π

))
= v1
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for all h > 0.
By (72) we obtain

lim
h→+∞

u1h = lim
h→+∞

M−1
(
g

(
u0h√

2
,

1√
π

))
= M−1

(
g

(
v0√

2
,

1√
π

))
= v1.

Finally, letting h→ +∞ in (37) we have

lim
h→+∞

γh = γ∞.

It follows easily of (37) and (38) that
√
γh =

u1hy1
1 + αλy1

. Taking into account u1h ≤ v1 we

have √
γh =

u1hy1
1 + αλy1

≤ v1y1
1 + αλy1

=
√
γ∞ ∀h > 0.

Corollary 7 For each t > 0, the sequence {Xh(t)} is monotonically increasing and lim
h→+∞

Xh(t) =

X∞(t).

We can now define an extension T̃h = T̃h(x, t) ∈ C1 [0, X∞(t)] of Th(x, t) as follows

T̃h(x, t) =


Th(x, t) if 0 ≤ x < Xh(t)

α
√

2γh

2k(Tf )
√
t

(x−Xh(t)) + Tf if Xh(t) ≤ x ≤ X∞(t)
(73)

Lemma 8 The functions T̃h ∈ C1 [0, X∞(t))] satisfy |∂T̃h
∂x
| ≤M on [0, X∞(t)] for all h > 0,

t > 0.

Proof. Let t > 0 and x ∈ [0, X∞(t)].
If x ∈ [Xh(t), X∞(t)] then

|∂T̃h(x, t)
∂x

| = α
√

2γ∞

2k(Tf )
√
t
.

For otherwise, this is x ∈ [0, Xh(t)) according to (7) and (13) we have

∂T̃h
∂x

(x, t) = P ′
(
y2h

(
x

Xh(t)

))
2yh

(
x

Xh(t)

)
y′h

(
x

Xh(t)

) 1

Xh(t)
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Since
k

s
is decreasing and Tm ≤ Th(x, t) ≤ Tf , from (13) we have y1 ≤ yh

(
x

Xh(t)

)
≤ y0,

for all h > 0. From (6) follows that

|P ′
(
y2h

(
x

Xh(t)

))
| ≤ 1

2λy1km

where km = min {k(T ), Tm ≤ T ≤ Tf}. Taking into account (29), (30), (53) and Lemma 6
we have

|y′h
(

x
Xh(t)

) 1

Xh(t)
| ≤ 1
√
πt
[
1− erf

(
v1√
2

)] .
Then for x ∈ [0, Xh(t)) results

|∂T̃h(x, t)
∂x

| ≤ y0

λy1km
√
πt
[
1− erf

(
v1√
2

)] .
Summaring, for all h > 0 and x ∈ [0, X∞(t)] we obtain

|∂T̃h(x, t)
∂x

| ≤M = max

 α
√

2γ∞

2k(Tf )
√
t
,

y0

λy1km
√
πt
[
1− erf

(
v1√
2

)]


and this precisely the assertion of the lemma.

Lemma 9 We have lim
h→+∞

T̃h(x, t) = T∞(x, t) for each t > 0 and x ∈ [0, X∞(t)] .

Proof. Let t > 0 and x ∈ [0, X∞(t)). By Corollary 7 there exists h0 = h0(x) > 0 such that
x ∈ [0, Xh(t)] for all h ≥ h0. We consider T̃h(x, t) for h ≥ h0 we have

T̃h(x, t) = Th(x, t) = P
((
ϕ2h

(
ϕ−11h (x/Xh(t))

))2)
. (74)

Taking into account Lemma 6, Corollary 7, (53) and (54) we obtain that the sequence
{Th(x, t)} converges to T∞(x, t). If x = X∞(t) then T̃h(X∞(t), t) = Tf = T∞(X∞(t), t).

Hence, the sequence {T̃h(x, t)} converges to T∞(x, t) pointwise on [0, X∞(t)] for each
t > 0.

Theorem 10 For each t > 0 we have the family of functions {T̃h} converges uniformly to
T∞ for h −→ +∞ on [0, X∞(t)].

Proof. By Lemma 8, for any t > 0 the functions T̃h(x, t) are equicontinuous on [0, X∞(t)]
and from Lemma 9 converges pointwise to T∞(x, t) for h −→ +∞. Then, by Ascoli Arzela
lemma we obtain their uniform convergence on [0, X∞(t)].
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4 Conclusions

One phase nonlinear, one-dimensional Stefan problems for a semi-infinite material x > 0,
with phase change temperature Tf has been considered with the assumption of a Storm’s
condition for the heat capacity and thermal conductivity and a convective condition at
the fixed face. Existence and uniqueness of a similarity type solution has been obtained.
Moreover, the convergence of this problem to problem with temperature condition at the
fixed face when h→ +∞ has been proved.
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