Nonlinear Stefan problem with convective boundary condition in Storm's materials^{*}

Adriana C. BRIOZZO⁽¹⁾⁽²⁾- María F. NATALE⁽¹⁾

 (1) Depto. de Matemática, F.C.E.,Univ. Austral, Paraguay 1950, S2000FZF Rosario, ARGENTINA.
 (2) CONICET
 E-mail: abriozzo@austral.edu.ar , fnatale@austral.edu.ar

Abstract

We consider a nonlinear one-dimensional Stefan problem for a semi-infinite material x > 0, with phase change temperature T_f . We assume that the heat capacity and the thermal conductivity satisfy a Storm's condition and we assume a convective boundary condition at the fixed face x = 0. An unique explicit solution of similarity type is obtained. Moreover, asymptotic behavior of the solution when $h \to +\infty$ is studied.

Key Words: Stefan problem, free boundary problem, phase-change process, similarity solution

AMS Subject Classification: 35R35, 80A22, 35C05.

1 Introduction

As in [4, 8, 10] we consider the following one phase nonlinear unidimensional Stefan problem for a semi-infinite material x > 0, with phase change temperature T_f

$$s(T)\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left[k(T)\frac{\partial T}{\partial x} \right] \quad , \quad 0 < x < X(t) \quad , \quad t > 0 \quad , \tag{1}$$

$$k(T(0,t))\frac{\partial T}{\partial x}(0,t) = \frac{h}{\sqrt{t}}[T(0,t) - T_m] , \ h > 0 , \ t > 0 ,$$
(2)

$$T(X(t),t) = T_f , (3)$$

^{*}All correspondence concerning this paper should be sent to first author.

$$k(T_f)\frac{\partial T}{\partial x}(X(t),t) = \alpha \stackrel{\bullet}{X}(t) , \quad t > 0 \quad , \tag{4}$$

$$X(0) = 0 \tag{5}$$

where the positive constant α is ρL , L is the latent heat of fusion of the medium, ρ is the density (assumed constant), T_m is the temperature of the medium $T_m < T(0,t) < T_f$ and h_0 is the positive heat transfer coefficient.

We assume that the metal exhibits nonlinear thermal characteristics such that the heat capacity $c_p(T) > 0$ and the thermal conductivity k(T) > 0 satisfy a Storm's condition [1, 2, 5, 6, 7, 9]

$$\frac{\frac{d}{dT}\left(\sqrt{\frac{s(T)}{k(T)}}\right)}{s(T)} = \lambda = const. > 0 , \qquad (6)$$

where $s(T) = \rho c_p(T)$.

Condition (6) was originally obtained by [9] in an investigation of heat conduction in simple monoatomic metals. There, the validity of the approximation (6) was examined for aluminium, silver, sodium, cadium, zinc, copper and lead.

In [7] the free boundary problem (1) – (6) (fusion case) for the particular case $k(T) = \rho c / (a + bT)^2$ and $s(T) = \rho c$ = constant was studied. The explicit solution of this problem was obtained through the unique solution of an integral equation with time as a parameter. A similar case with the constant temperature at the fixed face x = 0 was also studied.

In [2] two nonlinear Stefan problems analogous to (1)-(5) with phase change temperature T_f and the Storm's condition (6) are considered. In one case a heat flux boundary condition of the type $q(t) = \frac{q_0}{\sqrt{t}}$ and in the other case a temperature boundary condition $T = T_s < T_f$ at the fixed face x = 0 are assumed. Solutions of similarity type are obtained in both cases and the equivalence of the two problems is demonstrated.

The goal of this paper is to determine the temperature T = T(x, t) and the position of the phase change boundary at time t, X = X(t), which satisfy the problem (1) - (6). In the section 2 we show how to find a unique solution of the similarity type for this problem. In Section 3 we study the asymptotic behavior when $h \to +\infty$. We prove that the solutions $T = T_h(x, t), X = X_h(t)$ of (1) - (5) converges to the solution $T = T_{\infty}(x, t), X = X_{\infty}(t)$ of an analogous Stefan problem with temperature condition $T(0, t) = T_m$ when $h \to +\infty$.

2 Existence and uniqueness of the solution to the Stefan problem with convective boundary condition on the fixed face

We consider the problem (1) - (6) and we propose a similarity type solution given by [2, 3, 4]

$$T(x,t) = \Phi(\xi) , \ \xi = \frac{x}{X(t)}$$
 (7)

where

$$X(t) = \sqrt{2\gamma t} \quad , \ t > 0 \tag{8}$$

is the free boundary and γ is assumed a positive constant to be determined.

Then we have that the problem (1) - (5) is equivalent to

$$k(\Phi)\Phi''(\xi) + k'(\Phi)\Phi'^{2}(\xi) + \gamma s(\Phi)\Phi'(\xi)\xi = 0 \quad , \quad 0 < \xi < 1 \quad , \tag{9}$$

$$k(\Phi(0))\Phi'(0) = h\sqrt{2\gamma}[\Phi(0) - T_m], \qquad (10)$$

$$\phi(1) = T_f , \qquad (11)$$

$$k(\Phi(1))\Phi'(1) = \alpha\gamma . \tag{12}$$

If we define

$$y(\xi) = \sqrt{\frac{k}{s} \left(\Phi(\xi)\right)} , \qquad (13)$$

then a parametrization of the Storm condition (6) is

$$s(\Phi) = -\frac{1}{\lambda y^2} \frac{dy}{d\Phi} , \quad k(\Phi) = -\frac{1}{\lambda} \frac{dy}{d\Phi}$$
 (14)

and then we have that the following problem is equivalent to (9) - (12)

$$\frac{d^2 y}{d\xi^2} + \frac{\gamma \xi}{y^2} \frac{dy}{d\xi} = 0 \quad , \quad 0 < \xi < 1 \quad , \tag{15}$$

$$y'(0) = -\lambda h \sqrt{2\gamma} \left[P(y^2(0)) - T_m \right] , \qquad (16)$$

$$y'(1) = -\alpha \lambda \gamma , \qquad (17)$$

$$y(1) = y_1 = \sqrt{\frac{k(T_f)}{s(T_f)}}$$
 (18)

where P is the inverse function of the decreasing function $\frac{k}{s}$.

Lemma 1 A parametric solution to the problem (15) - (18) is given by

$$\xi = \varphi_1(u) = \frac{F_{u_0}(u)}{F_{u_0}(u_1)},\tag{19}$$

$$y = \varphi_2(u) = \frac{\sqrt{\gamma}\sqrt{\frac{\pi}{2}} \left[erf\left(\frac{u}{\sqrt{2}}\right) - g\left(\frac{u_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right) \right]}{F_{u_0}(u_1)},$$
(20)

for

 $u_0 \le u \le u_1$

where the function $F_{u_0} = F_{u_0}(u)$ was defined in [2] as follow

$$F_{u_0}(u) = \exp(-\frac{u^2}{2}) + u\left(\int_{u_0}^u \exp(-\frac{z^2}{2})dz - \frac{\exp(-\frac{u_0^2}{2})}{u_0}\right) = \sqrt{\frac{\pi}{2}}u\left[g\left(\frac{u}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right) - g\left(\frac{u_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right)\right], \ u \ge u_0$$

where u_0 , u_1 are the parameter values which verify that $\xi = \varphi_1(u_0) = 0$ and $\xi = \varphi_1(u_1) = 1$,

$$g(x,p) = erf(x) + p\frac{\exp(-x^2)}{x}, \ p > 0, \ x > 0$$
(21)

and

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp(-z^2) dz, \ x > 0.$$

The unknowns γ , u_0 and u_1 must verify the following system of equations

$$u_{0} = \sqrt{2\lambda}h \left[P\left(\frac{\gamma exp(-u_{0}^{2})}{\left[u_{0}F_{u_{0}}(u_{1})\right]^{2}}\right) - T_{m} \right],$$
(22)

$$\sqrt{\gamma} = \frac{\exp(-\frac{u_1^2}{2})}{\sqrt{\frac{\pi}{2}}\alpha\lambda \left[g\left(\frac{u_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right) - erf\left(\frac{u_1}{\sqrt{2}}\right)\right]} \tag{23}$$

$$y_1 = \frac{-\exp(-\frac{u_1}{2})}{\alpha \lambda F_{u_0}(u_1)}$$
(24)

Proof. A parametric solution of (15) was deduced in [4] and it is given by

$$\xi = \varphi_1(u) = C_2 \left(\exp(-\frac{u^2}{2}) + u \left(\int_0^u \exp(-\frac{x^2}{2}) dx + C_1 \right) \right)$$
(25)

$$y = \varphi_2(u) = \sqrt{\gamma} C_2 \left(\int_0^u \exp(-\frac{x^2}{2}) dx + C_1 \right), \ u > 0$$
 (26)

where C_1 and C_2 are integration constants to be determined.

We choose u_0 and u_1 be such that $\varphi_1(u_0) = 0$ and $\varphi_1(u_1) = 1$, we obtain that

$$C_1 = -\frac{\exp(-\frac{u_0^2}{2})}{u_0} - \int_0^{u_0} \exp(-\frac{x^2}{2})dx , \qquad (27)$$

$$C_2 = \left\{ \exp(-\frac{u_1^2}{2}) + u_1 \left(-\frac{\exp(-\frac{u_0^2}{2})}{u_0} + \int_{u_0}^{u_1} \exp(-\frac{x^2}{2}) dx \right) \right\}^{-1}.$$
 (28)

Then, we have

$$\xi = \varphi_1(u) = \frac{\exp(-\frac{u^2}{2}) + u\left(\int_{u_0}^u \exp(-\frac{x^2}{2})dx - \frac{\exp(-\frac{u^2}{2})}{u_0}\right)}{\exp(-\frac{u^2}{2}) + u_1\left(-\frac{\exp(-\frac{u^2}{2})}{u_0} + \int_{u_0}^u \exp(-\frac{x^2}{2})dx\right)}, \ u_0 \le u \le u_1$$
(29)

and

$$y = \varphi_2(u) = \frac{\sqrt{\gamma} \left\{ -\frac{\exp(-\frac{u_0^2}{2})}{u_0} + \int_{u_0}^{u} \exp(-\frac{x^2}{2}) dx \right\}}{\exp(-\frac{u_1^2}{2}) + u_1 \left(-\frac{\exp(-\frac{u_0^2}{2})}{u_0} + \int_{u_0}^{u} \exp(-\frac{x^2}{2}) dx \right)}, \ u_0 \le u \le u_1$$
(30)

that is (15) - (18).

Next we prove that the unknowns u_0 , u_1 and γ must satisfy (22) - (24). From (29) and (30) we have

$$y'(\xi) = \frac{\varphi_2'(u)}{\varphi_1'(u)} = \frac{\sqrt{\gamma} \exp(-\frac{u^2}{2})}{\int\limits_{u_0}^{u} \exp(-\frac{x^2}{2}) dx - \frac{\exp(-\frac{u^2}{2})}{u_0}}$$
(31)

then

$$y'(0) = -\sqrt{\gamma}u_0 \tag{32}$$

and taking into account that

$$y(0) = \frac{-\sqrt{\gamma}exp(-\frac{u_0^2}{2})}{u_0F_{u_0}(u_1)}$$

and from (16) we have (22).

Analogously we have

$$y'(1) = \frac{\varphi_2'(u_1)}{\varphi_1'(u_1)} = \frac{\sqrt{\gamma} \exp(-\frac{u_1^2}{2})}{\int\limits_{u_0}^{u_1} \exp(-\frac{x^2}{2}) dx - \frac{\exp(-\frac{u_0^2}{2})}{u_0}}$$
(33)

and by (17) we have

$$\frac{\sqrt{\gamma} \exp(-\frac{u_1^2}{2})}{\int\limits_{u_0}^{u_1} \exp(-\frac{x^2}{2}) dx - \frac{\exp(-\frac{u_0^2}{2})}{u_0}} = -\alpha \lambda \gamma$$
(34)

that is (23). Last, we have

$$y(1) = \varphi_2(u_1) = \frac{\sqrt{\gamma} \left\{ -\frac{\exp(-\frac{u_0^2}{2})}{u_0} + \int_{u_0}^{u_1} \exp(-\frac{x^2}{2}) dx \right\}}{\exp(-\frac{u_1^2}{2}) + u_1 \left(-\frac{\exp(-\frac{u_0^2}{2})}{u_0} + \int_{u_0}^{u_1} \exp(-\frac{x^2}{2}) dx \right)}$$
(35)

and taking into account (18) and (23) we obtain (24). \blacksquare

Next we want to find u_0 , u_1 and γ the solutions to the equations (22) - (24). We can rewrite the system (22) - (24) as follow

$$P^{-1}\left(\frac{u_0}{\sqrt{2}h\lambda} + T_m\right) = \frac{\gamma exp(-u_0^2)}{\left[u_0 F_{u_0}(u_1)\right]^2}$$
(36)

$$\sqrt{\gamma} = \frac{\exp(-\frac{u_1^2}{2})}{\alpha \lambda \sqrt{\frac{\pi}{2}} \left[g\left(\frac{u_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right) - erf\left(\frac{u_1}{\sqrt{2}}\right) \right]}$$
(37)

$$M(u_1) = g\left(\frac{u_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right) \tag{38}$$

where

$$M(x) = g\left(\frac{x}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\left(\frac{1}{\alpha\lambda y_1} + 1\right)\right)$$
(39)

Lemma 2 The real function F_{u_0} and M satisfy the following properties:

$$F_{u_0}(u_0) = 0, \ F(+\infty) = -\infty$$
 (40)

$$F'_{u_0}(x) = \frac{\sqrt{\pi}}{2} \left\{ erf\left(\frac{x}{\sqrt{2}}\right) - g\left(\frac{u_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right) \right\} < 0$$

$$\tag{41}$$

$$M(0) = +\infty, \quad M(+\infty) = 1 \quad and \quad M'(x) < 0.$$
 (42)

Proof. See [1] and [2]. \blacksquare

Lemma 3 (Existence of the solution)

There exists a solution of the system (36) - (38) given by

$$\tilde{u}_1 = M^{-1} \left(g\left(\frac{\tilde{u}_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right) \right) \tag{43}$$

$$\tilde{\gamma} = \frac{\exp(-\tilde{u}_1^2)}{\alpha^2 \lambda^2 \left(\frac{\exp(-\frac{\tilde{u}_0^2}{2})}{\tilde{u}_0} - \int_{\tilde{u}_0}^{\tilde{u}_1} \exp(-\frac{x^2}{2}) dx\right)^2}$$
(44)

where \tilde{u}_0 is a solution of

$$P^{-1}\left(\frac{u_0}{\sqrt{2}h\lambda} + T_m\right) = \frac{\gamma exp(-u_0^2)}{\left[u_0 F_{u_0}\left(M^{-1}\left(g\left(\frac{u_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right)\right)\right)\right]^2}.$$
(45)

Proof. Because M is a decreasing function there exists the inverse function M^{-1} and from (38) for each u_0 there exists a unique u_1 given by

$$u_1(u_0) = M^{-1}\left(g\left(\frac{u_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right)\right).$$
(46)

If we replace (46) in (37) and (36) we have

$$\gamma(u_0) = \frac{\exp(-u_1^2(u_0))}{\alpha^2 \lambda^2 \left(\frac{\exp(-\frac{u_0^2}{2})}{u_0} - \int_{u_0}^{u_1(u_0)} \exp(-\frac{x^2}{2}) dx\right)^2}$$
(47)

and

$$P^{-1}\left(\frac{u_0}{\sqrt{2}h\lambda} + T_m\right) = \frac{\gamma(u_0)exp(-u_0^2)}{\left[u_0F_{u_0}(u_1(u_0))\right]^2}.$$
(48)

We define the function

$$G(u_0) := P^{-1} \left(\frac{u_0}{\sqrt{2h\lambda}} + T_m \right)$$

which satisfies $G(0) = \frac{k}{s}(T_m)$ and $G'(u_0) < 0$, and let

$$H(u_0) := \frac{\gamma(u_0)exp(-u_0^2)}{\left[u_0F_{u_0}(u_1(u_0))\right]^2}$$

From (24), (46) and (47) it follows that

$$H(u_0) = \frac{2y_1^2 exp(-u_0^2)}{u_0^2 \pi \left[erf\left(\frac{M^{-1}\left(g\left(\frac{u_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right)\right)}{\sqrt{2}}\right) - g\left(\frac{u_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right) \right]^2}$$

 $H(0) = y_1^2, \ H(+\infty) = +\infty \text{ and } H(u_0) \ge y_1^2, \forall u_0 \ge 0.$ Since $T_m < T_f$ we conclude $G(0) = \frac{k}{s}(T_m) > \frac{k}{s}(T_f) = y_1^2 = H(0).$ Taking into account that the properties of G and H there exists $\tilde{u}_0 < u_0^* = (T_f - T_m)\sqrt{2}h\lambda$ which satisfies (48). Then by (46) and (47) we complete the solution $\tilde{u}_1 = u_1(\tilde{u}_0)$ and $\tilde{\gamma}_{\pm}\gamma(\tilde{u}_0)$ to the system (36) - (38).

Lemma 4 (Uniqueness of the solution)

The solution $(\tilde{u}_0, \tilde{u}_1, \tilde{\gamma})$ to the system (22) - (24) is unique.

Proof. Suppose the assertion of the lemma is false. That is there exist two solutions $(\tilde{u}_0, \tilde{u}_1, \tilde{\gamma})$ and (u_0^*, u_1^*, γ^*) to (22) - (24).

We assume that $\tilde{u}_0 < u_0^*$, then by (19) we have

$$\xi = \frac{F_{u_0^*}(u)}{F_{u_0^*}(u_1^*)} = \frac{F_{\tilde{u}_0}(u)}{F_{\tilde{u}_0}(\tilde{u}_1)}, \qquad for \qquad u_0^* \le u \le \min(\tilde{u}_1, u_1^*).$$
(49)

For $u = u_0^*$ we have

$$0 = \frac{F_{u_0^*}(u_0^*)}{F_{u_0^*}(u_1^*)} = \frac{F_{\tilde{u}_0}(u_0^*)}{F_{\tilde{u}_0}(\tilde{u}_1)}$$
(50)

then $F_{\tilde{u}_0}(u_0^*) = 0$. This is a contradiction because $F_{\tilde{u}_0}(u_0^*) = 0$ if and only if $u = \tilde{u}_0$. **Theorem 5** The problem (1) – (6) has a similarity type solution given by

$$T(x,t) = P\left(\left(\varphi_2\left(\varphi_1^{-1}\left(x/X(t)\right)\right)\right)^2\right), \qquad 0 < x < X(t)$$
(51)

where

$$X(t) = \sqrt{2\tilde{\gamma}t}, \quad t > 0 \tag{52}$$

is the free boundary,

$$\varphi_1(u) = \frac{F_{\tilde{u}_0}(u)}{F_{\tilde{u}_0}(\tilde{u}_1)},\tag{53}$$

$$\varphi_2(u) = \frac{\sqrt{\tilde{\gamma}}\sqrt{\frac{\pi}{2}} \left[erf\left(\frac{u}{\sqrt{2}}\right) - g\left(\frac{\tilde{u}_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right) \right]}{F_{\tilde{u}_0}(\tilde{u}_1)},\tag{54}$$

 $(\tilde{u}_0, \tilde{u}_1, \tilde{\gamma})$ is the unique solution of (22) – (24) and $P = \left(\frac{k}{s}\right)^{-1}$ is the inverse function of the function $\frac{k}{s}$.

Proof. Fixed the data: α , λ , h, T_f of the problem (1) - (6), we obtain the solutions of the equations (22) - (24) given by (43), (44) and \tilde{u}_0 is the solution of (45).

Next, we obtain φ_1 and φ_2 given by (53), (54) respectively and the free boundary is $X(t) = \sqrt{2\tilde{\gamma}t}$. Taking into account that φ_1 is an increasing function we determine $\varphi_1^{-1}\left(\frac{x}{X(t)}\right)$. Finally, we invert the relation (13) and from (7) we obtain (51).

Remark 1 Si $T(0,t) = T_s$ is constant, the convective condition (2) at the fixed face x = 0 of the problem (1) - (6) becomes a Neumann boundary condition given by

$$k(T(0,t))\frac{\partial T}{\partial x}(0,t) = \frac{q_0}{\sqrt{t}}$$
(55)

with

$$q_0 = h[T_s - T_m]$$

The Stefan problem (1) - (6) with the condition (55) instead (2) was studied in [2].

3 Asymptotic behavior of the solution when $h \to +\infty$

Let h > 0 and $T = T_h(x,t), X = X_h(t)$ denote the solution to the problem (1) - (6) given by (51) - (54). We will study the behavior of this solution when the transfer coefficient $h \to +\infty$. We will prove that T_h, X_h converges to the solution T_∞, X_∞ of the following parabolic free boundary problem:

$$s(T)\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left[k(T)\frac{\partial T}{\partial x} \right] \quad , \quad 0 < x < X(t) \quad , \quad t > 0 \quad , \tag{56}$$

$$T(0,t) = T_m , t > 0 ,$$
 (57)

$$T(X(t),t) = T_f, t > 0$$
, (58)

$$k(T_f)\frac{\partial T}{\partial x}(X(t),t) = \alpha \stackrel{\bullet}{X}(t) , \quad t > 0 \quad , \tag{59}$$

$$X(0) = 0 \tag{60}$$

with the Storm's condition

$$\frac{\frac{d}{dT}\left(\sqrt{\frac{s(T)}{k(T)}}\right)}{s(T)} = \lambda .$$
(61)

The problem (56) - (61) was studied in [2]. The solution is given by

$$T_{\infty}(x,t) = P\left(\left(\varphi_{2\infty}\left(\varphi_{1\infty}^{-1}\left(x/X_{\infty}(t)\right)\right)\right)^{2}\right)$$
(62)

$$X_{\infty}(t) = \sqrt{2\gamma_{\infty}t} \tag{63}$$

where

$$\varphi_{1\infty}(u) = \frac{F_{v_0}(u)}{F_{v_0}(v_1)},\tag{64}$$

$$\varphi_{2\infty}(u) = \frac{\sqrt{\gamma_{\infty}}\sqrt{\frac{\pi}{2}} \left[erf\left(\frac{u}{\sqrt{2}}\right) - g\left(\frac{v_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right) \right]}{F_{v_0}(v_1)}$$
(65)

with $v_0 \leq u \leq v_1$. The parameters v_0, v_1 and γ_{∞} satisfy the following equations

$$y_1 = \sqrt{\gamma_{\infty}} \frac{F_{v_0}(v_1) - exp\left(-\frac{v_1^2}{2}\right)}{v_1 F_{v_0}(v_1)}$$
(66)

$$\sqrt{\gamma_{\infty}} = \frac{v_1 y_1}{1 + \alpha \lambda y_1} \tag{67}$$

$$\frac{k}{s}(T_m) = y_0 = -\sqrt{\gamma_\infty} \frac{exp\left(-\frac{v_0^2}{2}\right)}{v_0 F_{v_0}(v_1)}$$
(68)

which are equivalent to

$$\frac{k}{s}(T_m) = H(v_0) = \frac{2y_1^2 exp(-v_0^2)}{v_0^2 \pi \left[erf\left(\frac{M^{-1}\left(g\left(\frac{v_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right)\right)}{\sqrt{2}}\right) - g\left(\frac{v_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right) \right]^2}$$
(69)

$$\sqrt{\gamma_{\infty}} = \frac{\exp(-\frac{v_1^2}{2})}{\alpha\lambda\sqrt{\frac{\pi}{2}}\left[g\left(\frac{v_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right) - erf\left(\frac{v_1}{\sqrt{2}}\right)\right]}$$
(70)

$$v_1 = M^{-1}\left(g\left(\frac{v_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right)\right).$$
(71)

For simplicity of notation, we wright $(u_{0h}, u_{1h}, \gamma_h)$ instead of $(\tilde{u}_{0h}, \tilde{u}_{1h}, \tilde{\gamma}_h)$ which is the solution of (36) - (38). Firstly we will prove that $(u_{0h}, u_{1h}, \gamma_h)$ converges to $(v_0, v_1, \gamma_\infty)$ when $h \to +\infty$. The proof of this statement is based on the following lemma:

Lemma 6 The sequences $\{u_{0h}\}, \{u_{1h}\}$ and $\{\gamma_h\}$ are increasing and bounded. Moreover

$$\lim_{h \to +\infty} u_{0h} = v_0, \quad \lim_{h \to +\infty} u_{1h} = v_1, \quad and \quad \lim_{h \to +\infty} \gamma_h = \gamma_{\infty}.$$

Proof. From properties of function $G = G_h(x) = P^{-1}\left(\frac{x}{\sqrt{2}h\lambda} + T_m\right)$ we have

a) $h_1 \le h_2 \Rightarrow G_{h_1}(x) \le G_{h_2}(x), \quad \forall x \ge 0$

b)
$$G_h(x) \leq \frac{\kappa}{s}(T_m), \quad \forall x \geq 0, \quad h > 0.$$

We consider $h_1 < h_2$, if u_{0h_1} and u_{0h_2} are the solutions of $G_{h_1}(x) = H(x)$ and $G_{h_2}(x) = H(x)$ respectively, by a) and properties of function H we have that $u_{0h_1} < u_{0h_2}$. Moreover from b) results $u_{0h} \leq v_0$ for all h > 0. Then, $\{u_{0h}\}$ is an increasing bounded sequence and there exists \tilde{u}_0 such that

$$\lim_{h \to +\infty} u_{0h} = \tilde{u_0}$$

Letting $h \to +\infty$ on $G_h(u_{0h}) = H(u_{0h})$ yields $\frac{k}{s}(T_m) = H(\tilde{u_0})$. By uniqueness of the solution of (69) results $\tilde{u_0} = v_0$.

From (38) we have

$$u_{1h} = M^{-1} \left(g\left(\frac{u_{0h}}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right) \right)$$
(72)

Because $\{u_{0h}\}$ is increasing, M and g are decreasing functions we have that the sequence $\{u_{1h}\}$ is increasing. Moreover taking into account $u_{0h} \leq v_0$ and (71) follows

$$u_{1h} = M^{-1}\left(g\left(\frac{u_{0h}}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right)\right) \le M^{-1}\left(g\left(\frac{v_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right)\right) = v_1$$

for all h > 0.

By (72) we obtain

$$\lim_{h \to +\infty} u_{1h} = \lim_{h \to +\infty} M^{-1} \left(g\left(\frac{u_{0h}}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right) \right) = M^{-1} \left(g\left(\frac{v_0}{\sqrt{2}}, \frac{1}{\sqrt{\pi}}\right) \right) = v_1.$$

Finally, letting $h \to +\infty$ in (37) we have

$$\lim_{h \to +\infty} \gamma_h = \gamma_\infty.$$

It follows easily of (37) and (38) that $\sqrt{\gamma_h} = \frac{u_{1h}y_1}{1 + \alpha\lambda y_1}$. Taking into account $u_{1h} \leq v_1$ we have

$$\sqrt{\gamma_h} = \frac{u_{1h}y_1}{1 + \alpha\lambda y_1} \le \frac{v_1y_1}{1 + \alpha\lambda y_1} = \sqrt{\gamma_\infty} \quad \forall h > 0.$$

Corollary 7 For each t > 0, the sequence $\{X_h(t)\}$ is monotonically increasing and $\lim_{h \to +\infty} X_h(t) = X_{\infty}(t)$.

We can now define an extension $\tilde{T}_h = \tilde{T}_h(x,t) \in C^1[0, X_\infty(t)]$ of $T_h(x,t)$ as follows

$$\tilde{T}_h(x,t) = \begin{cases} T_h(x,t) & if \quad 0 \le x < X_h(t) \\ \frac{\alpha\sqrt{2\gamma_h}}{2k(T_f)\sqrt{t}} \left(x - X_h(t)\right) + T_f & if \quad X_h(t) \le x \le X_\infty(t) \end{cases}$$
(73)

Lemma 8 The functions $\tilde{T}_h \in C^1[0, X_\infty(t))]$ satisfy $|\frac{\partial \tilde{T}_h}{\partial x}| \leq M$ on $[0, X_\infty(t)]$ for all h > 0, t > 0.

Proof. Let t > 0 and $x \in [0, X_{\infty}(t)]$. If $x \in [X_h(t), X_{\infty}(t)]$ then

$$\left|\frac{\partial \tilde{T}_h(x,t)}{\partial x}\right| = \frac{\alpha \sqrt{2\gamma_{\infty}}}{2k(T_f)\sqrt{t}}$$

For otherwise, this is $x \in [0, X_h(t))$ according to (7) and (13) we have

$$\frac{\partial \tilde{T}_h}{\partial x}(x,t) = P'\left(y_h^2\left(\frac{x}{X_h(t)}\right)\right) 2y_h\left(\frac{x}{X_h(t)}\right)y_h'\left(\frac{x}{X_h(t)}\right)\frac{1}{X_h(t)}$$

Since $\frac{k}{s}$ is decreasing and $T_m \leq T_h(x,t) \leq T_f$, from (13) we have $y_1 \leq y_h\left(\frac{x}{X_h(t)}\right) \leq y_0$, for all h > 0. From (6) follows that

$$|P'\left(y_h^2\left(\frac{x}{X_h(t)}\right)\right)| \le \frac{1}{2\lambda y_1 k_m}$$

where $k_m = \min \{k(T), T_m \leq T \leq T_f\}$. Taking into account (29), (30), (53) and Lemma 6 we have

$$|y_h'\left(\frac{x}{X_h(t)}\right)\frac{1}{X_h(t)}| \le \frac{1}{\sqrt{\pi t}\left[1 - erf\left(\frac{v_1}{\sqrt{2}}\right)\right]}$$

Then for $x \in [0, X_h(t))$ results

$$\left|\frac{\partial \tilde{T}_h(x,t)}{\partial x}\right| \le \frac{y_0}{\lambda y_1 k_m \sqrt{\pi t} \left[1 - erf\left(\frac{v_1}{\sqrt{2}}\right)\right]}$$

Summaring, for all h > 0 and $x \in [0, X_{\infty}(t)]$ we obtain

$$\left|\frac{\partial \tilde{T}_h(x,t)}{\partial x}\right| \le M = max \left\{ \frac{\alpha \sqrt{2\gamma_{\infty}}}{2k(T_f)\sqrt{t}}, \frac{y_0}{\lambda y_1 k_m \sqrt{\pi t} \left[1 - erf\left(\frac{v_1}{\sqrt{2}}\right)\right]} \right\}$$

and this precisely the assertion of the lemma. \blacksquare

Lemma 9 We have $\lim_{h \to +\infty} \tilde{T}_h(x,t) = T_\infty(x,t)$ for each t > 0 and $x \in [0, X_\infty(t)]$.

Proof. Let t > 0 and $x \in [0, X_{\infty}(t))$. By Corollary 7 there exists $h_0 = h_0(x) > 0$ such that $x \in [0, X_h(t)]$ for all $h \ge h_0$. We consider $\tilde{T}_h(x, t)$ for $h \ge h_0$ we have

$$\tilde{T}_{h}(x,t) = T_{h}(x,t) = P\left(\left(\varphi_{2h}\left(\varphi_{1h}^{-1}\left(x/X_{h}(t)\right)\right)\right)^{2}\right).$$
(74)

Taking into account Lemma 6, Corollary 7, (53) and (54) we obtain that the sequence $\{T_h(x,t)\}$ converges to $T_{\infty}(x,t)$. If $x = X_{\infty}(t)$ then $\tilde{T}_h(X_{\infty}(t),t) = T_f = T_{\infty}(X_{\infty}(t),t)$.

Hence, the sequence $\{T_h(x,t)\}$ converges to $T_{\infty}(x,t)$ pointwise on $[0, X_{\infty}(t)]$ for each t > 0.

Theorem 10 For each t > 0 we have the family of functions $\{\tilde{T}_h\}$ converges uniformly to T_{∞} for $h \longrightarrow +\infty$ on $[0, X_{\infty}(t)]$.

Proof. By Lemma 8, for any t > 0 the functions $\tilde{T}_h(x,t)$ are equicontinuous on $[0, X_{\infty}(t)]$ and from Lemma 9 converges pointwise to $T_{\infty}(x,t)$ for $h \longrightarrow +\infty$. Then, by Ascoli Arzela lemma we obtain their uniform convergence on $[0, X_{\infty}(t)]$.

4 Conclusions

One phase nonlinear, one-dimensional Stefan problems for a semi-infinite material x > 0, with phase change temperature T_f has been considered with the assumption of a Storm's condition for the heat capacity and thermal conductivity and a convective condition at the fixed face. Existence and uniqueness of a similarity type solution has been obtained. Moreover, the convergence of this problem to problem with temperature condition at the fixed face when $h \to +\infty$ has been proved.

5 Acknowledgment

This paper has been partially sponsored by the Proyect PIP No. 112-200801-00534 "Inecuaciones Variacionales, Control Optimo y Problemas de Frontera Libre: teoría, análisis numérico y aplicaciones", from CONICET-UA, Rosario-Argentina and Proyect: "Ecuaciones a derivadas parciales, inecuaciones variacionales elípticas, problemas de frontera libre y de control óptimo y aplicaciones", Universidad Austral Rosario-Argentina.

References

- Briozzo, A. C.; Natale, M. F.; Tarzia, D. A. Determination of unknown thermal coefficients for Storm's type materials through a phase-change process. *Int. J. of Nonlinear Mechanics* 1999, 34, 329-340.
- Briozzo, A. C.; Natale, M. F. One-Dimensional Nonlinear Stefan Problems in Storm's Materials. *Mathematics* 2014, 2, 1-11; doi:10.3390/math2010001.
- Carslaw, H. S.; Jaeger, J. C. Conduction of heat in solids, Clarendon Press, Oxford, 1965.
- Hill, J. M.; Hart, V. G. The Stefan problem in nonlinear heat conduction. J. Appl. Math. Phys. (ZAMP) 1986, 37, 206-229.
- Knight, J. H.; Philip, J. R. Exact solution in nonlinear diffusion. J. Engng Math. 1974, 8, 219-227.
- Natale, M. F.; Tarzia, D. A. Explicit solutions to the two-phase Stefan problem for Storm's type materials. J. Phys. A:Math. Gen 2000, 37, 395-404.
- Natale, M. F.; Tarzia, D. A. Explicit solution for a one-phase Stefan problem with temperature-dependent thermal conductivity. *Bolletino della Unione Matematica Italiana, UMI* 2006, (8) 9-B, 79-99.

- 8. Solomon, A. D.; Wilson, D. G.; Alexiades, V. Explicit solutions to phase change problems. *Quart. Appl.Math.* **1983**, *51*, 237-243.
- 9. Storm, M. L. Heat conduction in simple metals. J. Appl. Phys. 1951, 22, 940-951.
- 10. Tarzia, D. A., An inequality for the coefficient σ of the free boundary $s(t) = 2\sigma\sqrt{t}$ of the Neumann solution for the two-phase Stefan problem. *Quart. Appl. Math.* **1981**, *39*, 491-497.