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Hybridization and anisotropy in the exchange interaction in three-dimensional Dirac semimetals
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We study the Ruderman-Kittel-Kasuya-Yosida interaction in three-dimensional Dirac semimetals. Using
retarded Green’s functions in real space, we obtain and analyze asymptotic expressions for the interaction,
with magnetic impurities at different distances and relative angle with respect to high symmetry directions on the
lattice. We show that the Fermi velocity anisotropy in these materials produces a strong renormalization of the
magnitude of the interaction, as well as a correction to the frequency of oscillation in real space. Hybridization
of the impurities to different conduction electron orbitals are shown to result in interesting anisotropic spin-spin
interactions which can generate spiral spin structures in doped samples.
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I. INTRODUCTION

Dirac semimetals are fascinating new materials that can
be considered analogs of graphene in three dimensions.
They possess robust Dirac points that are protected by
crystalline symmetry, and strong spin-orbit interaction (SOI).
Na3Bi and Cd;As; are among these compounds, where the
unconventional Dirac character was detected in angle resolved
photoemission and transport experiments [1-5]. Many more
materials have been proposed as promising candidates [6].
When time-reversal or inversion symmetry is broken, the
degeneracy of each Dirac cone splits without the opening
of a gap, leading to the Weyl semimetal phase. The latter
phase is characterized by unconventional properties, such as
a chiral anomaly and Fermi arcs on the surfaces, as recently
measured in TaAs [7-9], NbAs [10], and NbP [11]. These
unusual properties suggest that magnetic impurities can reveal
exotic behavior, as predicted, for instance, for the Kondo
effect [12-14].

Impurities are ubiquitous in the preparation of experimental
samples and they can also be purposely introduced by different
processes. It is well known that in metallic hosts, magnetic
impurities interact effectively through the electron gas, and that
this interaction has an oscillatory decay when the separation
between them is increased. This Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction [15-17] gets more complicated
when the host material has a more involved band structure
and/or additional degrees of freedom. For instance, graphene
is predicted to have an unconventional decay dependence
for the charge neutral case [18,19]. Strong SOI can also
affect the behavior, giving rise to spin-spin interactions that
contain anisotropic terms such as Ising and Dzyaloshinskii-
Moriya (DM) interactions on top of the usual Heisenberg-like
terms [20].

In this work we study the RKKY interaction in three-
dimensional (3D) Dirac semimetals, focusing on Na;Bi
and CdsAs;, two compounds with strong Fermi velocity
anisotropy [1,3]. Starting with alow energy model, we consider
magnetic impurities that hybridize with Na-s and Bi- p orbitals,
the most relevant near the band crossings that build the Dirac
points [21]. We obtain asymptotic expressions for the in-
teraction, and analyze its behavior as a function of the
impurity separation as related to the underlying lattice. The
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role of the SOI in these materials manifests uniquely when
each impurity hybridizes with a different conduction electron
orbital, resulting in strong interaction anisotropies. We also
show that Dirac dispersion anisotropies seen in these materials
have strong impact on the amplitude and spatial dependence
of the effective exchange interaction.

II. MODEL

Two magnetic impurities coupled to an electron gas can be
described by the Hamiltonian

H=Hy+J Y S; s(R)), (1
j=1.2

where H) is the unperturbed Hamiltonian for the host material,
s(ry=>_,8(r —r;)o;, in units of %, is the spin density
operator for the conduction electrons, where r; and o; are
the position and Pauli matrices for electron i. §; is the
localized spin operator for impurity j. At second order in
perturbation theory in the interaction parameter J, one can
obtain an effective Hamiltonian that describes the carrier
mediated interaction between the impurities separated by a
distance vector R

Hykxy = 12 ) S 5 (R) S5 ©))

2%

where x,, - is the static spin susceptibility tensor of the elec-
tron gas, and pu,u represent the Cartesian components [22].
For conventional electron gases, and in the absence of SOI, the
susceptibility tensor is diagonal so that the effective spin-spin
coupling is isotropic. Moreover, the interaction decays as
IR|=P, where D is the dimensionality of the system [23].
When the SOI is present, anisotropic components of Ising
and/or DM type may appear [20]. Additionally, the presence of
particular features in the band structure, such as Dirac points,
may change the decay exponent (e.g., in graphene, |[R|™> at
the Dirac point [18,19]).

A convenient way to calculate the 7 = 0 spin susceptibility
for a system with SOI is via the real space retarded Green’s
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FIG. 1. Lattice structure of Na;Bi in the xy plane (left) with
dashed lines denoting different symmetry directions. Na3;Bi unit
cell [24] with a magnetic impurity in its center as a possible location
(right).

functions [20],
1 “r
quﬁ'(R) =——Im Tr/ 0,G*PR,w")
, T oo 3

X oMrGﬁ'“(—R,a)+)dw,

where ™ = w +i0", wr is the Fermi energy, and the trace
is over spin components. @ and B denote sets of additional
degrees of freedom (other than spin) that characterize the host.

Figure 1 shows the hexagonal Na3Bi lattice structure in the
xy plane and its unit cell. Following the low-energy model
introduced in Ref. [21] for Na3;Bi, and applicable to Cd3As;
with appropriate parameters, the Hamiltonian up to second
order in momentum is

H = ey(k)t900 + M(k)T,00 + Alky T 0, — kyTy00), (4)

where  €g(k) = Co + CikZ + Co(k +K3),  M(k) = My —
M lkzz — Mz(kf + ki), and C;, M;, A are material dependent
parameters [25]. In the case of Na3Bi, the Hamiltonian is
expressed in the basis of relevant orbitals around the linear
band crossings: (|S,1),|P,2),|S, — 1),|P, — 3)), where S
and P stand for bonding and antibonding orbitals between two
Na-3s and Bi-6p atoms related by inversion symmetry [21].
The second quantum number in the kets indicates the z
projection of the total angular momentum, upon consideration
of the atomic SOI. Notice that the most relevant p-like states
near the Dirac points correspond to j = % and m; = :i:%,
where j(j + 1) and m are eigenvalues of total atomic angular
momentum operators J> and J,, respectively. The Pauli
matrices T and o act in the S — P (orbital) and total angular
momentum spaces, respectively. There are two Dirac points
at K*' = (0,0, & /My/M;), protected by the crystalline
symmetry. One can expand the Hamiltonian around these two
points to get an effective low-energy model. In dimensionless
form

H(k) = Aq;v; 7,00 + vo(ky Tx0; — kyT)YUO)v (5)

where « = (ky,ky,q;), the energy is expressed in terms of
A/a = 0.451eV for Na3Bi; in what follows, all the energies
will be expressed in this scale. k., k, are in units of the inverse
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lattice spacing 1/a (a >~ 5.45 A); ¢, is the momentum in the
z direction, measured from the Dirac points and in units of
1/c(c ~9.65 A). The factor A >~ 0.25 characterizes the Fermi
velocity anisotropy in the z direction [1] (A 2~ 0.25 for Cd3As;
as well [3]). The Pauli matrices v operate in the valley degree
of freedom.

From this Hamiltonian we obtain the Green’s function
matrix in momentum space G(k,w) = [w* — H(k)]™'. In the
present case, G is an 8 x 8 matrix containing orbital, angular
momentum, and valley degrees of freedom. This matrix is
block diagonal, and the inversion is simply calculated as an
inversion of several 2 x 2 blocks. One gets

Gk,0) = p(k,0) [0t + H(r)], (6)

where p(k,w) = a)i — k)% — kg — kzqf. It is convenient to
separate the Green’s function in terms of the only two spin
matrices in H, as [20]

G(k) = Go(k)oo + G (K)o, (N

with
Go(k) = p(ic,w) [wy + Aq.v, T, — k sinfprot,],  (8)

G (k) = pic,w) "k cos Gy, ©)

where we have introduced cylindrical coordinates k =
(kﬁ—l—ki)% and 6 = arctan (k,/k;). One can make fur-
ther advances in determining the terms generated by the
trace operation. As the Fourier transform does not change
the spin character of the Green’s function, Eq. (3) will
have terms of the form Tr[GY”(R)o, + GZP(R)o,0.] x
[Gg’a(—R)our —i—Gf’a(—R)ouroz]. Then, we can write
X;‘ﬁ =—2Im [/, AZi dw, where

A% = GP(R)GE*(—R) — G“P(R)GP“(~R),

A%P = GyP(R)G*(—R) + GXP(R)GE(—R),  (10)

A%E = Gy (R)GP“(—R) — iG*P(R)GY ™ (—R),

with A, , = Ay, Ay = —A,,, and the remaining cross
terms vanish. Using these expressions in Eq. (2), one gets
in-plane XX (x,x), Ising (z,z), and DM (x,y) components

Hrrxy =7 [xxx(STS3 + S783) + x2.:5{S5
+ Xx,y(Sl X 52)2]7 (1)

as expected when SOI is present [20,26-31]. The appearance
of each component depends on the coupling of each impurity
to the different orbital and valley degrees of freedom. There
is no reason to couple inequivalently to each valley, and the
susceptibility contains Green’s functions which are the sum
of each valley component: G(R) = ) G'(R). The products
of Green’s functions will generate intra- and intervalley terms
in the susceptibility due to the scattering of the conduction
electrons with the localized impurities.

From the Hamiltonian matrix in momentum space, one can
see that S and P orbitals are connected by the propagators due
to the effective SOL. In particular, we see that G,(k) contains
only 1, so the propagator does not connect S and P orbitals
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to themselves: G55 = G""** = 0. This implies that the in-
plane and Ising terms in Eq (11) are equal and that the DM
term vanishes. Therefore, if both impurities are coupled only to
either S or P orbitals, the RKKY interaction will be completely
isotropic (Heisenberg).

The appearance of anisotropic interactions between impu-
rities requires one of them to be connected to an S orbital and
the other to a P orbital. This does not require each impurity
to be coupled to only one type of orbital. In fact, a probable
impurity position would be in the middle of the tetragonal
unit cell of the material (see Fig. 1), which would (locally)
preserve the inversion symmetry. For impurities located at this
high-symmetry point, it is expected that they would connect
to both § and P orbitals, so that the effective interaction
in (11) will have all three terms. Although the analysis of
all possible locations and orbital configurations of the local
magnetic moments is beyond the scope of this paper, in the
following we analyze the possible diagonal and nondiagonal
orbital components for the different interactions. Analysis of
the exchange interactions along different lattice directions
would be seen to depend crucially on orbital hybridization.

III. RESULTS

A. Diagonal orbital components

When both impurities connect to the same type of orbital,
we have that G~ LSS (k) = ”271 PP ) = plie,w) N (wy +
M, and Gy = G (0 = pli) oy —
Aq;). The real space version, after integration on 6; and k
[in the (0,00) range, valid for large impurity separations], can
be written as

eiUKsz

5 [ R (wy 4+ vag,)

X KO(R,/)»zqg — wi)dqz, (12)

where R is in cylindrical coordinates, R is the radial coordinate
in the xy plane, and K is the Bessel function. k, has been
replaced by +K, + ¢g,. The analytic continuation w®™ —
and the branch cut in the square root allow one to write

GyPi(R) = —

ivK.R,

(2m)?

GS,S,S(R) — ([0 —1 Sgn(a))ll)’ (13)

where

</ /Oo)ei"fRf(a) + vAg)Ko(u)dg,,

lCL Rz(a) + quZ)Ko(—l Sgn(w)v)dql’

(14)

with u = R\/A%q? — w? and v = R,/w? — A?q>. Lacking
analytical solutions, we proceed with the case R > R,, which
allows one to obtain asymptotic expressions. Considering the
case where the Fermi energy lies below the Dirac points,
o < 0, and adding the contributions of the two valleys, one
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gets (Appendix A)

S.S 1 i3x lw|R;
GO’ (R,w): —m e 4+ Cos I, 5

R iRo| 1+ RZZ’
exp | iRw TR

R,
|:cos(K R )+I)LR sin(K, R, )i|) (15)

Tw
+1

with the same expression for G(I; P (R, w). We can now calculate
the susceptibility, by integrating over w. The integration
generates many terms, with the most relevant in the R
asymptotic limit given by

Xt Rop) =x" P Rop)
2

4 3)»2R3

R2
X COS (2R|:1 + F}z}wp) (16)

Notice there is no angular dependence. These effective in-plane
spin-spin interactions decay as 1/R?, while there is no decay
for separations in the z direction; they only oscillate with
R, (KR). There are, however, important corrections due
to the dispersion anisotropy. The form of the spatial term
inside the second cosine comes from a second order expan-
sion of an effective distance given by R = ,/R? + A2R? =~

R[1 + 2;5—?,e2]. For A = 1, which corresponds to a completely
isotropic Fermi velocity, we recover the expected isotropic
distance dependence in 3D. Another important effect of the
anisotropy is to modulate the amplitude of the interaction.
It decreases for A > 1, with respect to the isotropic case.
For materials with A < 1, such as Na3Bi and Cd3As,, the
interaction is significantly enhanced (Fig. 2). Notice that the
interaction decays quadratically in energy towards the Dirac
point. The interesting oscillatory (and always positive) term
that comes from intervalley scattering modulates the usual
oscillatory RKKY term. When K. R, is an odd multiple
of % the interaction vanishes for any value of R or band

cos (K R.)

e A=1 A=025

10F ]
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FIG. 2. Effective impurity interaction as a function of their
separation R in the xy plane. The anisotropy in the Fermi velocity,
characterized by A = 0.25, has a big impact on the strength of the
interaction with respect to the isotropic case (A = 1). Italso introduces
a correction in the period of the oscillation.
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filling. In Na3Bi, where K, ~ 0.82 x %, this will happen for
R, ~3.83(n — %)c, where 7 is an integer. Exactly at the Dirac
nodes, wr = 0, XS'S in Eq. (16) vanishes at the third order
in the asymptotic expansion in R. At the next order in the
expansion, one gets no oscillation with the in-plane distance
R, and ~R~* decay.

B. Off-diagonal orbital components

Now we consider the case in which one impurity is
connected to an S orbital and the second one to a P
orbital. The Green’s functions have the following properties:
GS‘S’P(Ic,w) = —GS’P’S(K,a)) = ip(k,w) 'k sin 6. Proceed-
ing in a similar way as in the diagonal case, one gets
(Appendix B)

in(6
G Ry > O cos(K.R) f(R R, (17)
I
j 0
G5 Rw) ~ 0N sk R) F(RRL), (19)
where

f(R,R,,®) L 1+ i cos IR: |
M, W) = — ———= | —— - -
- AR?| Row T A
R2
+ in’w(exp <iRa)|:1 + m])
R? R*w?
Z . Z
<[k = 1) il 1)]) )

19)

for w < 0. After integrating over o, and retaining the most
relevant asymptotic terms in R, we get (Appendix B)

x5 Rwp) 2 — x5S (R.wp) cos(20p),
xR wp) = x5S Rowp), (20)
Xxs,'f(R’wF) ~ — xS 3R, 0F) sin(20g),

where 53 is given by Eq. (16). Unlike the case of the diagonal
orbital components, now there is a strong angular dependence
in the in-plane interaction, while the Ising component is angle
independent (see Fig. 1 for a schematic of high symmetry
directions). We can see that along the x direction, 8z = 0, the
DM term vanishes and one ends up with an interaction where
the in-plane and Ising terms are out of phase (opposite signs),
but with the same magnitude. When 6z = /4, the in-plane
Heisenberg term vanishes so only Ising and DM terms survive,
with equal strength and in phase. For separations along the
y axis, Og = %, the DM term vanishes, which produces a
completely isotropic Heisenberg interaction, as in the case
without orbital mixing. There are two other high symmetry
directions in the lattice. One corresponds to angles 6 = +%
(see Fig. 1). These angles give prefactors for the different

terms: % for XX and :I:*/Tg for DM. This implies that the Ising

component dominates over the other two in this direction,
its magnitude twice XX, and out of phase with each other.
At the same time, the DM term is +/3 times bigger than the
isotropic in-plane (but smaller than Ising), and its sign depends
on the specific direction. For 0 = j:%”, the prefactors are

NE)

—% and 7% for XX and DM, respectively, which makes
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it similar to the former but with different relative phases.
Other angles (lattice directions) produce interactions that mix
all three components, giving a tendency to complex spiral
ordering of spins embedded in this lattice. Exactly at the Dirac
point, we find that the decay is even faster than for the diagonal
case, x5F ~ R, and again it does not oscillate.

A likely location for impurities is at the center of the
unit cell (Fig. 1). There, it preserves inversion symmetry
locally. It is probable that each impurity will hybridize to
both S and P orbitals, in which case the effective interaction
will have contributions from both diagonal and off-diagonal
components. It is worth mentioning that a DM term is expected
to appear in systems with SOI and absence of inversion
symmetry. Both conditions are satisfied in the presence of
Rashba SOI [20,26-28]. Materials with intrinsic SOI and
absence of an underlying crystalline inversion symmetry, such
as monolayer transition metal dichalcogenides [30,31], are
another example. In the present case, the multicomponent
spinor nature of the states allows nonzero DM terms even with
inversion symmetry, provided that each impurity hybridizes
unequally to each orbital.

In the simple case in which the hybridization to
each orbital is of the same magnitude, one can add all
the components to obtain the final effective interaction.
Given that Xf, ;,S =— Xi’f , the DM term will vanish, and
Xex =4 sI2OR) x5S, xo.. = 4x5:5. In this case we recover
an isotropic interaction for Oy = %, and for 6 = 0,7 the
interaction is only along the z direction.

IV. CONCLUSIONS

We have obtained asymptotic expressions for the RKKY
interaction in 3D Dirac semimetals. In the limit in which
R > R., the indirect coupling decays as R—3, where R is the
impurity separation in the xy plane. There are three important
factors that come into play for the resultant interaction. First,
the Fermi velocity anisotropy modifies the period of the
oscillation as a function of the impurity separation, and also
its magnitude. Second, the position of the Dirac points in the
Brillouin zone, given by K, results in a second modulation
along the z direction, with a period that depends on the K,
value. Lastly, the orbitals to which the impurities hybridize
have impact on the angular dependence of the interaction in
the xy plane. When both impurities couple to the same type
of orbital (S or P), the interaction is angular independent.
When impurities hybridize to a different orbital, there is a
strong modulation with the orientation in the lattice. The
different components of the interaction survive depending
on the directions along the crystal, resulting in complex
equilibrium configurations for an impurity ensemble. These
results can be tested by NMR and ;SR experiments.

Note added. Recently, we became aware of two pa-
pers [32,33] which analyze the RKKY interaction in Weyl
semimetals. Our results are similar to the ones in Ref. [32] for
the distance dependence of the interaction and the effect of the
Fermi velocity anisotropy.
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APPENDIX A: CALCULATION DETAILS FOR DIAGONAL ORBITAL COMPONENTS

We start by considering the case in which each impurity is hybridized to the same type of orbital, either S or P. In this case
we have that G =S 5(R) = G~ ""P(R) = p~(wy + Aq.), and G~ "S5 (R) = Gy 7 F(R) = p~(w; — Aq.). Then,

; 1 ; K. eiVKsz [ed] ;
Gy (R,w) = 7 /GO’S’S(Ic,a))edek =~y / ¢8R (w0, + v1g.)Ko(RyA2q2 — w2 )dg., (A1)

—00

with R expressed in cylindrical coordinates, where R is the radial coordinate in the xy plane, and K, is the modified Bessel
function of the second kind. In Eq. (A1) we have already integrated over the angle 6;, and also over k in the (0,00) range,
which is a valid approximation for large impurity separation. k, has been replaced by + K, + ¢, as well, and we are left with the
integration over ¢,. Using the fact that

St ot = [P e 0] < Ag.. "
) —i sgn(w)/o> —22q2, || > Ag,.

we get that
o5 ivK.R,
Gy (R,w) = _W[IO(J — i sgn(w)los], (A3)
where
el 00
Iog = (/ —i—/ )ei"ZRz(a) + I)AqZ)KO(R‘/)quz2 — a)z)a'qZ (A4)
o lol
and

lo]

Iop = / ;‘ 4R (g 4+ quZ)Ko(—i sgn(w) R,/ w? — Azqg)dqz. (AS)

A

Using the identities

Kolix) = i%Hg”(x) - i%[]o(x) +iY)] (x €R), (A6)
we get that
Ko(—i sgn(@)R/w? — A2q?) = —%[YO(R,/LU2 — 22q2) — i sgn(w)Jo(R\/w? — 22¢?)]. (AT)
SO

ol
A .
Iy = —% /,m 'R (w + vAg)[Yo(R\/@? — 32q2) — i sgn(w)Jo(R,/w? — 12q2)]dq.. (A8)

and using the parity properties of the integrand under g, — —g., we can write

o0 o0

Tow =20 / cos (q:R.)Ko(R,/A2q? — w?)dgq. + 2ivi / g sin(q:R,)Ko(R,/22q? — w?)dq, (A9)
lol N |l ’
A A

and

Top = —7(lop,1 + lop,2 + Lop,3 + Top,4), (A10)

where

ol

lop1 = / " cos (g R)Yo(R Ja? — 12¢2)dgs.

0

2]

Iopr = —i|a)|/ cos (quZ)Jo(R\/aﬂ——)xquz)dC[z,
0

lol

Tops = ivk/ g sin(quZ)Yo(RM)qu,

0

(Al1)

lo|

lop.4 = VA sgn(w) / ' q.sin(g;R)Jo(R,/w? — 12q2)dg..
0
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These integrals cannot be solved in a closed form. Substituting u = R,/A?q? — w? in Iy,, v = R\/w* — A2g? in Iy, and defining

r= %, o = R|w|, we get
/2
loa1 = / mcos(r a? + u?)Ko(u)du, o)
2 R,
Toan = 1%2() u sin(rva? + u?)Ko(u)du,
0
and
Ob,l )\R / ﬁ COS(I’\/ aZ—v )YQ(U)dU
Iopr = —iM ——— cos(rva? — v2) Jy(v)dv,
’ AR Jo ocz — 2
R @ (A13)
Tops = i% v sin(rv a? — v2)Yy(v)dv,
0
v sgn(wR;)
Iop.q = T v sin(rva? — v2)Jo(v)dv.
We tackle the integrals in the limit r <« 1, expanding the sines and cosines around r = 0 as
1 n
sin(rva? £ u?) = Z (2—4_)])‘(“/()(2 + u2)?
(A14)
cos(rva? £ u?) = Z on )| (r\/oz2 + u2)™.
Then we have that
oo 221171 n4+ 1 Olz
/2 2)2n—1 — 31 2 il
/0 u(ya® +uty" Koludu = F(%—n)G1’3(0,n+%,n+% 4 >
o 7 1 n+ 1 n 0(2
/.2 2\2n—1 —qn - 2,1 7 il A15
/0 v(ve + v Yo(v) = 4 F<n+ 2)G2'4<n+ %,n+ %,O,n 4 ) ( )

* | 1
/ v(Wa2 — vy p(v)dv = 2"zr<n + E)J,H;(oe),
0

where G’/ is the Meijer function. The summations cannot be done analytically as they are, but we can use asymptotic expansions

anl
1 2 1
" T 2 Sl I e a1
On+s5.n+5 | 4 2
2

4" 2 n—1
“-): “( * l—ﬁzncos(a—%")), (A16)

3,
Gl

W=

2,1( n+ s,
24\n+Ltn+1o0n |4 7 \T(n+1)

Jpp1(@) = \/gsin (a - nz—n)
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Now the summation can be performed, and we get

_ 2\ (=)t _ cos(ra)
Soa,1 () =Y e .
n=0
o0
(_1)11a2n+1r2n+1 )
Yoa2(a,r) = Z ——— =sin(ra),
e @2n+ 1!
Sop1(@.r) i (=D r2n[2a2=1 2ngn e + 1 ( nn) 2 ra) - r2
o,r) = - n+—Jcos|la— — )| =—cos(ra) —cos | o — 1),
o1 — (an)! T JT 2 2 T 2
, , (A17)
1 n n 1 1
201,2(0[ r) ‘l Z( (231)' "_2(;(’”'2]—‘(}1—}—5) sin (a_ﬂ'?i’l) = sin ((X[l—i—%]),
0 n..2n+1 n+1 2
(=D"r o o Tn 2 . . r
b ) = - 2"sn( ——) =—s5 —ra sin 1+—=1).
ob.3(a,r) Z:: n ¥ D1 2 (F(n " 2) 2" sin [« 5 ) - in(ra) —ro sin | af 1+ 5
1)" 2n+1 3 2
Sopale,r) = 1/ Z ((2n)+ Bi n+;aﬂ+gr<n + E) cos (O[ - %) = —ra cos <a[l + %])
Then
2w 2w cos(rot) 2 sgn(w) |R,w|
loa,1 =~ )L—rEl(OlJ’) = TS Re Ang os( . >
(A18)
2v sgn(R;) .2v sgn(R;) 21) sgn(R;) |R;w|
I()a 2 = ZTEQ(O{,}’) = T n(rot) R sin ,
which results in
2 . WR;
Ioa(R,R;,w,v) = msgn(a))exp wT , |Rz] < AR. (A19)
On the other hand,
w 2
Iop1 =~ —E R
0h.1 = 0 ob,1(a,r) = AR|:nR|w| COS( ) < |w|[ szziD]
— el
0b2 = —i 5 Bopo(etr) = —i-— sin | Rlo|| 1+ -0y ZAZRZ
(A20)

v sgn(R;) v sgn(R;) . |a)R | |a)R | . R?
10b3—lTEOb3(a r)=i T s sin | Rlw| 1+2A2ZRZ ;

v sgn(wR;) VR.w
_— IR cos | Rlw|| 1 + 2A2R2
2
Iop(R,R,,0,v) = —— sgn(a))[— exp (

WR2
R\ i1 40K Ro| 1+ Ry IRz < AR.  (A21)
- — e ——1]1, .
AR R A @ Vor ) PR T o ‘

After some algebra, one finds that
For w < 0, this gives rise to the Green’s function appearing in Eq. (15).

Top4 = Xopala,r) =

APPENDIX B: OFF-DIAGONAL ORBITAL COMPONENTS
v,S,P

When one of the impurities hybridizes with an S orbital and the other one with a P orbital, we have that G, (x,w) =
-Gy ik S(/c,a)) = ip~ 'k sin 6. The Fourier transform gives
o) ) o0 k2 )
Gy P (R,w) = - / dk,e'*R: / dk— dOy sin G e R cosC—0r) (B1)
(27[) —00 0 P Jo
Integrating over 6;, we get
sin(0 © k?
G5 R,w) = — 4( 2’*) dk ik, Rz/ dk—J,(kR). (B2)
- 0 P
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Integrating over k and replacing k; by KT + g, we get

; sin(fr) kg
Gy R = T KR [ dai R[22 — 03K (Ry12g2 — o).

which can be written as

Gy (Rw) = %eik;& [l — i sgn(w)l5],
where
L= ([ : [w‘ ) “/A2q? —szl(R,/Azq — w?)dg,
and
lo|
I = /_‘;‘ eiqumel(_iR sgn(a))\/a)z——)quzz)dqz
Similarly, A

i cos(6g) KR,
472

with G *$(R,w) = G F(R,w). Changing variables as in the previous case, we get
2 uK () R,
- _w Al /2 2,2
L, = iR, R cos (AR u’ + R*w )d

This expression is even under w — —w and R, — —R_, then

2 (™ u’K
L =— l(u) ————cos(rvu? + a?)du.

AR2 Jy u? + o?

G5 P (R,w) = ‘[ —i sgn(w)l3],

Similarly, for /3 we have

T [* UZHI(I)[Sgn(“’)”] “ vz[iYn (v) + sgn(w)J; (v)]
=T - =—— 2 _ .2
b==k) —va—a Va2 —v?)dv = sz = cosir/a? — v)dv.
or
I = AR2 —[sgn(@) 3, + i3],
where

o

2
\/ﬂ cos(rva? — v2)dv,

I ’ Zyl(v) COS(I‘\/O(Z v3)dv.

3b =
Va2 —v?

Using the cosine series expansions, we get

00 21-3,,3

2 2, 2L 27 5 n—1

uw Ki(w)(u” + o) 2du = ——G7’ <

/ P —m) -3 -1

o?
4 )

* 1
[0 v () — v 2 dy = 2"%r(n + §>an+31n+;(a),

« 1 4
[ VY ()@ — v?)' " idy = 2”;F<n + E)a”+gYn+;(a) + —a?
0 b

The summations cannot be performed analytically, so we expand the special functions for o >> 1

— 2 1
G?:;( 3n 1 %) ~ 42na2(n2)1’*<§ _ n>’

—35,n— 1,n
2 1 2
I o)~ — /_Cos(a_ﬂ>+wsm(a_ﬂ),
nts To 2 V2w o3/? 2
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(B3)

(B4)

(B5)

(B6)

B7)

(B8)

(B9)

(B10)

(B11)

(B12)

(B13)

(B14)

(B15)

(B16)

(B17)

(B18)
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N [ 2 . n n+1Dn+2) Tn
Yn+%(a)_— %Sln<a—7>—wCOS<a—7). (B19)

Proceeding with the summations, we get

(=10 2 42n-2) _ 2 cos(ra)
(e, " B B20
2err) = Z i’ - (B20)
1 (=1 1 n n
Bruer) = ——= 2:; ) rznznlanr<n + 5) [(n + 1)(n +2)sin (7 — a) + 2a cos (7 - a)] (B21)
5 ar? o?rt ) ar?
=a(r"—1Dcos{a+— ) —|— —1])sinla+ — ), (B22)
2 8 2
. (=" p2n [ gt gt 1 2 . n n+Dn+2) n 4 54
Yspla,r) = — ;(2’1)' 2 T n+2 ,/nasm(a— 2>+ N Cos(a— 2) —noz
(B23)
) . ar? a2t ar? 4
=ua(r"—Dsinla+— )+ — —1)cos|a+ — ) + — cos(ra). (B24)
2 8 2 To
Then
4 IR o]
I >~ , B25
2= Rl Cos( Y ) (B25)
and
R? R? o’ R? R?
b4 z . z
I3, >~ le'(szz — 1) cos (Ra)|:1 + 2X2R2:|) — <8A4R2 — 1) sin (R|w||:1 + m}), (B26)
N R? _ R? w’ R} R? 4 |R.w|
I3, >~ R|w| R — 1) sin| R|w| 1+W + W_l cos | Rw 1+2A2R2 +7'[R|a)| cos . ,
(B27)
which gives
I T ko145 W ol Koo 1) o B _ ], 4 Rzl (B28)
~ — ex — | = — cos .
3T RPN T R W2 R? 814 R2 7R|o| Py
Defining f(R,R;,®) = L(R,R;,®w) — i sgn(w)I3(R,R;,w), we have (summing over valleys) that
Gg‘P(R,a)) ~ 52( 7) cos(K;R,) f(R,R,,w), (B29)
0
G5 R.w) = "Z’M s (K:R:) f(R,R;.). (B30)
' 72
with
1 4 |R.w| . , R? R? [ R}?
f(R,R;,w) =R mcos )\ +im sgn(w)|exp | iRw| 1 + 2R2 Rw R 1)+ iR —1
n 4i |R,w] (B31)
cos ,
TR|w| A
and, for w < 0,
1 4 IR, |w . R2 RZ2 R4 2
f(R,R,,w <0)= — Ve ECOS o +inw|exp|iRw| 1+ TR Rw IRz —1)+i SAR2 —1
4i IR, |w
. B32
e (5 B3
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Integrating in w, and to lowest order in 1/R, one gets

w2 RZ
)(XS”XP ~ —F __cos? (K. R,)cos(20g) cos <2Ra)p |:1 + —£ ])

47302 R3

S, P ~ _ F
Koo = TR

2

RZ
X;CS:,;’ ~ o OF og? (K, R.)sin(20R) cos <2Ra)p|:l + —”])

4m3A2R3

PHYSICAL REVIEW B 93, 094433 (2016)

T (B33)
RZ

cos® (K. R.) cos <2Ra)p [1 + W]) (B34)

T (B35)
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