De novo Synthesis of Benzenoid Compounds by the yeast
Hanseniaspora vineae Increases Flavor Diversity of Wines

Valentina Martin, Facundo Giorello, Laura Fariña, Manuel Minteguiaga, Valentina Salzman, Eduardo Boido, Pablo Aguilar, Carina Gaggero, Eduardo Santiago Dellacassa, Albert Mas, and Francisco M. Carrau

J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.5b05442 • Publication Date (Web): 19 May 2016

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
De novo Synthesis of Benzenoid Compounds by the yeast Hanseniaspora vineae Increases Flavor Diversity of Wines

Running Title: Benzenoid compound synthesis by yeast increases flavor

Valentina Martin*, Facundo Giorello*, Laura Fariñaab; Manuel Minteguiaga; Valentina Salzmanef, Eduardo Boidoa, Pablo S. Aguilaref; Carina Gaggero, Eduardo Dellacassa, Albert Masd, Francisco Carraua*

a Sección Enología, Departamento Ciencia y Tecnología Alimentos, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
b Departamento de Biología, Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay
c Catedra de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
d Deptamento de Bioquímica y Biotecnología. Faculty of Oneology. University Rovira i Virgili. 43007 Tarragona, Spain
e Laboratorio de Biología Celular de Membranas, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay.
f Laboratorio de Biología Celular de Membranas, IIB-INTECH, CONICET, Universidad Nacional de San Martin, San Martin, Argentina.

*Corresponding author. Mailing address:
Sección Enología, Departamento de Alimentos, Facultad de Química, Universidad de la República, Av. Gral. Flores 2124, 11800 Montevideo, Uruguay. Phone: (598) 29248194 Fax: (598) 29241906.
E-mail: fcarrau@fq.edu.uy
ABSTRACT

Benzyl alcohol and other benzenoid-derived metabolites of particular importance in plants confer floral and fruity flavors to wines. Amongst the volatile aroma components in *Vitis vinifera* grape varieties, benzyl alcohol is present in its free and glycosylated forms. These compounds are considered to originate from grapes only and not from fermentative processes. We have found increased levels of benzyl alcohol in red Tannat wine compared to grape juice, suggesting *de novo* formation of this metabolite during vinification.

In this work, we show that benzyl alcohol, benzaldehyde, *p*-hydroxybenzaldehyde and *p*-hydroxybenzyl alcohol are synthesized *de novo* in the absence of grape-derived precursors by *Hanseniispora vineae*. Levels of benzyl alcohol produced by 11 different *H. vineae* strains were twenty to two hundred times higher than those measured in fermentations with *Saccharomyces cerevisiae* strains. These results show that *H. vineae* contributes to flavor diversity by increasing grape variety aroma concentration in a chemically defined medium. Feeding experiments with phenylalanine, tryptophan, tyrosine, *p*-aminobenzoic acid and ammonium in an artificial medium were tested to evaluate the effect of these compounds either as precursors or as potential pathway regulators for the formation of benzenoid-derived aromas. Genomic analysis shows that the phenylalanine ammonia-lyase (*PAL*) and tyrosine ammonia lyase (*TAL*) pathways, used by plants to generate benzyl alcohols from aromatic amino acids, are absent in *H. vineae* genome. Consequently, alternative pathways derived from chorismate with mandelate as an intermediate are discussed.

Keywords: benzyl alcohol, wine yeast fermentation, *Hanseniispora vineae*, genome, *PAL/TAL* alternative biosynthetic pathway.
INTRODUCTION

The importance of volatile aryl alkyl alcohols in the flavor and grape character of some cultivars of *Vitis vinifera* is well reviewed.\(^1\) The dominating aryl alkyl alcohols found in several grape varieties are the aromatic group of benzenoid/phenylpropanoid-related compounds (intermediates and end products) that significantly contribute to wine aroma during vinification or barrel aging.\(^1\) Benzenoid/phenylpropanoid compounds, such as β-phenylethyl alcohol and benzyl alcohol can represent 10% to 51% of the total hydrolyzed volatile fraction of grapes such as Chardonnay,\(^4\) Cabernet Sauvignon, Merlot,\(^5\) Tannat\(^6\) and Pinot Noir \(^7\), contributing with flavors notes described as floral or fruity.\(^2,\) 6-8 Plant benzenoids also provide numerous specialized metabolites that participate in many key functions such as plant-plant communication, antimicrobial activity, phytohormones, vitamins, plant defense, etc.\(^9\)

Some winemakers are rediscovering the value of using mixed cultures or spontaneous fermentation to increase yeast diversity, expecting to result in increased flavor complexity.\(^10\)-13 Understanding of their impact of non- *Saccharomyces* yeast strains on wine flavor richness is still incipient\(^14\)-16, although their account for more than 99% of the grape native flora. Furthermore, within non- *Saccharomyces* grape natural flora, the morphologic apiculate yeast of the genus *Hanseniaspora*, accounts for approximately 60% or more of this natural flora.\(^13\)

We have recently demonstrated that during white Chardonnay wine vinification, application of *Hanseniaspora vineae* increased some aroma compounds such as β-phenylethyl acetate, compared to conventional fermentations \(^10,\) 17. Moreover, during our studies of red wine fermentations with the typical grape cultivar Tannat of Uruguay, we have found higher levels of total benzyl alcohol in wine compared to grape juice,\(^6,\) 18 suggesting *de novo*
formation of this metabolite during vinification. Although the complete metabolic pathways leading to the formation of volatile benzenoids is still not totally understood, it is known that benzyl alcohol is formed in plants within the phenylpropanoid synthesis by the PAL enzyme (phenylalanine ammonia-lyase). This enzyme is the first of phenylpropanoid metabolism in plants, and catalyzes the conversion of phenylalanine to trans-cinnamic acid, which is subsequently converted into benzyl alcohol and other derived compounds. It has been found in some Basidiomycota and Ascomycota fungi. This enzyme is rarely found in yeast, and although it has been reported for the Basidiomycota yeast Rhodotorula graminis, it has not been found in the subphylum Saccharomycotina. Only one study in a defined medium reported the formation of benzyl alcohol for some species of Saccharomycotina: Kloeckera apiculata (Hanseniaspora uvarum), Candida stellata, Schizosaccharomyces and Zygosaccharomyces. Moreover, p-hydroxybenzoate has been shown to be an intermediate of ubiquinone Q6 synthesis in yeast, although the formation pathway is not totally understand. With labeling experiments it was reported that p-hydroxybenzoate is synthesized mainly through the shikimate/chorismate pathway, and mutants (aro1 and aro2) in this pathway are able to convert Tyr to p-hydroxybenzoate and efficiently compensate this situation (see Figure 1). In this figure it is shown that Saccharomyces uses the chorismate biosynthesis pathway for the synthesis of Phe, Tyr, Trp and p-ABA. Benzyl alcohol (BAL) has been associated in wine varieties such as Cabernet Sauvignon, to aroma descriptors such as chocolate, fig and tobacco, while benzaldehyde (BD) has been known to contribute to almond and dry fruit aroma descriptors. On the other hand, p-hydroxybenzyl compounds were described as fruity-sweet coconut, and woody or vanilla flavors. Some of these descriptors have been also identified in Tannat wines before and
after malolactic fermentation.29

In the search for new non-\textit{Saccharomyces} yeast strains with the capacity to produce aromatic compounds in grape musts with low nitrogen content, in the present work we show that \textit{H. vineae} strains can synthesize benzylic and \textit{p}-hydroxybenzyl alcohols \textit{de novo} in higher concentrations than those found in grapes, thus contributing to an increase of yeast flavor after vinification. Phenolic amino acids and ammonium concentration changes in the artificial medium were also tested to evaluate the effect of these compounds as potential pathway regulators for the formation of these benzenoid compounds. As we have sequenced the genome of \textit{H. vineae},20 putative pathways used by it to synthesize benzenoids are discussed in comparison with \textit{S. cerevisiae} data and plants.

MATERIALS AND METHODS

Yeast strains

\textit{S. cerevisiae} strains used were: Montrachet UCD 522 (University of California, Davis), referred to as M522 in this work; ALG 804 commercial strain (DSM, Denmark), EC1118 (Lallemand, Canada); and 881, 882 and KU1, selected Uruguayan wine strains that were already genetically characterized.31 All these \textit{S. cerevisiae} strains are used in the commercial production of wine. \textit{H. vineae} strains were isolated from vineyards in Uruguay and the codes indicated in the figures are from our Enology Section’s yeast culture collection. The 11 \textit{H. vineae} isolates were identified by sequencing the variable D1/D2 region from 26S rDNA gene and differentiated as different strains with Tandem repeat tRNA PCR analysis.32

Fermentation conditions

Chemically defined synthetic grape fermentation medium (resembling the nutrient composition of grape juice but devoid of grape-derived secondary metabolites) was used
and referred to as CDG medium in this work. It was prepared as described previously, but modified as follows: the total nitrogen content was adjusted to a basic amount of yeast assimilable nitrogen (YAN level, sum of amino acids and ammonium without proline) of 50 mgN/L for the experiments with diammonium phosphate (DAP) additions, 150 mgN/L simulating an industrial grape juice and 100 mgN/L for studying phenolic amino acids and \(p \)-aminobenzoic acid (\(p \)-ABA) effects. The latter YAN concentration was used because it resulted in higher benzenoids formation. YAN values were indicated for each experiment, and shown here are the following concentrations for each nitrogen component to obtain a CDG medium with a YAN level of 100 mgN/L, expressed in mg/L: ammonium phosphate (60.3), phenylalanine (18.1), tryptophan (12.1), tyrosine (2.4), leucine (36.2), arginine (90.4), aspartate (42.2), glutamate (60.3), serine (48.2), threonine (42.2), lysine (30.1), glutamine (24.1), isoleucine (24.1), valine (24.1), histidine (18.1), asparagine (18.1), methionine (18.1), proline (60.3), alanine (12.1) and glycine (6). This medium contains 0.2 mg/L of \(p \)-ABA, and the final pH of each medium was adjusted to 3.5 with HCl. Equimolar concentrations of glucose and fructose were added to reach 200 g/L and the mixed vitamins and salts were as described previously. Ergosterol was added as the only supplemented lipid at a final concentration of 10 mg/L. Inocula were prepared in the same CDG medium with 100 mgN/L YAN by incubation for 12 h in a rotary shaker at 150 rpm and 25 °C. Inoculum size was \(1 \times 10^5 \) cells/mL in the final medium for all strains as it was defined to improve aroma production in this medium. Fermentations were carried out in 125 mL of medium contained in 250 mL Erlenmeyer flasks, closed with cotton plugs to simulate microaerobic conditions. Fermentations were conducted in static batch conditions at 20 °C in triplicate. Samples were taken once a day to measure cell growth in
an improved Neubauer chamber. Fermentation activity was measured as CO$_2$ weight loss and expressed in grams per 100 mL. Samples for GC-MS analysis were taken one day after fermentation was completed (except for experiments in Figure 2b as indicated), SO$_2$ was added as 50 mg/L of sodium metabisulfite, filtered through 0.45 mm pore membranes and kept at 4°C until analyzes.

Feeding experiment effects on benzenoid compounds

DAP, phenylalanine (Phe), tyrosine (Tyr), tryptophan (Trp) and p-ABA were chosen as the YAN variables for the investigation of the effect of these amino acids and ammonium on the production of BAL, benzaldehyde (BD), p-hydroxybenzyl alcohol (p-HBAL) and p-hydroxybenzaldehyde (p-HBD). Experiments with different concentrations of each amino acid were performed always using a 100 mgN/L YAN concentration, substituting the amino acid concentration with DAP when the corresponding amino acid was not added, and decreasing the concentration of DAP in the medium when amino acids were added.

Analysis of the effect of ammonium on benzenoid compound production was performed at different YAN concentrations of 50, 75 and 250 mgN/L by supplementation with DAP, using the same feeding levels as our previous work with *S. cerevisiae*.

GC-FID and GC-MS analysis

Extraction of aroma compounds. It was performed using adsorption and separate elution from an Isolute (IST Ltd, Mid Glamorgan, UK) ENV1 cartridge packed with 1 g of a highly cross-linked styrene-divinyl benzene (SDVB) polymer. Treatment of samples and GC-MS analysis were performed as described previously in a Shimadzu-QP 2010 ULTRA (Tokyo, Japan) mass spectrometer equipped with a Stabilwax (30 m × 0.25 mm i.d., 0.25 µm film thickness, Restek) capillary column.
Identification and quantification. GC-FID and GC-MS instrumental procedures using an internal standard (1-heptanol) were applied for quantitative purposes, as described previously. The components of wine aromas were identified by comparison of their linear retention indices, with pure standards for BAL, BD, p-HBAL alcohol and p-HBD (Aldrich, Milwaukee, WI). Comparison of mass spectral fragmentation patterns with those stored on databases was also performed.

Hanseniaspora vineae genome and gene annotation

H. vineae strains were isolated during fermentation of wine made from Tannat, the traditional red grape of Uruguay. Genomic DNA from strain T02/19AF was sequenced on an Illumina Genome Analyzer IIx platform and the processed reads were then assembled using MaSuRCA, as was reported recently by us. The putative open reading frames predicted with Augustus were annotated through blastp against S. cerevisiae S288C proteins (see supplementary material). PAL/TAL genes and chorismate pyruvate lyase were searched using the following Uniprot sequence: P11544 (PAL/TAL, of Rhodotorula gracilis) and P26602 (chorismate pyruvate lyase, of Escherichia coli). Protein domains were annotated using the pfam database (http://pfam.xfam.org/) (see supplemental material). To establish orthologous clusters between S. cerevisiae S288C and H. vineae, the predicted proteins were analyzed through OrthoMCL web server (see supplementary material). This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number JFAV00000000. The presence and absence of genes was discussed according to the annotation of the genomic sequences of H. vineae strain. Table 1 was built with H. vineae genome compared with the industrial wine yeast S. cerevisiae EC 1118 genome that was the strain used for the feeding experiments with amino acids and p-ABA shown in Figures 5 and 6.
Statistical analysis

ANOVA analysis of BAL in wine produced using 16 yeast strains in the CDG fermentation medium was performed. ANOVA of the effect of DAP addition on benzenoid compounds at three YAN levels (50, 75 and 250 mgN/L) for *H. vineae* was also analyzed. The benzenoid compound concentrations were also evaluated for the effects of Phe, Tyr, Trp and *p*-ABA in the CDG medium. STATISTICA 7.0 software was used for all the ANOVA analyses. Differences in mean benzenoid compound concentrations were evaluated by the least significant differences test.

RESULTS AND DISCUSSION

We selected 11 different *H. vineae* strains from our native yeast collection to compare within the species the capacity for formation of BAL in the synthetic medium. The production of BAL by wine yeasts was measured at the end of fermentation in CDG medium containing 150 mgN/L YAN (a usual YAN level found in industrial grape juice) (Figure 2). Five native and commercial wine *S. cerevisiae* strains were compared to 11 *H. vineae* strains including Hv025 previously applied by us for winemaking. It can be seen that the accumulation of BAL by *S. cerevisiae* strains is very limited in the CDG medium compared to the tested *H. vineae* strains. Figure 2 shows that the production of this alcohol within the species *H. vineae* varies in concentration from 87 up to 620 µg/L in these conditions. The highest producer, strain Hv12196, produced a concentration level above the average sum of free and bound forms found in Tannat grape juice (385 µg/L) as previously described. When relating the production of BAL to fermentation rates (estimated as average rate between day 3 and 13, gCO₂/100 mL.day for each strain of *H. vineae*, Fig 2) and total biomass (BAL/cell, Figure 3a), it was confirmed that there was no correlation with these parameters ($R^2=0.51$ and $R^2=0.61$ respectively). Figure 3b shows the
formation and accumulation of BAL and its acetate ester during fermentation. Interestingly, acetylation of this alcohol shows a very low formation rate (around 2% of the alcohol was acetylated) when compared to the acetylation of β-phenylethyl alcohol that was detected previously up to 50% in H. vineae strains, resulting in significantly higher concentrations of β-phenylethyl acetate.41, 42

Effect of ammonium on BAL and p-BAL production

Feeding experiments with changes in ammonium concentration in the artificial medium were designed to investigate the effect of this compound as a potential pathway regulator for the formation of BAL, BD, p-HBAL and p-HBD for the main producer strain 12/196. Figure 4 shows the effect of ammonium; where a consistent negative correlation is observed in the formation of these four compounds with DAP levels (BAL $R^2=0.85$; p-HBAL $R^2=0.95$; BD $R^2=0.84$ and p-HBD $R^2=0.87$). A significant decrease of BAL and p-HBAL formation is observed with a YAN level of 250 mgN/L (78 and 22 µg/L, respectively). Experiments with the same YAN (250 mgN/L), but with the amino acid mixture instead of DAP addition, result in a weaker decrease of BAL formation (170 µg/L, data not shown). The similar behavior of both aldehydes, but at very low concentrations, suggested that they could be intermediates of alcohol formation. This behavior in both alcohols suggests an inhibitory effect or metabolic re-orientation of inorganic nitrogen at some step in the biosynthetic pathway, as was shown for the formation of other higher alcohols in S. cerevisiae.33 However, BAL does not show a similar pattern at very low YAN levels between 50 and 75 mgN/L, where an increase of production of the main higher alcohols was shown.33 BAL formation increased with the lowest YAN level up to 1055 µg/L (Figure 4) compared to 620 µg/L at 150 mgN/L YAN (Figure 2). As was stated in the introduction, to the best of our knowledge, only one reference was found reporting the
production of BAL in a synthetic medium of up to 464 µg/L with the yeast Schizosaccharomyces pombe.23 In agreement with these results, although concentrations produced by \textit{S. cerevisiae} yeasts were very low, the significant decrease of BAL formation by DAP and anaerobic conditions was reported by us also for this species36. Avoiding or delaying nitrogen supplementation during winemaking could be an interesting strategy to increase benzenoid synthesis for the final wine. Implications of DAP addition on decreasing phenolic aroma compounds formation during winemaking are further discussed by us (Martin et al.)43

\textit{Effect of Phe, Tyr, Trp and p-ABA on BAL, p-HBAL, BD and p-HBD production}

Feeding experiments were designed to investigate the effect of these compounds either as potential precursors and/or pathway regulators for the formation of BAL and BD (considering phenylpyruvate as a probable precursor), and \textit{p-HBAL} and \textit{p-HBD} (considering \textit{p}-hydroxyphenyl pyruvate as the other probable precursor). In Figure 5, the effect of omitting and doubling the concentration of each of the three aromatic amino acids in the medium, keeping YAN constant at 100 mgN/L, is shown. As it was expected for \textit{H. vineae}, BAL was produced, yielding more than 30-fold higher concentration than the industrial strain of \textit{S. cerevisiae} EC 1118. It could be observed for \textit{H. vineae} that Phe and \textit{p-ABA} addition significantly increased the production of BAL and Tyr, in the contrary decreased it. The significant increase of BAL formation in \textit{H. vineae} with Trp addition at low concentration may be explained if \textit{de novo} synthesis of this alcohol occurs from sugars. It is known for some \textit{S. cerevisiae} strains that Trp is a stimulator of the initial steps of the chorismate pathway unlike Phe and Tyr which are inhibitors27, effects that are also in agreement with our results of Figure 5 for \textit{S. cerevisiae} (EC1118 strain). This fact, and that Trp could not be a catabolic precursor of BAL, may support the hypothesis of \textit{de novo}
synthesis of these compounds through an increase of chorismate availability in the pathway (Figure 1 and 7). However, further research expanding the dose concentrations will be needed with *H. vineae*, as Trp double-concentration decreased accumulation of BAL, showing a bimodal behavior in Figure 5. The increase of *p*-ABA affects both species equally, increasing BAL formation. It was recently reported for *S. cerevisiae* that changes in *p*-ABA synthase gene (*ABZ1*) expression have a significant effect on the synthesis of many flavor aroma compounds regulated by nitrogen, such as β-phenylethyl alcohol. Our results show a similar behavior of BAL and *p*-HBAL (and β-phenylethyl alcohol, data not shown) upon *p*-ABA addition for *H. vineae*. However, an opposite behavior is observed between the species upon increase of Phe. The significant increase of BAL with Phe double concentration in *H. vineae* up to 1351 µg/L supports the hypothesis that Phe catabolism capacity is increasing phenylpyruvate into the chorismate pathway.

Figure 6, shows that production of *p*-HBAL by *H. vineae* is clearly another significant difference with *S. cerevisiae*, yielding productions of two orders of magnitude higher, since this compound in *Saccharomyces* final wines, was under a quantifiable value.

Benzyl and *p*-hydroxybenzyl alcohol formation pathways in Hanseniaspora vineae

Three alternative routes to the *PAL/TAL* pathways were previously proposed to produce *p*-hydroxybenzoate in *S. cerevisiae*: the direct formation from chorismate as in some bacteria with a chorismate pyruvate-lyase, a non-oxidative pathway proposed for plants with a retro-aldol reaction from *p*-hydroxycoumarate and the peroxisome β-oxidative pathway with acetyl CoA formation. No evident gene homologies were found by us for the first alternative in *H. vineae*. Furthermore, the second and third proposed alternatives were excluded by the fact that both involve cinnamic acids or derived compounds such as vinylphenol and vinylguaiacol that are unable to be synthesized by *S. cerevisiae* and *H. vineae*.
vineae in our CDG medium (data not shown). This observation strongly supports that these two pathways are not active in our experimental conditions. In addition, the key enzymatic step proposed by some authors for the conversion of \(p \)-hydroxyphenyl lactate to \(p \)-coumarate24,46 was never demonstrated for yeast.

The phenylpyruvate and \(p \)-hydroxyphenyl pyruvate pathways to benzenoids

Table 1 shows the presence and absence of aryl alkyl alcohol metabolism-related genes in \(H. \) vineae compared to \(S. \) cerevisiae. In Figure 7 we also show the proposed pathways for the formation of BAL and \(p \)-HBAL from phenylpyruvate and \(p \)-hydroxyphenyl pyruvate, respectively.

The synthesis of benzenoids in plants through phenylpyruvate as an alternative to the \(PAL \) pathway has been suggested within multiple putative pathways,19 but has not yet been biochemically proved.9 Furthermore, this pathway through phenylpyruvate was also proposed for the fungi \(Bjerkandera \) adusta;47 however, it was also not proved, since this fungi also has the ability to form trans-cinnamic acid derivatives through \(PAL \), as was stated for many basidiomycete and some ascomycete fungi.20 In this report,47 labeling studies from both Phe and cinnamic acid showed that Phe produced a higher percentage of labeled BAL in \(B. \) adusta, suggesting that Phe may be using two parallel pathways, through PAL and through phenylpyruvate, while the labeled cinnamic acid is using only the \(\beta \)-oxidative and/or the non-oxidative pathways (see Figure 7). \(PAL \) being absent in \(H. \) vineae, suggests that benzenoids are necessarily dependent on \textit{de novo} synthesis from chorismate. Genomic analysis of \(H. \) vineae indicates the existence of all the genes that encode for enzymes of the chorismate pathway, and of \(ARO7 \) (chorismate mutase) and \(PHA2/TYR1 \) genes (see Figure 7), proving that this yeast could synthesize phenylpyruvate and \(p \)-hydroxyphenyl pyruvate through prephenate as in \(S. \) cerevisiae.
The mandelate pathway to benzenoids in yeast

Based on these studies and previous reports, we propose here the mandelate pathway as a non-cinnamic acid formation route to benzenoids, and as an alternative pathway for yeasts and other organisms that lack PAL. Although it was proposed for fungi with some unclear interpretations as discussed above, the functionality of the mandelate pathway was just recently demonstrated in an engineered bacteria. We proposed for H. vineae that ARO10, SCS7 and DLD1/2 genes may participate in this pathway. These genes are known to produce proteins with a wide functional capacity including reactions with mandelate and phenylpyruvate or phenyllactate Also, as ARO10 and DLD1 proteins are very divergent between H. vineae and S. cerevisiae (see Table 1), this may explain the H. vineae’s capacity for the synthesis of benzenoid compounds. The results presented here, the proven function of 4-hydroxybenzoate as an intermediate of ubiquinone, and the inability of both yeast species to synthesize cinnamic acids, are in agreement with the proposed pathway in Figure 7. Gene sequence divergences of these steps and the fact that these enzymes have also been shown to display activity on either phenylpyruvate or p-hydroxyphenyl pyruvate derived compounds clearly suggest a similar pathway for the formation of both alcohols. Following from the mandelate pathway yielding benzoate or p-hydroxybenzoate (or the corresponding aldehydes), BAL and p-HBAL can be formed by aryl alcohol dehydrogenases (Aad) or alcohol dehydrogenases (Adh). The mandelate, β-oxidative and non-oxidative pathways mainly shown in plants and their relation with aromatic amino acids and the four benzenoids analyzed in this work are shown in figure 7. Further studies at biochemical level will be necessary to prove some of the steps that are indicated here for yeast.

In summary, H. vineae production of BAL and p-HBAL during wine fermentation was one...
to two orders of magnitude higher than *S. cerevisiae* under the same fermentation conditions in a chemically defined medium.

Phe/Trp/*p*-ABA and ammonium/Tyr concentration changes in the synthetic grape medium composition showed an increase and a decrease, respectively, with the formation of BAL. Modulation of these YAN nutrients could decrease or increase up to 17 times the total BAL produced by *H. vineae*. Doubling Phe concentration in the medium significantly increased BAL formation in *H. vineae* (up to 1351 µg/L), the opposite behavior compared to *S. cerevisiae*. We propose that the formation of BAL in *H. vineae* could follow two alternative origins, from sugars through chorismate and from active Phe catabolism, both routes with phenylpyruvate as an intermediate and the subsequent formation of mandelate through *ARO10* decarboxylase. Protein blast searches support these putative mechanisms that may allow this species to synthesize these alcohols. The absence of the *PAL* and *TAL* routes and the high BAL production by *H. vineae* makes it an ideal eukaryotic model to better understand the synthesis of benzenoids, as compared to plants and fungi where coexistence with the *PAL/TAL* pathways makes their metabolic analysis more complex to perform.

ABBREVIATIONS USED

BAL Benzyl alcohol; BD benzaldehyde; *p*-HBD *p*-hydroxybenzaldehyde; *p*-HBAL *p*-hydroxybenzyl alcohol; CDG chemically defined grape medium; YAN yeast assimilable nitrogen; PHE phenylalanine; TYR tyrosine; TRP tryptophan; *p*-ABA *p*-aminobenzoic acid; DAP Diammonium phosphate. *ARO* genes requiring aromatic amino acid; *ARO10* phenylpyruvate decarboxylase; *ALD* aldehyde dehydrogenase; *ABZ* *p*-ABA synthesis; *ADH* alcohol dehydrogenase; *ATF* alcohol acetyl transferase; *BAT* branched-chain amino acid transaminase; *DLD* D-lactate dehydrogenase; *GRE2* NADPH-dependent methylglyoxal reductase; *HOM2* aspartic beta semi-aldehyde dehydrogenase; *OYE2* NADPH oxidoreductase; *PDC* pyruvate
decarboxylase; \textit{PHA2} prephenate dehydratase; \textit{SCS7} sphingolipid alpha-hydroxylase; \textit{TYR} prephenate dehydrogenase; \textit{TRP} tryptophan synthesis; \textit{SF41} bifunctional alcohol dehydrogenase and formaldehyde dehydrogenase.

In Figure 7: Phenylacetaldehyde (PheALD), \textit{p}- hydroxyphenylacetaldehyde (\textit{p}-HPheALD), phenylacetic acid (PheAA), \textit{p}-hydroxyphenylacetic acid (\textit{p}-HPheAA), mandelic acid (ManA), \textit{p}-hydroxymandelic acid (\textit{p}-HManA)

\section*{ACKNOWLEDGEMENTS}

We wish to thank the following agencies for the financial support yielded to this work: CSIC Group Project \#656 and CSIC Productive Sector Project \#602 of UdelaR, Uruguay, \textit{Hanseniaspora vineae} FMV 6956 project (ANII financial support). We will like to thanks Emiliano Santos for drawing our toc yeast.
REFERENCES

15. Ciani, M.; Comitini, F., Non-*Saccharomyces* wine yeasts have a promising role in biotechnological approaches to winemaking. *Annals of Microbiology* 2011, 61, 25-32.
17. Medina, K.; Boido, E.; Fariña, L.; Gioia, O.; Gomez, M. E.; Barquet, M.; Gaggero,

30. Giorello FM; Berná L; Greif G; Camesasca L; Salzman V; Medina K; Robello C; Gaggero C; Aguilar PS; Carrau F, Genome sequence of the native apiculate wine yeast *Hanseniaspora vineae* T02/19AF. *Gen. Announce.* 2014, 2(3):e00530-14.

33. Carrau, F.; Medina, K.; Farina, L.; Boido, E.; Henschke, P. A.; Dellacassa, E.,
Production of fermentation aroma compounds by *Saccharomyces cerevisiae* wine yeasts: Effects of yeast assimilable nitrogen on two model strains. *FEMS Yeast Research* **2008**, *8*, 1196-1207.

49. Smekal, O.; Yasin, M.; Fewson, C.; Reid, G.; Chapman, S. K., L-mandelate

FIGURE CAPTIONS

Figure 1
Shikimic acid and chorismate pathway for the synthesis of aromatic amino acids and p-aminobenozoic acid (p-ABA). The main intermediates are indicated in red: phenlypyruvate, p-hydroxyphenyl pyruvate and anthranilate. Green dotted lines indicate phenylalanine ammonia-lyase (PAL) and tyrosine ammonia-lyase (TAL) pathways that were proved in plants and some filamentous fungi, where the key intermediates to benzenoids are cinnamic acids. We confirmed here that these enzymes are not present in Hanseniaspora vineae, Saccharomyces cerevisiae and other Saccharomycotina yeasts. The great production of benzyl-derived compounds by H. vineae through an alternative pathway to PAL or TAL will contribute to understanding the steps that are shown with interrogation symbols on this scheme.

Figure 2
Benzyl alcohol (BAL) production by Hanseniaspora vineae strains compared to Saccharomyces cerevisiae wine yeasts (ALG804, KU1, Sc882, Sc881 and M522). Fermentations were performed in the model artificial grape medium with a yeast assimilable nitrogen (YAN) of 150 mgN/L at 20°C, and samples were analyzed after 14 days of fermentation. Results showed significant difference between species (P ≤ 0.001) according to an LSD test of ANOVA calculated for each strain. Error bars indicate SD of the mean value. Fermentation kinetics of the three most diverse (Hv0225, Hv12196 and Hv12213) and the two sequenced strains of H. vineae (Hv0205 and Hv0219) are shown as CO₂ weight lost, compared to M522 presented in dotted lines.

Figure 3
a. Hanseniaspora vineae strains and Saccharomyces cerevisiae M522 fermented in
chemically defined grape (CDG) medium with 150 mgN/L yeast assimilable nitrogen (YAN) at 20 °C; GC analysis was used to determine benzyl alcohol (BAL) production per cell. Error bars indicate SD of the mean value.

b. Growth kinetics (dotted line) of *H. vineae* 02/25 under the same fermentation conditions. Benzyl acetate and BAL formation during fermentation are shown in bars at the end of the exponential phase (day 4) and at the end of the stationary phase (day 10). Error bars indicate SD of the mean value.

Figure 4

Benzyl alcohol (BAL), benzaldehyde (BD), *p*-hydroxybenzyl alcohol (*p*-HBAL) and *p*-hydroxybenzaldehyde (*p*-HBD) formation by *Hanseniaspora vineae* 12/196 in the chemically defined grape (CDG) medium with three yeast assimilable nitrogen (YAN) levels where 75 and 250 mgN/L levels were reached with diammonium phosphate (DAP) addition. Fermentations were carried out at 20 °C; data expressed in µg/L. Letters at each data point indicate the level of significant difference (P ≤ 0.001) according to an LSD test of ANOVA calculated for each treatment. Error bars indicate SD of the mean value.

Figure 5

Benzyl alcohol formation by *Hanseniaspora vineae* 12/196 (left side) and by *Saccharomyces cerevisiae* EC1118 in the chemically defined grape (CDG) medium. Fermentations were performed at constant yeast assimilable nitrogen (YAN) level (100 mgN/L) but with omitted (0), normal juice concentration (1) or double-concentration (2) of the three amino acids phenylalanine (PHE), tyrosine (TYR) and tryptophan (TRP). Diammonium phosphate (DAP) was used as the substitute of each of these amino acids according to the treatment, to maintain 100 mg N/L. For *p*-aminobenzoic acid (*p*-ABA, 0.2 mg/L) experiments only with omitted and normal juice concentration were used. Fermentation was carried out at 20 °C; data expressed in µg/L. Letters at each data point
indicate the level of significant difference (P ≤ 0.01) according to an LSD test of ANOVA calculated for each treatment. Error bars indicate SD of the mean value.

Figure 6

p-hydroxybenzyl alcohol (*p*-HBAL), benzoaldehyde (BD) and *p*-hydroxybenzaldehyde (*p*-HBD) formation by *Hanseniaspora vineae* Hv12/196 and by *Saccharomyces cerevisiae* EC1118 in the chemically defined grape (CDG) medium. Treatments with the same yeast assimilable nitrogen (YAN) level of 100 mgN/L in the omitted (0) and normal juice concentration (1) of phenylalanine (PHE, 18.1 mg/L), tyrosine (TYR, 2.4 mg/L) and tryptophan (TRP, 12.1 mg/L) Fermentations were carried out at 20 °C; data expressed in µg/L. Letters at data points indicate the level of significant difference (P ≤ 0.01) according to an LSD test of ANOVA calculated for each treatment. Error bars indicate SD of the mean value. NQ: not quantifiable (below limit of quantification).

Figure 7

The proposed pathways for the formation of benzyl alcohol (BAL), benzoaldehyde (BD), *p*-hydroxybenzyl alcohol (*p*-HBAL) and *p*-hydroxybenzaldehyde (*p*-HBD) in *Hanseniaspora vineae* through the chorismate pathway, with phenylpyruvate and *p*-hydroxyphenyl pyruvate as intermediates, are presented. In yellow, the presence of genes that codify for enzymes that catalyze different steps of the pathways were confirmed by genomic analysis of *H. vineae* compared with *Saccharomyces cerevisiae* EC 1118 (Table 1) and with plants. Compounds in red squares were determined by GC-MS in this work.
Table 1. Comparison of aryl alkyl metabolism-related genes of *H. vineae* and *S. cerevisiae* EC 1118 genomes.

<table>
<thead>
<tr>
<th>class of compound</th>
<th>enzymatic activity</th>
<th>genes identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>higher alcohol</td>
<td>aromatic amino acid transferase</td>
<td>ARO8 (59.84), ARO9 (42.70)</td>
</tr>
<tr>
<td></td>
<td>branched chain amino acid transferase</td>
<td>BAT1 (78.84), BAT2</td>
</tr>
<tr>
<td></td>
<td>decarboxylase</td>
<td>ARO10 (34.1), PDC1 (80.46), PDC5, PDC6, THI3</td>
</tr>
<tr>
<td></td>
<td>alcohol dehydrogenase</td>
<td>ADH1, ADH2 (78.74), ADH3 (74.80), ADH4, ADH5, ADH6 (44.74), ADH7, SFA1 (68.16), GRE2 (50.73), YPR1, PAD1, SPE1, OYE2 (58.06), HOM2 (78.24)</td>
</tr>
<tr>
<td></td>
<td>aryl alcohol dehydrogenase</td>
<td>AAD3, AAD4, AAD6, AAD10, AAD14, AAD15, AAD16</td>
</tr>
<tr>
<td></td>
<td>Regulation</td>
<td>ARO80 (34.80), GAT2, GLN3, GZF3, DAL80</td>
</tr>
<tr>
<td>acetate esters</td>
<td>alcohol acetyl transferases</td>
<td>ATF1, ATF2 (26.58)</td>
</tr>
<tr>
<td>volatile organic acids</td>
<td>aldehyde dehydrogenase</td>
<td>ALD2 (44.01), ALD3, ALD4, ALD5 (53.45), ALD6 (55.07)</td>
</tr>
<tr>
<td>p-ABA synthesis</td>
<td>synthesis of p-ABA from chorismate</td>
<td>ABZ1 (40.59), ABZ2 (35.52)</td>
</tr>
<tr>
<td>aromatic amino acid synthesis</td>
<td>synthesis of chorismate, phenylalanine tryptophan and tyrosine</td>
<td>ARO1 (66.79), ARO2 (80.59), ARO3 (77.03), ARO4 (83.51), TRP2 (70.84), TRP3 (69.14), ARO7 (67.97), PHA2 (41.99), TYR1 (62.37)</td>
</tr>
<tr>
<td>benzyl alcohol/ benzoaldehyde synthesis</td>
<td>Mandelate pathway</td>
<td>ARO10, PDC1, SCS7 (66.5), ALD6?, ALD2?, DLD1(53), DLD2(70), DLD3</td>
</tr>
</tbody>
</table>

Genes absent (crossed letters) or present are indicated; percentages in parentheses indicate amino acid sequence identity between both species. *ARO* genes requiring aromatic amino acid; *ARO10* phenylpyruvate decarboxylase; *ALD* aldehyde dehydrogenase; *ABZ* p-ABA synthesis; *ADH* alcohol dehydrogenase; *ATF* alcohol acetyl transferase; *BAT* branched-chain amino acid transaminase; *DLD* D-lactate dehydrogenase; *GRE* NADPH-dependent methyglyoxal reductase; *HOM2* aspartic beta semi-aldehyde dehydrogenase; *OYE2* NADPH oxidoreductase; *PDC* pyruvate decarboxylase; *PHA2* prephenate dehydratase; *SCS7* sphingolipid alpha-hydroxylase; *TYR* prephenate dehydrogenase; *TRP* tryptophan synthesis; *SFA1* bifunctional alcohol dehydrogenase and formaldehyde dehydrogenase.
Figure 1

Benzenoids origin

- **Chorismate Pathway**
 - Pyruvate lyase
 - Chorismate
 - p-aminobenzoate (p-ABA)
 - Anthranilate
 - Tryptophan

- **Chorismate**
 - PEP
 - E4P
 - Schikimate
 - p-hydroxybenzoate
 - p-hydroxyphenylpyruvate
 - Phenylalanine

- **TAL Pathway**
 - Tyrosine
 - p-hydroxybenzoate
 - p-hydroxy cinnamic acid
 - Cinnamic acid

- **PAL Pathway**
 - Phenylpyruvate
 - Benzaldehyde

Formation reported in yeast for ubiquinone Q6 synthesis

Plants and Basidiomycetes

Cells and Bacteria

- Pyruvate lyase
- Chorismate
- p-aminobenzoate (p-ABA)
- Anthranilate
- Tryptophan
Figure 2

![Diagram showing benzyl alcohol µg/l and fermentation kinetics.]

Figure 3

![Diagram showing µg BAL per cell x 10^4 and growth kinetics Hv 02/25.]

Legend:
- BAL
- benzyl acetate
- cell number
Figure 4
Figure 5

H. vineae

- BAL µg/L

<table>
<thead>
<tr>
<th></th>
<th>PHE</th>
<th>TYR</th>
<th>TRP</th>
<th>p-ABA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.076</td>
<td>1.342</td>
<td>1.091</td>
<td>1.091</td>
</tr>
<tr>
<td>1</td>
<td>1.351</td>
<td>1.091</td>
<td>1.091</td>
<td>1.091</td>
</tr>
<tr>
<td>2</td>
<td>1.091</td>
<td>1.091</td>
<td>1.091</td>
<td>1.091</td>
</tr>
</tbody>
</table>

S. cerevisiae

- BAL µg/L

<table>
<thead>
<tr>
<th></th>
<th>PHE</th>
<th>TYR</th>
<th>TRP</th>
<th>p-ABA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>58</td>
<td>36</td>
<td>20</td>
<td>36</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>27</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
</tbody>
</table>

Legend: 0, 1, 2
Figure 6

H. vineae

<table>
<thead>
<tr>
<th></th>
<th>PHE</th>
<th>TYR</th>
<th>TRP</th>
<th>p-ABA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ-HBAL μg/L</td>
<td>67</td>
<td>67</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>BD μg/L</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>ρ-HBD μg/L</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
</tbody>
</table>

S. cerevisiae

<table>
<thead>
<tr>
<th></th>
<th>PHE</th>
<th>TYR</th>
<th>TRP</th>
<th>p-ABA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ-HBAL μg/L</td>
<td>NQ</td>
<td>NQ</td>
<td>NQ</td>
<td>NQ</td>
</tr>
<tr>
<td>BD μg/L</td>
<td>17</td>
<td>11</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>ρ-HBD μg/L</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
</tbody>
</table>
Graphic for table of contents