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We investigate the ground-state properties of a recently proposed model for a topological Kondo insulator in one
dimension (i.e., the p-wave Kondo-Heisenberg lattice model) by means of the density-matrix renormalization-
group method. The nonstandard Kondo interaction in this model is different from the usual (i.e., local) Kondo
interaction in that the localized spins couple to the “p-wave” spin density of conduction electrons, inducing a
topologically nontrivial insulating ground state. Based on the analysis of the charge- and spin-excitation gaps,
the string order parameter, and the spin profile in the ground state, we show that, at half filling and low energies,
the system is in the Haldane phase and hosts topologically protected spin-1/2 end states. Beyond its intrinsic
interest as a useful “toy model” to understand the effects of strong correlations on topological insulators, we
show that the p-wave Kondo-Heisenberg model could be experimentally implemented in p-band optical lattices
loaded with ultracold Fermi gases.
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I. INTRODUCTION

Topological insulators are a new class of materials, first
proposed theoretically for two- and three-dimensional systems
with time-reversal symmetry [1–3], and soon after found in
experiments on HgTe quantum wells [4], and in Bi1−xSbx [5]
and Bi2Se3 [6]. Despite displaying an insulating behavior in the
bulk, these materials support topologically protected gapless
edge modes which are robust against local perturbations as
long as time-reversal symmetry is preserved (e.g., nonmag-
netic disorder). More specifically, the electronic structure of a
topological insulator cannot be smoothly connected to that of
a trivial insulator, a fact that is mathematically expressed in
the existence of a nonzero topological “invariant,” an integer
number quantifying the topological order in the ground state.
A complete classification based on the underlying symmetries
has been achieved in the form of a “periodic table of
topological insulators” [7–9]. Nevertheless, this classification
refers only to the gapped phases of noninteracting fermions,
and leaves open the problem of characterizing and classifying
strongly interacting topological insulators. This is a very
important open question in modern condensed-matter physics.

On the other hand, topological Kondo insulators (TKIs)
are a type of recently proposed materials where strong
interactions and topology naturally coexist [10–12]. Within
a mean-field picture [13–15], TKIs can be understood as
a strongly renormalized f electron band lying close to the
Fermi level, and hybridizing with the conduction-electron
d bands. At half filling, an insulating state appears due to the
opening of a low-temperature hybridization gap at the Fermi
energy induced by interactions. Due to the opposite parities of
the states being hybridized, a topologically nontrivial ground
state emerges, characterized by an insulating gap in the bulk
and conducting Dirac states at the surface. At present, TKI
materials, among which samarium hexaboride ( SmB6) is the
best known example, are under intense investigation both
theoretically and experimentally [16–19].
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In order to gain further intuition into the effect of strong
interactions, recently Alexandrov and Coleman [20] proposed
an analytically tractable model for a one-dimensional (1D)
TKI, i.e., the “p-wave” Kondo-Heisenberg model (p-KHM),
consisting of a chain of spin-1/2 magnetic impurities interact-
ing with a half-filled one-dimensional electron gas through a
Kondo exchange [see Fig. 1(a)]. The peculiarity of this model,
which makes it crucially different from other one-dimensional
Kondo lattice models studied previously [21–32], is that the
Kondo exchange couples to the “p-wave” conduction-electron
spin density, allowing for effective next-nearest-neighbor
hopping processes in the conduction band accompanied by
a spin flip. Using a standard mean-field description [13–15],
the above authors found a topologically nontrivial insulating
ground state (i.e., topological class D [7–9]) which hosts
magnetic states at the open ends of the chain. Soon after,
two of us studied this system using the Abelian bosonization
approach combined with a perturbative renormalization-group
analysis, revealing an unexpected connection to the Haldane
phase at low temperatures [33]. The Haldane phase is a
paradigmatic example of a strongly interacting topological
system, with unique features such as topologically protected
spin-1/2 end states, nonvanishing string order parameter, and
the breaking of a discrete Z2 × Z2 hidden symmetry in the
ground state [34–36]. The striking results in Ref. [33] indicate
that 1D TKI systems might be much more complex and
richer than expected with the naı̈ve mean-field approach, and
suggest that they must be reconsidered from the more general
perspective of interacting symmetry-protected topological
(SPT) phases [37–39].

However, despite describing correctly the universal low-
energy behavior of 1D TKI systems, the bosonization tech-
nique used in Ref. [33] cannot provide a quantitative de-
scription of the physical observables, nor it accounts for
the nonuniversal behavior arising from the specificity of the
p-KHM. In addition, these results are strictly valid in the
limit of small Kondo exchange (JK ), where the perturbation
approach is applicable. Therefore, it becomes necessary to
analyze the properties of the p-KHM with an independent and
unbiased technique, which allows us to explore a broader range
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FIG. 1. (Color online) (a) Representation of the p-wave Kondo-
Heisenberg model (p-KHM) in one dimension. Upper leg represents
the conduction electron p band, and lower leg corresponds to a
spin-1/2 Heisenberg chain. The Kondo exchange JK couples a spin
Sj with the p-wave spin density in the conduction band [see Eq. (3)].
(b) Microscopic model effectively realizing the p-KHM at low
energies, and allowing an experimental implementation in p-band
optical lattices. The direct hopping across a given rung vanishes due
to the different parities of the orbitals.

of parameters of the model and to corroborate the results of
bosonization. This is the main goal of this work.

In this paper we study the ground-state properties of the
finite-length p-KHM in one dimension using the density-
matrix renormalization group (DMRG) [40,41]. Our results
indicate that the system is a Haldane insulator with protected
spin-1/2 end states and finite string order parameter, therefore
supporting the predictions of Ref. [33]. We also propose
that this exotic model could be realized in p-band optical
lattices loaded with ultracold Fermi gases, which would
allow for controlled experimental studies of TKIs in the
laboratory.

The paper is organized as follows. In Sec. II we present
the model and give some details on the DMRG algorithm
used to solve it. In Secs. III and IV we perform a detailed
finite-size scaling analysis to study the charge and spin gap in
the thermodynamical limit. In Sec. III we show that the system
develops a Mott-insulating gap, even in absence of a Hubbard
U interaction in the electronic chain, and in Sec. IV we show
the appearance of topologically protected spin-1/2 states at
the ends of the chain. In Sec. V we compute the string order
parameter [see Eq. (7)], whose nonzero expectation value is
a hallmark of the Haldane phase. In Sec. VI we discuss a
possible physical realization of this model using cold Fermi
atoms trapped in an optical lattice. Finally in Sec. VII we give
a summary and the conclusions of this work.

II. MODEL

The Hamiltonian of the p-KHM is H = H1 + H2

+ HK [20], where the conduction band is represented by a
L-site tight-binding chain

H1 = −t

L−1∑
j=1,σ

(p†
j,σ pj+1,σ + H.c.), (1)

with p
†
j,σ the creation operator of an electron with spin σ at

site j with spatial p symmetry [upper leg in Fig. 1(a)]. The

Hamiltonian

H2 = JH

L−1∑
j=1

Sj · Sj+1 (JH > 0) (2)

[bottom leg in Fig. 1(a)] corresponds to a spin-1/2 Heisenberg
chain, and HK is the Kondo exchange coupling between H1

and H2 [20],

HK = JK

L∑
j=1

Sj . π j , (3)

with JK > 0. This Kondo interaction is unusual in that it
couples the spin Sj in the Heisenberg chain to the “p-wave”
spin density in the fermionic chain at site j , defined as

π j ≡
∑
α,β

(
p
†
j+1,α − p

†
j−1,α√

2

)(σ αβ

2

)(
pj+1,β − pj−1,β√

2

)
,

(4)

where the notation p0,σ = pL+1,σ = 0 is implied, and where
σ αβ is the vector of Pauli matrices. Equation (3) can be written
as HK = H

(1)
K + H

(2)
K , where

H
(1)
K = JK

2

∑
j

Sj . (sj−1 + sj+1) (5)

contains the coupling of a localized spin Sj with the usual
spin density at site j ± 1 in the conduction band [here sj =∑

α,β p
†
j,α( σ αβ

2 )pj,β], and

H
(2)
K = −JK

2

∑
j

Sj .

⎡
⎣∑

α,β

p
†
j+1,α

(σ αβ

2

)
pj−1,β + H.c.

⎤
⎦ (6)

describes a different type of process, characterized by a
nonlocal hopping accompanied by a spin flip.

We have studied the ground-state properties of H by means
of DMRG. In our implementation we have kept m = 800 states
and we have swept the finite-size procedure 12 times, which
allowed us to achieve truncation errors in the density matrix
of the order of 10−12 at best, and 10−8 in the worst situation.
The DMRG method has been used previously to describe the
standard 1D Kondo lattice model at half filling [24–28], where
a topologically trivial, fully gapped ground state was obtained.
For the p-KHM, where a topological insulator ground state
was predicted [20,33], there are no DMRG studies to the
best of our knowledge. Intuitively, we expect that the charge
and spin gaps in this model vanish in the limit JK → 0, as
the Hamiltonians H1 and H2 are separately gapless in the
thermodynamic limit. According to the bosonization analysis
in the limit of small JK , both gaps are favored when the
velocities of the gapless spinon excitations described by H1 and
H2 coincide. Intuitively, the term HK becomes more effective
to couple the spin degrees of freedom in H1 and H2 when they
fluctuate coherently (i.e., same spinon velocities). The spinon
velocity in the conduction band is equal to the tight-binding
Fermi velocity v1 = vF = 2t , and in the Heisenberg chain
is v2 = πJH /2 [42,43], and therefore we conclude that the
optimal situation in order to maximize the effect of HK

corresponds to JH = 4t/π ≈ 1.27 t , which we choose in all
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our subsequent calculations. In what follows, we characterize
the ground state by analyzing the charge and spin gaps, the
string order parameter, and spin profile along the chain.

III. CHARGE GAP

Spin-flip scattering generated upon increasing JK induces
gapped charge and spin excitations in the system at half
filling [20,33]. Although these gaps are not direct evidence
of the topological nature of the ground state, their study is
important to characterize the p-KHM insulating phase and
to test the predictions of bosonization. The hidden SU(2)
charge pseudospin symmetry of the model at half filling allows
us to compute the energy of the first charge excitation of
a system with N electrons as the ground-state energy of
a system with N + 2 electrons [26,28]. Therefore, we can
compute the charge gap of a L-supersite system as �c(L) =
EMz=0

0 (N = L + 2) − EMz=0
0 (N = L). Here, a “supersite” j

refers to the combination of a spin Sj and the fermionic site in
each rung, therefore spanning an eight-dimensional local basis.
Mz is the z projection of the total spin in the system, computed
as Mz = ∑L

j=1〈T z
j 〉, where Tj ≡ Sj + sj . Finally, EMz

0 (N ) is
the ground-state energy of a system with N electrons in the
conduction band, and projection Mz.

Previous results on the standard 1D Kondo lattice, without
direct exchange JH between the magnetic ions, predicted a
linear dependence �c ∝ JK [21,28]. However, in a recent
study, based in bosonization [33], it has been shown that
in the presence of a direct exchange JH , the charge gap
appears as a second-order process in the Kondo coupling.
This can be physically understood noting that, in the presence
of a large JH , the action of the perturbation JK generates
a spin excitation (a “spinon”) in the Heisenberg chain and
an electronic excitation in the conduction band. Using, for
instance, second-order perturbation theory in JK , one can see
that two of these electronic excitations become mediated by
a spinon excitation in the Heisenberg chain, and effectively
generate a four-fermion interaction term in the conduction
band. This process is similar to the phonon-mediated electron-
electron interaction in BCS theory, which appears at second
order in the electron-phonon interaction. In our case, however,
the effective interaction which appears upon integrating out the
“spinon” field turns out to be repulsive instead of attractive.
The net result, is the emergence of an effective repulsion term
U , similar to the one in the Hubbard chain model. Therefore, in
the half-filled p-KHM, a Mott gap �c ∝ J 2

K/JH opens in the
system. Note that in absence of JH , as in Refs. [21] and [28],
this process cannot exist as the spins are not directly connected,
and there are no spinons.

We compare this prediction against DMRG results. In Fig. 2
we show the charge gap as a function of JK . The system
presents important finite-size effects in the limit of small JK ,
and we therefore analyze our results with the scaling law
�c(L) ≈ �c(∞) + βcL

−2 in the case of large JK (JK/t >

0.3) [25,28], whereas in the regime of smaller JK/t < 0.3 the
fits improve with the scaling law �c(L) ≈ √

�2
c(∞) + βcL−2

(see inset in Fig. 2). The scaling was conducting using supersite
lattices of sizes L=40, 60, 80, 100, and 120. This fitting
procedure allows us to extract �c(∞), the value of the charge
gap in the thermodynamic limit, as a function of JK (see
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FIG. 2. (Color online) Charge gap in the thermodynamical limit
�c(∞) (shown as black circles) vs JK , obtained after finite-size
scaling (see inset). The solid (red) line is a fit �c(∞) = αcJ

2
K ,

valid for small JK , based on the bosonization analysis of Ref. [33].
Dashed lines are a guide to the eye. Inset: Finite-size scaling using
the scaling laws �c(L) ≈ �c(∞) + βcL

−2 for JK/t > 0.3 [25,28],
and �c(L) ≈ √

�2
c(∞) + βcL−2 for JK/t < 0.3.

Fig. 2). The solid (red) line is a quadratic law �c(∞) = αcJ
2
K

which fits the data reasonably well at small JK , confirming the
dependence predicted by bosonization [33].

IV. SPIN GAP AND SPIN-1/2 END STATES

We now focus on the spin degrees of freedom, where
the p-KHM has the most interesting properties. Intuitively,
the physics of the problem can be simply understood: the
antiferromagnetic Kondo exchange along the diagonal rungs,
combined with the antiferromagnetic spin correlations along
the legs, effectively forces the spins to align ferromagnetically
across the rungs, even in the absence of a direct coupling [33].
This situation favors the formation of a local triplet in each
supersite, and the system mimics the properties of the spin-1
Heisenberg chain [44] or the ferromagnetic Kondo lattice
model [24,45], which are examples of systems realizing an
insulating Haldane ground state. A hallmark of this phase is
the presence of two topologically protected spin-1/2 magnetic
states at the ends of the chain (i.e., |↑〉L ⊗ |↑〉R , |↑〉L ⊗ |↓〉R ,
|↓〉L ⊗ |↑〉R , and |↓〉L ⊗ |↓〉R ), which arrange into triplet
and singlet linear combinations which are degenerate in the
thermodynamical limit L → ∞. As a result, the first spin-
excitation gap �(1,0)

s (L) ≡ EMz=1
0 (N = L) − EMz=0

0 (N = L),
tends to zero in that case. For a finite-L chain, however,
the overlap of the end-states wave functions removes this
degeneracy exponentially as �(1,0)

s (L) ∝ e−L/ξ , where ξ ∝
J−1

K is the localization length for the magnetic end states, and
the ground state for N even (odd) corresponds to the singlet
S = 0 (triplet S = 1) combination [41]. In our case, at small JK

the localization length ξ becomes of the order of the system
size (ξ ∼ L), and it was not possible to obtain a conclusive
scaling behavior for �(1,0)

s , even for the largest systems we
have simulated (L = 120).

On the other hand, the gap �(2,0)
s (same definition as

above changing Mz = 1 → Mz = 2) can be identified with

205128-3



MEZIO, LOBOS, DOBRY, AND GAZZA PHYSICAL REVIEW B 92, 205128 (2015)

0.00 0.01 0.02
L

-1
0.0

0.2

0.4

0.6
Δ s

(L
)/

t
J / t

  1.0
  0.7
  0.5
  0.3
  0.1

0.0 0.5 1.0 1.5 2.0
JK / t

0.0

0.2

0.4

0.6

0.8

1.0

Δ s(2
,0

) (∞
)/

t

FIG. 3. (Color online) Extrapolated spin gap �(2,0)
s (∞) (corre-

sponding to the Haldane gap), as a function of JK , obtained after
a finite-size scaling analysis (see inset). Dashed lines are a guide
to the eye. Inset: Finite-size scaling using the scaling law �s(L) ≈√

�2
s (∞) + βsL−2.

the Haldane gap of the system, and physically involves spin
excitations which live in the bulk (see Fig. 3). In this case,
the scaling analysis is simpler as it is free from edge effects,
and we have used the scaling law �s(L) ≈ √

�2
s (∞) + βsL−2

for all values of JK (see inset in Fig. 3). The values of
�s(∞) are shown in Fig. 3. In contrast to the case of the
charge gap, here the analytic dependence of �s(∞) on the
parameter JK is technically more challenging to obtain within
the bosonization formalism, and is beyond the scope of this
work. Nevertheless, our numerical results suggest a power-law
dependence �s(∞) ∝ J ν

K , with exponent ν � 2 in the limit of
small JK .

We next investigate the presence of topologically protected
spin-1/2 end states which, as mentioned before, is a crucial
feature of the open Haldane chain. In Fig. 4 we show
a spatial profile of the z projection of Tj , i.e., 〈T z

j 〉 =
〈ψMz=1

g |T z
j |ψMz=1

g 〉, where |ψMz=1
g 〉 is the ground state with

total spin Mz = 1, for JK/t = 1 (red squares) and JK/t = 2
(blue circles). For these large values of JK (which are beyond
the validity of the bosonization analysis [33]) the end states
are clearly visible and show a small localization length ξ , a
fact that prevents them from overlapping, producing negligible
finite-size effects. The accumulated magnetization (Mz

j =∑j

i=1〈T z
i 〉) up to a site j is also shown in solid lines in Fig. 4

(the red dashed line corresponds to JK/t = 1 and the solid blue
line corresponds to JK/t = 2), and corresponds to the right y

axis. It can be seen that the accumulated spin at each end is
1/2, corresponding to the configuration where the topological
spin-1/2 end states is |ψMz=1

g 〉 ∝ |↑〉L ⊗ |↑〉R [34,35].

V. STRING ORDER PARAMETER

The most fundamental signature of the Haldane phase is,
however, the emergence of a finite string order parameter [46],
a quantity deeply connected to a broken hidden Z2 × Z2

symmetry [36]. This quantity is a smoking gun for the presence
of the Haldane phase, and therefore is the most important for
our present purposes. Using the above definition of Tj , the
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FIG. 4. (Color online) Spatial profile of 〈T z
j 〉 =

〈ψMz=1
g |T z

j |ψMz=1
g 〉, i.e., the z component of the spin in the

supersite j (left y axis), computed with the ground state of
the subspace with total Mz = 1 for L = 80. We also show the
accumulated magnetization up to a given site j : Mj

z ≡ ∑j

i=1〈T z
i 〉

(right y axis). The presence of the topologically protected spin-1/2
states at the ends of the chain is clearly seen.

string order parameter is defined as

Oα
string(l − m) ≡ −〈

T α
l eiπ

∑
l<j<m T α

j T α
m

〉
. (7)

Due to the SU(2) spin-symmetry of the model, it is enough
to calculate the computationally simpler component α = z.
We have computed Oz

string(l − m) taking the sites l and m

symmetrically about the center of the system in order to
minimize the effect of the edges. Note in the inset of Fig. 5
that Oz

string(d) converges rapidly as a function of the distance

d = |l − m| to the 1D-bulk value Oz,bulk
string . In the main Fig. 5 we

show Oz,bulk
string vs JK , which remains finite throughout the whole

studied regime. This indicates the presence of a Haldane phase
even beyond the regime of small JK where the bosonization
analysis in Ref. [33] is valid. This result, together with the
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FIG. 5. (Color online) String order parameter Oz,bulk
string vs JK .

Throughout the whole studied regime, Oz,bulk
string remains finite, indi-

cating the presence of a Haldane-insulating phase. Inset: Spatial
dependence of Oz

string(d) vs the distance d = |l − m|, where l and
m have been taken symmetrically about the center of the chain.
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confirmation of the presence of spin-1/2 end states, are the
most important results of this paper, as they provide conclusive
evidence that the p-KHM realizes a Haldane phase.

VI. EXPERIMENTAL REALIZATION IN OPTICAL
LATTICES

Optical lattices with higher orbital bands have recently
attracted a lot of experimental [47–49] and theoretical [50–52]
interest due to their ability to realize novel topological phases
of matter. In this section, we discuss how p-band optical
lattices could be used to realize the p-KHM. To that end, we
can think of the ladder depicted in Fig. 1(c) as the quasi-1D
limit of the optical lattice potential

V (x,y) = Vx sin2 (kx) + V1 sin2 (ky) + V2 sin2

(
2ky + φ

2

)
,

(8)

which has a double-well structure in the ŷ direction. In
particular when {V1,V2} � Vx , there is a large potential barrier
between the wells along the ŷ direction, and at low energies
the two-dimensional system effectively becomes a collection
of weakly coupled two-leg ladders [see Fig. 1(c)]. The relative
well depth of the two legs can be controlled by the ratio
V2/V1 and by the relative phase φ. Furthermore, we assume
that the optical lattice is loaded with a balanced mixture of
two-component Fermi atoms (e.g., 6Li or 40K), simulating
spin-1/2 fermions.

We now focus on a situation where the p-orbital level
in the right leg in Fig. 1(b) has approximately the same
energy as the s-orbital level in the left leg. Moreover, we
assume that the Fermi energy and the temperature are such
that no other higher orbitals are occupied. In this situation, the
dynamics of the fermions in the p-orbital leg is dictated by our
tight-binding Hamiltonian H1 in Eq. (1), which arises after
considering tunneling processes between nearest-neighbor
sites t ∝ 〈pj |Vx sin2 (kx)|pj+1〉 along the x̂ direction.

Similarly, the s-orbital leg can be described by the Hubbard
model

HHubbard = −t ′
N∑

〈ij〉,σ
(s†i,σ sj,σ + H.c.)

+U

N∑
i

(
n

(s)
i,↑ − 1

2

)(
n

(s)
i,↓ − 1

2

)
, (9)

where s
†
j,σ is a creation operator of a fermion with spin σ at the

s-orbital site j , and n
(s)
j,σ = s

†
j,σ sj,σ is the fermion occupation.

Here t ′ ∝ 〈sj |Vx sin2 (kx)|sj+1〉 is the hopping matrix element,
and U is an on-site Coulomb interaction, assumed to arise due
to a Feschbach resonance induced with an external magnetic
field. In the limit U � t ′, and when n

(s)
j,σ = 1 (i.e., half filling),

the Hubbard model Hamiltonian (9) maps onto the Heisenberg
chain H2 model Eq. (2) [53,54].

We now consider a small tunneling between s and p orbitals
in different legs, which would give rise to a microscopic single-
particle hopping Hamiltonian Hs-p connecting H1 and HHubbard.
However, due to the different parities of the s and p orbitals
along the x axis, the matrix element connecting sites on the

same rung vanishes (i.e., the orbitals are orthogonal 〈sj |pj 〉 =
0). Then, the leading contribution to Hs-p corresponds to the
matrix element V coupling s and p orbitals along diagonal
rungs, i.e.,

Hs-p = V
∑
j,σ

s
†
j,σ (pj+1,σ − pj−1,σ ) + H.c. (10)

Note the crucial sign inside the parentheses, which appears as
a direct consequence of the p-wave nature of the conduction
p-band states.

We now claim that tuning both the s and p bands at (or
sufficiently close to) half filling, and in the strong-coupling
regime U ′ � {t ′,V } (two conditions consistent with the previ-
ous assumptions due to the high degree of tunability of optical
lattices), the microscopic Hamiltonian of the interacting ladder

H ′ = H1 + HHubbard + Hs-p (11)

effectively maps at low energies onto the p-KHM, providing
a physical system where the results of this work could be
experimentally tested. In addition, it provides a physical
justification for the unusual p-wave Kondo interaction Eq. (3).
This equivalence, outlined below, can be rigorously shown by
the means of a canonical (i.e., a generalized Schrieffer-Wolff)
transformation.

The basic idea consists of introducing an operator T ≡ eiS ,
where S = S(t ′,V ) is chosen so as to eliminate the first-order
contributions in t ′ and V . The procedure is standard and here
we only outline the main steps (see the Appendix for details).
Assuming t ′,V � U , we can expand the exponential in T
and truncate the series at second order in (t ′/U ) and (V/U ),
therefore obtaining

H = T †H ′T ≈ H ′ + i[S,H ′] + i2

2!
[S,[S,H ′]]. (12)

We choose the transformation as

S = −i[(H+
t ′ − H−

t ′ ) + 2(H+
s-p − H−

s-p)]/U ′, (13)

with

H+
t ′ = −t ′

N∑
〈ij〉,σ

n
(s)
i,σ̄ s

†
i,σ sj,σ

(
1 − n

(s)
j,σ̄

)
, (14)

and

H+
s-p = V

∑
i,σ

[
n

(s)
i,σ̄ s

†
i,σ (pi+1,σ − pi−1,σ )si,σ

(
1 − n

(s)
i,σ̄

)]
(15)

(with 〈ij 〉 indicating nearest neighbors), and where H−
t ′ =

(H+
t ′ )

†
and H−

s-p = (H+
s-p)†. We can check that the first-order

contributions cancel, and therefore

H2 = − 1

U
P(H−

t H+
t )P, (16)

and

HK = − 2

U
P(H−

s-pH
+
s-p)P, (17)

where P is the projector onto the lowest subspace of
HHubbard (see the Appendix). The connection between the
Hamiltonian (11) and the p-KHM is completed identifying
the parameters as JH ≡ 4t ′2/U and JK ≡ 8V 2/U . We note
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that this proposal is different from other theoretical proposals
to simulate the standard Kondo lattice model in 1D optical
lattices [55,56].

VII. CONCLUSIONS

We have studied the p-KHM, a theoretical “toy model”
introduced to describe a 1DTKI. By means of DMRG, we have
calculated various quantities characterizing the ground state at
half filling. We have shown strong numerical evidence (based
on the analysis of the charge and spin gaps, the spin profile,
and the string order parameter) that the p-KHM realizes a
Haldane phase at low temperatures. Our results indicate that
the topological properties of this model fall beyond the scope
of the noninteracting topological classification [7–9], which is
unable to reveal the true topological structure of the ground
state. Finally, we have proposed that the unusual p-wave
Kondo interaction could be physically realized in experiments
with ultracold Fermi gases loaded in p-band optical lattices.
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APPENDIX: DERIVATION OF THE p-KHM BY A
CANONICAL TRANSFORMATION

In this Appendix we provide a derivation of the p-KHM
Hamiltonian H in the main text by the means of a canonical
transformation. To that end, we start from the microscopic
Hamiltonian H ′, consisting of a fermionic Hubbard ladder
with s and p orbitals along the legs, and depicted in Fig. 1(b)
in the main text:

H ′ = HHubbard + Hs-p + H1, (A1)

HHubbard = −t ′
L−1∑
j,σ

(s†j,σ sj+1,σ + H.c.) (A2)

+U

L∑
j=1

(
n

(s)
j,↑ − 1

2

)(
n

(s)
j,↓ − 1

2

)
, (A3)

H1 = −t

L−1∑
j=1,σ

(p†
j,σ pj+1,σ + H.c.), (A4)

Hs-p = V
∑
j,σ

s
†
j,σ (pj+1,σ − pj−1,σ ) + H.c. (A5)

Note that the system has electron-hole symmetry. Here, s
†
j,σ

creates a fermion with spin projection σ at site j in the Hubbard
leg and n

(s)
jσ ≡ s

†
j,σ sj,σ is the corresponding fermion-number

operator. The operator p
†
j,σ creates a fermion with spin σ

at site j in the p-orbital conduction band, represented by a
simple tight-binding model H1. The term Hs-p couples the
two fermionic legs, and due to the symmetry properties of the
s and p orbitals, the direct hopping across the rungs is zero.
Therefore, the most important hopping process occurs between

a fermion sj,σ and the linear superposition with p-wave
symmetry ∝ (pj+1,σ − pj−1,σ ) in the conduction band.

The idea is to derive an effective low-energy model in the
limit U � {t ′,V }. To that end, we split the Hamiltonian H ′
into

H ′ = Ht ′ + Hs-p + HU + H1, (A6)

where

Ht ′ = −t ′
L∑

〈ij〉,σ
(s†i,σ sj,σ + H.c.), (A7)

HU = U

L∑
j

(
nj,↑ − 1

2

)(
nj,↓ − 1

2

)
. (A8)

The first two terms in (A6) will be considered as perturbations
to HU , in the regime {t ′,V } � U .

We now start from the atomic limit in the Hubbard leg,
i.e., t ′ = V = 0, and identify the atomic singly occupied
states |σj 〉 = s

†
j,σ |0〉 (σ = ↑,↓) as forming the lowest-energy

subspace at site j , while the |0j 〉 (empty) and |dj 〉 = s
†
j,↑s

†
j,↓|0〉

(doubly occupied) form the excited subspace. We now intro-
duce projectors onto each of the four atomic states:

Pj,0 = (
1 − n

(s)
j,↑

)(
1 − n

(s)
j,↓

)
, (A9)

Pj,d = n
(s)
j,↑n

(s)
j,↓, (A10)

Pj,↑ = n
(s)
j,↑

(
1 − n

(s)
j,↓

)
, (A11)

Pj,↓ = n
(s)
j,↓

(
1 − n

(s)
j,↑

)
. (A12)

Note that while all projectors commute with HU , the kinetic
terms Ht ′ and Hs-p cause transitions among subspaces. Using
that 1j = ∑

α Pj,α , we can write the kinetic terms as Ht ′ =
(
∑

i,α Pi,α)Ht ′ (
∑

j,β Pj,β) = H+
t ′ + H−

t ′ + H 0
t ′ , and Hs-p =

(
∑

i,α Pi,α)Hs-p(
∑

j,β Pj,β) = H+
s-p + H−

s-p + H 0
s-p, where

H+
t ′ = −t ′

N∑
〈ij〉,σ

[
n

(s)
i,σ̄ s

†
i,σ sj,σ

(
1 − n

(s)
j,σ̄

)

+ n
(s)
j,σ̄ s

†
j,σ si,σ

(
1 − n

(s)
i,σ̄

)]
, (A13)

H−
t ′ = −t ′

N∑
〈ij〉,σ

[(
1 − n

(s)
j,σ̄

)
s
†
j,σ si,σ n

(s)
i,σ̄

+ (
1 − n

(s)
i,σ̄

)
s
†
i,σ sj,σ n

(s)
j,σ̄

]
, (A14)

H+
s-p = V

∑
i,σ

[
n

(s)
i,σ̄ s

†
i,σ (pi+1,σ − pi−1,σ )

+ (p†
i+1,σ − p

†
i−1,σ )si,σ

(
1 − n

(s)
i,σ̄

)]
, (A15)

H−
s-p = V

∑
i,σ

[(
p
†
i+1,σ − p

†
i−1,σ

)
si,σ n

(s)
i,σ̄

+ (
1 − n

(s)
i,σ̄

)
s
†
i,σ (pi+1,σ − pi−1,σ )

]
. (A16)

Physically, the terms with supraindex “+” produce transitions
from the lowest subspace to the excited subspace, while those
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with “−” restore excited states to the lowest subspace. On
the other hand, the terms labeled with “0” do not change the
subspace, and since we assume a half-filled conduction band,
they will identically vanish and it is not necessary to write them
explicitly here. We now note the following important relations:

H−
t ′ = (H+

t ′ )†, (A17)

H−
s-p = (H+

s-p)†, (A18)

which will be useful in what follows.
We now introduce a canonical transformation in Eq. (A1),

such that in the transformed representation we simultaneously
get rid of the terms at first order in t ′ and V :

H = eiSH ′e−iS . (A19)

= H ′ + i[S,H ′] + i2

2!
[S,[S,H ′]] + . . . . (A20)

We want to choose S in such a way that H does not connect
different Hubbard subbands. Note that this cannot be achieved
at infinite order in the expansion in powers of S in Eq. (A20),
but we will be content if we can eliminate the contributions at
order O(t ′) and O(V ) that mix the subbands. We now write
the expansion in Eq. (A20) in the more suggestive form

H = H+
t ′ + H−

t ′ + H+
s-p + H−

s-p + i[S,HU ] (A21)

+H1 + HU + i[S,H+
t ′ + H−

t ′ ] + i[S,H+
s-p + H−

s-p]

+ i2

2!
[S,[S,HU ]] (A22)

+ (other less important terms) (A23)

We will require that the first line (A21) in the above equation
vanishes. It is then clear that S must be O(t ′/U ) ∼ O(V/U ).
Using the following results

[
n

(s)
i,σ̄ s

†
i,σ sj,σ

(
1 − n

(s)
j,σ̄

)
,
(
n

(s)
i,σ − t 1

2

)(
n

(s)
i,σ̄ − 1

2

)] = [
n

(s)
i,σ̄ s

†
i,σ sj,σ

(
1 − n

(s)
j,σ̄

)
,
(
n

(s)
j,σ − 1

2

)(
n

(s)
j,σ̄ − 1

2

)]
(A24)

= − 1
2n

(s)
i,σ̄ s

†
i,σ sj,σ

(
1 − n

(s)
j,σ̄

)
, (A25)[

n
(s)
i,σ̄ s

†
i,σ (pi+1,σ − pi−1,σ ),

(
n

(s)
i,σ − 1

2

)(
n

(s)
i,σ̄ − 1

2

)] = − 1
2n

(s)
i,σ̄ s

†
i,σ (pi+1,σ − pi−1,σ ), (A26)[

(p†
i+1,σ − p

†
i−1,σ )si,σ

(
1 − n

(s)
i,σ̄

)
,
(
n

(s)
i,σ − 1

2

)(
n

(s)
i,σ̄ − 1

2

)] = − 1
2 (p†

i+1,σ − p
†
i−1,σ )si,σ

(
1 − n

(s)
i,σ̄

)
, (A27)

it is easy to check that

[H±
t ′ ,HU ] = ∓UH±

t ′ , (A28)

[H±
s-p,HU ] = ∓U

2
H±

s-p. (A29)

Then, it follows that the choice

S = − i

U
(H+

t ′ − H−
t ′ ) − 2i

U
(H+

s-p − H−
s-p) (A30)

exactly cancels line (A21).
The relevant part of the Hamiltonian at low energies is then

obtained projecting H onto the lowest Hubbard subband. This
is formally done applying the projector P = ∑

i (Pi,↑ + Pi,↓),

which eliminates certain terms in Eqs. (A22) and (A23). The
resulting effective Hamiltonian at lowest order in t/U and
V/U is therefore

H = H1 + P
{
HU + i[S,H+

t ′ + H−
t ′ ] + i[S,H+

s-p + H−
s-p]

+ i2

2!
[S,[S,HU ]]

}
P

= H1 + HU − 1

U
P(H−

t ′ H+
t ′ )P − 2

U
P(H−

s-pH
+
s-p)P. (A31)

We now replace the expressions for H±
t ′ and H±

s-p [Eqs. (A13)–
(A16)] into the above equation and obtain

P
(
H−

t ′ H+
t ′

)
P = (

t ′
)2

N∑
i,σ

[Pi,σ̄Pi+1,σ + Pi,σPi+1,σ̄ − s
†
i+1,σ si+1,σ̄ s

†
i,σ̄ si,σ − s

†
i+1,σ̄ si+1,σ s

†
i,σ si,σ̄ ], (A32)

P(H−
s-pH

+
s-p)P = 2V 2

∑
i,σ

n
(s)
i,σ − V 2

∑
i,σ

[
(n(s)

i,σ − n
(s)
i,σ̄ )(p†

i+1,σ − p
†
i−1,σ )(pi+1,σ − pi−1,σ )

+ s
†
i,σ̄ si,σ (p†

i+1,σ − p
†
i−1,σ )(pi+1,σ̄ − pi−1,σ̄ ) + s

†
i,σ si,σ̄ (p†

i+1,σ̄ − p
†
i−1,σ̄ )(pi+1,σ − pi−1,σ )

]
. (A33)

Using that Pi,↑Pi+1,↓ + Pi,↓Pi+1,↑ = −2Sz
i S

z
i+1 + n

(s)
i n

(s)
i+1/2, and the Schwinger-fermion representation

Sz
i = n

(s)
i,↑ − n

(s)
i,↓

2
, (A34)

S+
i = s

†
i,↑si,↓, (A35)

S−
i = s

†
i,↓si,↑ (A36)
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is a faithful representation of a spin-1/2 operator, we can write the effective Hamiltonian as

H = HU + H1 + 4(t ′)2

U

N∑
i

[
Sz

i S
z
i+1 + S+

i+1S
−
i + S−

i+1S
+
i

2
− 1

4

]

+ 8V 2

U

∑
i

Sz
i

(p†
i+1,↑ − p

†
i−1,↑)(pi+1,↑ − pi−1,↑) − (p†

i+1,↓ − p
†
i−1,↓)(pi+1,↓ − pi−1,↓)

2

+ 8V 2

U

∑
i

[
S+

i (p†
i+1,↓ − p

†
i−1,↓)(pi+1,↑ − pi−1,↑)

2
+ S−

i (p†
i+1,↑ − p

†
i−1,↑)(pi+1,↓ − pi−1,↓)

2

]
, (A37)

where we have neglected the constant 2V 2

U

∑
i,σ n

(s)
i,σ . Defining the effective parameters

JH ≡ 4(t ′)2

U
, (A38)

JK ≡ 8V 2

U
, (A39)

we note that this Hamiltonian corresponds to the p-KHM considered by Alexandrov and Coleman [20].
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