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1. Introduction

The technical ability of producing nanosized materials lead 
among other achievements to the discovery—and nowadays the 
technological application [1]—of semiconductor (SC) quantum 
dots (QDs). In these structures some typical features of SC bulk 
material are prevailed [2–5] and married to typical atomic prop-
erties [6–10] emerging from the energy level quantization [11] 
in the QDs, motivating their name: artificial atoms [12]. Double 
quantum dots (DQDs) can either be coupled (artificial mole-
cules [6]) or uncoupled. The latter arrangement we consider here 
for the investigation of an energy transfer process between QDs.

The electron confinement achieved through different QD 
geometries (disc shaped, spherical, wires, double layered, etc) 
presents an interesting variety of electronic properties that are, 

however, similar for various kinds of QDs. Epitaxially-grown 
self-assembled QDs are most commonly disc or pyramidally 
shaped InGaAs islands onto a GaAs substrate fed through a 
wetting layer by free electrons from the substrate [13, 14]. 
Vertical stacking of layers allows to obtain a nanostructure of 
vertically arranged DQDs [13, 14].

In electrostatically defined QDs, a two-dimensional elec-
tron gas is created between two semiconductors with different 
gaps. The gas can carry free electrons which can be further 
confined using charged metallic gates to define the regions of 
one, two or more QDs [6]. In the last years the advances in 
nanowire fabrication allowed the construction of QDs inside 
long nanowires using interlaced layer of different semiconduc-
tors [7]. Colloidal nanocrystals can nowadays be constructed 
small enough to observe quantization of the electronic levels. 
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They have attracted a lot of attention in the past few years as 
materials in modern third generation solar cells [15, 16]. In all 
theses QD structures the manipulation of the electronic levels 
of the QDs is straightforward. Particularly, manipulation of 
levels with different spin quantum numbers by magnetic or 
electric fields is possible. This allows the study and charac-
terization of transitions between them, [4, 7, 9, 10, 17–19] 
which are an appealing and desirable property in the field of 
quantum information.

Many experimental techniques are employed in current 
research to measure the properties of QDs. The electrical cur-
rent through QDs can be obtained by transport spectroscopy. 
Transport on electrostatically defined QDs, [6] nanowire based 
QD structures, [7, 9] and nanotube defined QDs [20] is widely 
used to determine the level structure inside the QDs. Another 
important field of research in various nanostructures is carrier 
relaxation dynamics within excitons after an optical excita-
tion. Pump–probe schemes with time resolution in the order 
of ten of picoseconds can resolve processes such as electron–
phonon interactions, [19, 21, 22] multiple exciton generation, 
[16] Auger relaxation [23] also far-IR relaxation and relaxa-
tion into defects, impurities especially at surfaces. The charac-
teristics can be measured by photoluminescence spectroscopy 
[4, 5, 24] and complementary photocurrent measurements can 
give information on the non-radiative decay time and energy of 
the excitons or intra-conduction band excited states [4]. In the 
specific case of DQDs, the transitions and tunneling dynamics 
of electrons of vertically coupled QDs were studied [4] and 
interdot phonon-relaxation processes were detected between 
the QDs. P to S orbital electron relaxation via electron correla-
tion has also been demonstrated in uncoupled n-doped DQDs 
[25–27] and after electric pulse excitation [28]. In this case the 
relaxation in one QD occurs via energy transfer and emission 
of an electron in a neighboring QD in a process called inter-
molecular Coulombic decay (ICD) [25, 27, 29–32].

In the present work we focus on the less intensively studied 
capture dynamics of free electrons into n-doped DQDs medi-
ated solely by long-range electron correlation [33]. In general 
the most important electron capture mechanism is via emis-
sion of longitudinal optical phonons, that has been studied 
before in single [34, 35] and double QDs [34]. It has been 
analyzed theoretically in single QDs along with electron col-
lisions and emission [34, 36]. In our previous work [33] we 
showed for the first time that electron capture can as well be 
mediated efficiently by long-range electron correlation in the 
interatomic Coulombic electron capture (ICEC) in DQDs. 
The process was named after the one originally predicted to 
be operative in atoms and molecules [37, 38]. In atoms the 
electron capture by one atom occurs while another electron 
is emitted from an atom into its environment. In DQDs the 
electron capture by one QD leads to an emission of electrons 
from neighboring QDs with controlled energy properties that 
can be tuned by changing the geometric DQD parameters 
[33]. We postulated ICEC for n-doped DQDs embedded in 
nanowires (figure 1) using an effective mass approximation 
(EMA) [39] based model potential in which we performed 
numerically exact electron dynamics calculations. The relaxa-
tion dynamics of an excitonic electron in undoped materials 

can be described within the same model provided that the hole 
relaxation to the band edge has been faster than that of the 
electron [23].

In this manuscript the ICEC probability is given as a func-
tion of the incoming electron energy. We can think of two of 
the above described experimental setups to test our results. 
In transport spectroscopy experiments in wires or confined 
2D electron gases, current from ICEC could be detected as 
a contribution in the Coulomb blockade region of the differ-
ential conductance [7]. Another experimental setup proposes 
an excitation in the wire generated by a localized laser pulse, 
this has been proposed as an initial state for similar phonon 
induced capture processes [34]. A pump–probe scheme [4] or 
quantum point contacts [7] could be used to follow the capture 
and emission dynamics.

We showed already that the probability for ICEC is non-
negligible [33] and can be greatly enhanced in the presence of 
two-electron resonance states that are capable of undergoing 
fast ICD-related energy transfer. Here, we systematically add 
other DQD configurations to those studied before and analyze 
how and for which energies in the different configurations 
ICEC in the general and the resonance case becomes most 
effective.

The paper is organized as follows: first we present some 
general considerations on the ICEC process section 2, intro-
duce our model and the DQD electronic structure section 3 

Figure 1. Schematic view of two experimental setups to achieve 
the electron confinement inside a nanowire. In panel (a) a 3D 
confinement is obtained using a layered semiconductor structure, 
in (b) the nanowire is built of a single semiconductor material and 
the barriers are obtained by electrostatic depletion (areas indicated 
with green shading). The depletion is achieved by setting different 
electrostatic potential energies in the metallic gates below the wire.
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followed by the electron dynamics methods used section 4 and 
the results section  5. Since numerically exact computations 
in the full six-dimensional Hilbert space are very time con-
suming, we additionally include an effective two-dimensional 
description of the nanowires and compare to the full dimen-
sional results section 5.2.4. The discussion of the results using 
realistic semiconductor parameters are given in section 6 fol-
lowed by the conclusions section 7.

2. Conditions for ICEC in DQDs

In this work we consider a system of two fully correlated elec-
trons and two QDs which we call the left and right QD and 
which are described by two different model potentials (see 
figure 2). For the time being consider a left potential well that 
supports only a single one-electron level L0 with energy EL0 
and a right one with one single-electron level R0 with energy 
ER0 such that ≠E EL R0 0. The tunneling and hybridization 
between L0 and R0 in the DQD is vanishingly small due to 
the long interdot distance R of the considered system. The 
ICEC process occurs as depicted in figure 2 where an electron 
is initially bound to the right QD and another electron with 
momentum pi is coming in from the left side of the DQD. The 
incoming electron can then be captured into the L0 ground 
state of the left QD while the electron on the right is emitted 
from the R0 ground state of the right QD. Energy conservation 
dictates that the total energy of the system ET

( ) ε= +E Ein i RT 0 (1)

( ) ε= +E Eout ,f LT 0 (2)

is conserved [38] and the kinetic energy acquired by the out-
going electron can be expressed as

ε ε− = ∆Ef i (3)

with the corresponding momentum

= + ∆∗p p m E2f i
2 (4)

where p m/2i f i f, ,
2ε = ∗, ∆ = −E E ER L0 0 and m*is the elec-

tron effective mass in atomic units. As one can notice from 
equation (4) the emitted electron can have a higher or a lower 
momentum than the initial electron, depending on the rela-
tion between the bound-state energies ER0 and EL0. However, 
for negative values of ∆E the ICEC channel is closed if 
the incoming electron energy is lower than |∆ |E  (see equa-
tion (4)). Note also that since ∆E is the energy acquired by the 
outgoing electron, then −∆E is conversely the energy gain/
loss suffered by the DQD.

3. Model

The motion of two electrons inside a nanostructured semicon-
ductor can be accurately described using a few-electron effec-
tive mass model potential [39] in which electron dynamics 
calculations are feasible. This approach offers then straight-
forward observability of how electron correlation can lead to 
ICEC in general two-site systems where electron correlation 
between moieties plays a fundamental role as well as in the 
specific case of a QD. We adopt here the model for the DQD 
used previously to study the dynamics of ICEC [33, 40] and 
ICD [25, 26, 28]. The dots are represented by two Gaussian 
wells aligned in z direction. In x and y direction we assume a 
strong harmonic confinement which could be attributed either 
to depleting gates [2] or to the actual structure of the semicon-
ductor [7]. Besides the full three-dimensional calculations we 
also considered a simpler one-dimensional model that uses an 
effective electron-electron interaction to take the wire shape 
of the system in x and y direction implicitly into account.  
In this one-dimensional effective model electron dynamics 
calculations are much more efficient because only the z coor-
dinates of the electrons are evolved in time.

3.1. Hamiltonian

The two-electron effective mass Hamiltonian for the system is

( ) ( ) ( )
ε

= + +
−

H h hr r r r
r r

,
1

r
1 2 1 2

1 2
 (5)

where εr is the relative dielectric permittivity and

( ) ( ) ( )= − ∇ + +∗h
m

V x y V zr
1

2
,i i c i i l i

2 (6)

is a one-electron Hamiltonian in which

( ) ( )ω= +∗V x y m x y,
1

2
c i i i i

2 2 (7)

( ) ( ) ( )= − −− + − −V z V Ve el i L
b z R

R
b z R/2 /2L i R i

2 2
 (8)

are the transversal confinement and longitudinal open poten-
tials, respectively. m* is the effective mass, R is the distance 
between the QDs and bL, R are the sizes of the left and right 

QD while VL, R their depths. Performing the scaling → ε
∗r ri m i
r  

Figure 2. Schematic view of the interatomic Coulombic electron 
capture for a double quantum dot. The effective mass approximation 
is used to describe the quantum dots as two potential wells. The 
capture of the incoming electron by the left dot (dashed green state) 
is mediated by its correlation with the electron initially bound to 
the right dot (full green state). While the electron is captured in the 
left dot, the electron on the right is excited into the continuum and 
becomes an outgoing electron.
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of the electronic coordinates one can obtain the scaling rela-
tionships of the Hamiltonian parameters shown in table  1. 
Clearly, we can use the effective mass and the relative permit-
tivity equal to one and rescale the parameters afterwards to 
obtain the energies and distances for a specific semiconductor.

Due to the comparably strong confinement (ω = 1.0 
a.u.  >  VL, R) the excited states relevant to this study are only 
in z direction. We will correspondingly have a level struc-
ture ( )L Rn n , = …n 0, 1,  in the left (right) QD with energies 

( )E EL Rn n . The orbital symmetry is simply that of a symmetric 
well: L0 corresponds to an S-symmetry around the left dot,  
L1 to a P-symmetry and so on.

3.2. Effective one-dimensional approach

As mentioned in section 3.1 the system under consideration 
has a strong lateral confinement. It is then possible to con-
struct an effective one-dimensional Hamiltonian [41] using 
the wave function separation ansatz

( ) ( ) ( ) ( )ψ φ φΨ = z z x y x yr r, , , , ,1 2 1 2 0 1 1 0 2 2 (9)

where φ0 are two-dimensional single-electron ground state 
functions and ( )ψ z z,1 2  is the longitudinal effective wave 
function. Since essentially the same results are obtained 
for singlet and triplet states, we chose triplet symmetry 
throughout our study. Ψ has the proper symmetry under 
exchange of electrons given by the longitudinal wave func-
tion ˆ ↔ ( ) ( )ψ ψΠ = −z z z z, ,1 2 1 2 2 1 . The one-dimensional 
Hamiltonian can be deduced from the analysis of the expecta-
tion value of the full Hamiltonian with the product wave func-
tion of equation (9)

( )∑ω ψ ψ

ε

Ψ Ψ = −
∂
∂
+

+ Ψ
−

Ψ

=
∗H

m z
V z

r r

2
1

2

1 1
.

i i i
i

r

1,2

2

2 long

1 2

 

(10)

The last term can be explicitly written in the form

d

z z V z z z

r r

r r

r r
r r

1 ,
d

, d d ,

1 2

1 2
2

1 2
1
3

2
3

1 2
2

eff 12 1 2

( )

( ) ( )

∫∫
∫ ∫ ψ

Ψ
| − |

Ψ =
|Ψ |
| − |

= | |

 

(11)

with the squared longitudinal wave function and the effective 
z-potential

( ) ( ( ))π
ζ= −ζV z

l2

1
e 1 erf ,eff 12

2

 (12)

which depends on =| − |z z z12 1 2 , the variable remaining after 
integrating over the x and y coordinates.

The size of the two-dimensional ground state wave func-

tion is given by φ φ ω= = ∗l x m1/0
2

0  and z l/ 212ζ =  

is the distance z12 between the electrons in terms of the con-
finement size l. The asymptotic behavior of ( )V zeff 12  exhibits 
a Coulombic decay behavior at large electron separation. 
However, at small distances between the electrons this effec-
tive potential does not diverge at =z z1 2 which is beneficial for 
numerical treatments:

( ) → ⟶
( )

−∞

⎛
⎝
⎜

⎞
⎠
⎟V z

z

l

z

1
1zeff 12

12

2

12
212

 (13)

⎛
⎝
⎜

⎞
⎠
⎟V z

l

z

l

1

2
.zeff 12 0

12
12

( ) → ⟶ π
− +� (14)

The validity of the effective potential in different con-
finement regimes was studied in [41] for double QDs as a 
function of the distance R between QDs. From equation (13) 
we see that l/z12 defines the correction order of the effec-
tive interaction at large distances. If we take the distance 
between the dots R as a measure of the closest distance 
that electrons will be from each other, then ≈z l R l/ /12 . We 
realize then from equation  (13) that in the regime studied 
in this work ( ≈l 1 and ≈R 10), the electrons are already 
in the asymptotic regime of the effective potential. Notice 
also that the peak at =z z1 2 scales as 1/l (see equation (14)) 
indicating that in truly narrow confinements ( →l 0) there is 
less room for the electrons to avoid the divergence of the 
Coulomb interaction.

4. Computational details

The dynamical evolution of the system was obtained by 
solving the time-dependent electronic Schrödinger equa-
tion employing the multiconfiguration time-dependent Hartree 
(MCTDH) approach [42, 43]. The triplet wave function

t A t t tr r r r, , , , ,
i j

n

ij i j1 2
,

1 2( ) ( ) ( ) ( )∑ ϕ ϕΨ = (15)

was expanded in time-dependent single particle functions 
( )ϕ tr,i  (SPFs) and coefficients Aij(t) that fulfill the antisym-

metry condition ( ) ( )= −A t A tij ji  for all times. The Dirac–
Frenkel variational principle [44, 45]

Table 1. Scaling of the Hamiltonian and parameters under the 

transformation 
m

r ri
r

i→ ε
∗ .

Parameter Scaled value

H (or E )
m

r
2ε

∗
 H

m* 1

rε 1
ω ω

R
m

Rrε
∗

b b,L R( )
m

b b,r
L R( )ε

∗

V V,L R( )
m

V V,r
L R

2

( )ε
∗
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δΨ −
∂
∂
Ψ =H

t
i 0 (16)

was used to obtain the equations of motion for the coefficients 
and SPFs.

They were efficiently solved using a constant mean field 
approach as implemented in the MCTDH-Heidelberg package 
[43, 46]. The convergence of numerical results was ensured 
by monitoring the population of the least populated SPF. 
This is reasonable because the SPFs are adaptive in time and 
are optim ized to describe ( )Ψ tr r, ,1 2  with the least possible 
number of SPFs.

The multimode SPFs ( )ϕ tr ,i q  were in turn expanded in one-
dimensional time-dependent SPFs for each of the Cartesian 
coordinates (x, y, z) as

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )∑ϕ χ χ χ=t C t x t y t z tr , , , , .i q
q

l
x

q m
y

q n
z

q
lmn

lmn (17)

These one-dimensional SPFs χl are expanded on a DVR-
grid (discrete variable representation). We chose harmonic 
oscillator DVRs for the x and y, and a sine DVR for the z 
coordinate as listed in table 2.

In the full 3D calculations the Coulomb potential was regu-

larized as → +r r a1/ 1/12 12
2 2  with a  =  0.01 to prevent diver-

gences at =r r1 2, and then transformed into sums of products 
using the POTFIT [46] algorithm of MCTDH.

A quadratic complex absorbing potential (CAP) was 
placed at the position ±zcap along the z coordinate to absorb 
the outgoing electron before it reaches the end of the DVR 
grid. The CAP obeys

( ) ( )η= − Θ± ∓ ∓W z z z zi cap
2

cap (18)

where η is the CAP strength and Θ is the Heavyside step func-
tion. The absorption prevents the unphysical reflection of out-
going electrons at the grid boundaries.

The absorption of the WP is also used to analyze the energy 
distribution of the outgoing WP. The quantity that we want to 
compute is the reaction probability (RP) for ICEC which cor-
responds to the scattering matrix element ( )| |S EL R, T

2
0 0  which is 

the probability that an electron impinging from the left on the 
DQD possessing an electron bound at R0 leads to emission of 
an electron to the right leaving behind a DQD with an electron 
bound to L0.

The computation of the matrix element was performed by 
using the expression for the stationary scattering eigenfunc-
tions in terms of the initial wave packet WPi [47] in order to 

obtain the amount of emitted density from the wave packet 
absorbed by the CAP [46]. The energy distribution ( )|∆ |EWP T

2
i  

of the incoming WPi is used to normalize the Fourier trans-
form of the absorbed density ( )τgL0

 to obtain the reaction 
probability (RP) [46]. We explicitly computed

( ) ( )
( )

( )
∫ τ τ

π
=| | =

|∆ |

∞ �
RP E

S E
g

E100

2Re e d
L R

L
E t

WP

T
, T

2 0
i /

T
2

i

0 0

0
T

 (19)

where

g t P W P t t

t P W P t t

t P W P t t

d

d

2 d

L L L

L L

L L

0

1 2 1

0

2 1 2

0

1 2 1

0 0 0

0 0

0 0

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

∫

∫

∫

τ τ

τ

τ

= Ψ Ψ +

+ Ψ Ψ +

= Ψ Ψ +

∞

+

∞

+

∞

+

 

(20)

and

( ) ( )∫π
∆ =

∗

−∞

∞
E

m

p
f z z

2
e dWP

R
WP

p z
T

i
i i

R

0

0 (21)

where the function ( )f zWPi
 is a Gaussian wave packet with a 

spatial width ∆xWPi. ( )∆ EWP Ti  is the energy distribution of the 
incoming WPi peaked around εWPi and given by the appro-
priate Fourier transform which uses the incoming momentum 

( )= − ≡∗p m E E p2R R iT0 0  [47].
( )τgL0

 is the absorbed electronic density by the right CAP 
while another electron is bound in the L0 state. The projec-

tors ( )PL
q
0
 acting on electron q specify which electron is in the 

L0 state, and the sum over both possible configurations gives 
the total absorbed density. Note that this quantity explicitly 
correlates both events, emission and capture, and thus gives 
only the ICEC contribution of the total emitted density. The 
scattering matrix in equation (19) corresponds to the R0 initial 
state because the initial wave function

( ) [ ( ) ( ) ( ) ( )]
( ) ( )

φ φ
φ φ

Ψ = −

×

f z z f z z

x y x y

0

, ,
WP R WP R1 2 2 1

0 1 1 0 2 2

i i0 0 (22)

represents a bound electron at R0 plus an incoming electron 
both in the ground state of the confinement potential.

The RP is a wave-packet independent quantity in the energy 
range of the size of the energy width of the incoming wavepacket 
WPi (see equation (19)). At each energy, the RP gives the rela-
tive amount (in %) of the electron density that would be emitted 
in the calculation with a monoenergetic electron at that energy. 

Table 2. Parameters used in the MCTDH calculations. The discrete variable representation (DVR) types correspond to harmonic oscillator 
(HO) and sine DVR (SIN).

x y z

DVR type HO HO SIN
DVR points / primitive basis 5 5 431
Range / a.u. (−2.02, 2.02) (−2.02, 2.02) (−270.00, 270.00)
Grid spacing (dx) / a.u. 1.01 1.01 1.25
SPFs 14 (x, y, z combined)
zcap — — 168.75 
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The absorption of WPi by the CAP outside the DQD econo-
mizes the computation time needed to obtain the RP.

5. Results

In this section we analyze the electronic structure (section 5.1) 
and the dynamics of the electrons (section 5.2) in the DQD 
relevant for ICEC. We compare a number of different configu-
rations that can be classified according to the general setups 
of the QD model potentials shown in figure 3. In setup A only 
the right QD with a single one-electron state R0 is present. 
The only purpose of investigating this setup is to prove that, 
for the incoming electron energies considered in this work, 
no transmission to the right is possible when the left QD is 
not present. The configurations belonging to setup B have one 
left and one right QD and each dot has a single one-electron 
state, L0 and R0, respectively. In these cases ICEC is allowed 
[33] and occurs as visualized in figure 2. Finally, setup C com-
prises configurations where the left QD has an excited one-
electron state L1 in addition to the L0 ground state allowing 
for the intermediate state L R1 0  to be formed. Since electrons 
located in the left and right QD are interacting with each other 
through the long-range Coulomb interaction pushing the state 
into the continuum, this state turns out to be a two-electron 
resonance. We will show that under certain conditions this res-
onance leads to a remarkable increase of the ICEC probability.

5.1. Electronic structure

As a first step in our analysis we want to study the electronic 
structure of the DQD embedded in the wire. As explained in 
section 3 the two-electron states can be named after the one-
electron states of the DQD. The confinement part of the wave 
function is described by the lowest energy harmonic oscillator 
wave functions in x and y both with frequency ω and effec-
tive mass m* and we therefore concentrate only on the z wave 
function analysis in what follows.

The potential energy curves and the wave functions of the 
states for two of the configurations used in the dynamical 
calcul ations are shown in figure 4. The concrete configuration 
of setup B in figure 4(a) has two bound one-electron states L0 
and R0. It is clearly visible that both states are localized in the 
respective QDs and that there is no hybridization of the states. 
Two characteristics of this configuration make this possible. 
One is the distance R between the QDs, which is large com-
pared to their size, and the other is the asymmetry of the DQD 
which leads to different energies for the left and right QDs.

The configuration shown in figure 4(b) is a representative of 
setup C. It shows a wider and shallower left QD which allows 
for an excited one-electron state L1. We see that the binding 
energy EL1 is much smaller than EL0 and ER0 and the wave func-
tion ψL1 is therefore more extended than ψL0 and ψR0.

We set the origin of the energy scale to ω2  throughout the 
study. It amounts to the energy contributed by both electrons 
in the ground state of the transversal confinement potential Vc 
(equation (7)). With this choice the bound (unbound) states of 

Figure 3. The three QD model potential setups studied in this 
work. Setup A is briefly analyzed and used only to clarify that no 
transmission to the right is possible without a left QD. In setup B 
each QD has one bound one-electron state, L0 and R0, respectively, 
and B is used to show how ICEC works in double QDs. In setup C 
the left QD has an additional one-electron excited state L1. In such a 
configuration the energy of the two-electron resonance L R1 0  can be 
tuned to substantially increase the ICEC reaction probability.

Figure 4. The potential Vl(z) ( ) and its bound states for two 
different configurations. (a) The DQD potential binds only two one-
electron states with wave functions R0ψ  (solid green squares) and 

L0ψ  (solid blue circles). The energy levels of these states are marked 
by dashed lines and the respective binding energies are indicated. 
(b) The left well is shallower and wider than in (a) and binds one 
additional excited one-electron state with a p-type wave function 

L1ψ  (solid red crosses).
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the longitudinal potential of the DQD have negative (positive) 
energies.

5.2. Dynamical calculations and results

By employing electron dynamics calculations we can investi-
gate what happens when an electron coming from the left side 
approaches the DQD where one electron is initially bound 
and how, if at all, ICEC occurs. We start with the simplest 
case of setup A (section 5.2.1) where only the right QD is 
present and then move on to different configurations of setup 
B (section 5.2.2) and C (section 5.2.3). All examples were 
computed using both the 1D model (section 3.2) and the full 
3D Hamiltonian (section 3.1) for triplet symmetry. In all cases 
we chose the energy of the incoming wave packet (WPi) such 
that it is to low to ionize the electron initially bound to the R0 
state, even if the full energy width of the WPi is considered.

5.2.1. One single QD. The initial state of the two-electron 
systems is an incoming free electron from the left and a bound 
one in the right QD. A similar setup was studied before, 
[48] however, for a different energy regime of the incoming 
electron in which two-electron ionization was allowed. The 
parameters VR  =  0.6 a.u. and bR  =  1.0 a.u. used here give a 
single bound state with an energy of  = −E 0.2463R0  a.u. The 

incoming wave packet (WPi) is an energy normalized Gaussian 
peaked around ε = 0.056WPi  a.u. The packet has a spatial width 
∆ =x 10.0WPi  a.u. and an energy width ε∆ ≈ 0.033WPi  a.u.4  
which is not enough to ionize the bound electron by the 
incoming one. Moreover, excitation to higher states in the 
transversal directions are energetically forbidden for these 
parameters.

The dynamics of the full 3D scattering process calculated 
according to the method described in section 4 is visualized in 
figure 5(a) by the longitudinal electronic density

( ) ( )∫ ∫ ∫ρ = Ψ′ ′z t x y tr r r, d d d , , 2 (23)

as a function of z and t. The incoming wave packet (WPi) 
approaches from the left to the QD located at z  =  5 a.u. (right 
dot) which is initially occupied by one electron (R0 state). The 
wave packet is initially located at z  =  −125 a.u. The incoming 
electron is completely reflected starting at about t  =  3 a.u. 
while the other electron remains bound in the right QD. Note 
that the energy covered by the WPi is too low to remove the 
electron in the right QD (ε ε+∆ < | |Ei WP Ri 0  ). Since the left 
QD is missing, no emission to the right is observed. The 
same calculation was made using the one-dimensional model 
described in section 3.2 and is shown in figure 5(b) for com-
parison. The evolution is in both cases very similar, only the 
population P of the lowest populated SPF (which is a measure 
of the convergence as explained in section 4) is different (but 
however small) in each case giving a value of = × −P 1 10 8 
for the simplified model and = × −P 1 10 7 for the full calcul-
ation. For long times ( ≈t 25 a.u.) the total density ( )ρ z t,  in 
the system decreases to zero. The reason for this unphysical 
behavior is the CAP absorbing the continuum electron. This 
effect has no impact on the observed results, because the 
reflection process is already completed within a much shorter 
time of about 10 a.u.

5.2.2. ICEC in a double quantum dot. We now focus on con-
figurations of setup B where we added the left QD at a distance 
R  =  10.0 a.u. ICEC takes place in these DQDs as depicted in 
the scheme in figure 2 and we confirm this by using different 
configurations for which equation (3) is shown to be fulfilled. 
The spatially resolved time evolution of ( )ρ z t,  of four con-
figurations is shown in each left panel of figures 6(a)–(d). The 
right QD and the incoming wave packet WPi are the same in 
all four configurations with VR  =  0.6 a.u., bR  =  1.0 a.u. (same 
as for setup A before) and ε = 0.130i  a.u., ∆ =x 10WPi  a.u., 
ε∆ = 0.051WPi  a.u. The left QD is characterized by bL  =  1.0 a.u.,  

but its depth varies in these configurations taking on the values 
VL  =  0.800, 0.775, 0.750, 0.725 a.u. The corresponding ener-
gies EL0 and ∆ = −E E ER L0 0 are given in table 3.

Electron emission to the right is clearly visible in all 
four cases. The flatter slope of the final wave packet (WPf) 
trajectory traveling to the right indicates that the emitted 
electron has higher momentum than the incoming electron. 
According to equation  (3) the final energy of the outgoing 

Figure 5. Evolution of the electronic density equation (17) for a 
QD of setup A using the full three-dimensional Hamiltonian (a) 
and (b) the one-dimensional model of section 3.2. The parameters 
used for the MCTDH simulations are given in table 2. Since 
the incoming energy is very low and the left QD is missing, no 
emission to the right is observed.

4 The width of the Gaussian wave packet in momentum space is given by 

∆ =
∆

p
x

1

2
. Then the energy width is given by ε∆ = ∆ =

ε

∆
p pWP i x

2

2i
i .
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electron represented by pf calculated from equation  (4) (see 
table 3) decreases when the depth VL decreases. The RP gives 
a quanti tative measure of ICEC and can be computed using 
equation (19). Descriptively, it is the probability of capturing 
an electron in the left QD while simultaneously emitting an 
electron to the right from the right QD. The RP as a func-
tion of the incoming electron energy εi is shown in each right 
panel of figures 6(a)–(d). The energy range covered in the RP 
plots is determined by the peak εWPi with the energy width 
ε∆ WPi of the incoming wave packet. It is possible to obtain 

reliable results from one simulation within the energy range 
ε ε± ∆2WP WPi i, which is used for the RP plots.

At this point we would like to discuss more the meaning of 
the RP. The values given in the plots for ICEC are exactly the 
amount of the total electron density in percent that would be 
ejected from R0 to the right and correspondingly the increase 
of the population of L0, if the electron incoming from the 
left was mono-energetic with energy εi. On the other hand, 
a mono-energetic electron implies an infinitely wide WPi 
( →∆ ∞xWPi  ), which cannot be realized numerically on our 
finite DVR grid. In our calculations we take a rather broad 
incoming wavepacket and by employing equation (19) we can 
compute the RP.

Let us analyze the results for RP shown in figure 6. They 
clearly show that ICEC is no at all constant or even mono-
tonic in the covered energy range. On the contrary, it is seen 
that ICEC is very selective in energy. This is a non-trivial 
result considering that the ICEC channel into L0 is open for 
all incoming electron energies (equation (4)). The peak of the 
RP has its origin in the fact that the total energy ET (see equa-
tions (1) and (2)) is the relevant energy in a scattering process 
[49]. The RP shows a marked increase in the probability when 
the total energy ET matches the energy gained by the DQD 
(−∆E ) in the ICEC process in which the emitted electron 
takes an energy ∆E. Using equation (1) we obtain the value of 
εi at which the peak of the RP is located,

( )ε = − −∆E E.i R
peak

0 (24)

The values obtained for ( )εi
peak  are given in table  3 and 

depicted with vertical dashed lines in the RP plots of figure 6. 
We see that the RP peaks obtained from the dynamics fit 
exactly the predicted values using equation  (24). The RP 
values for the configurations of setup B all revealed probabili-
ties below 1%.

5.2.3. Capture in the presence of a two-electron reso-
nance. The physics of the capture is complicated in the 
presence of an increased number of bound states of the QDs. 
In general, several capture and decay channels will be open 
before and after the capture and the physics of resonance 
states comes into play. We analyze the probably most simple 
extension to the DQDs described in the previous sections (set-
ups A and B) by including one extra excited state in the left 
QD (setup C).

Accordingly, we modify the potential well of the left QD 
by choosing bL  =  0.3 a.u. instead of bL  =  1.0 a.u., i.e. we 
make the left well wider. Then we analyze the energies of 
the states as a function of the depth VL. This dependence is 

Figure 6. Evolution of the electronic density (left panels) and the obtained ICEC reaction probabilities (RP, ___) (right panels) for setup 
B of figure 3. The incoming wave packet (WPi) approaches the DQD centered at z  =  0 a.u. from the left which is initially occupied by 
an electron in the right QD (R0 state). 0.130iε =  a.u. and the parameters of the right potential are the same in all four cases. The depth 
of the left dot VL is varied as indicated for each case: (a) VL  =  0.800, (b) VL  =  0.775, (c) VL  =  0.750, (d) VL  =  0.725 a.u. The reaction 
probabilities shown in the right panels exhibit a peaked energy distribution centered at the values i

peak( )ε  (− − − −, computed by 
equation (24) and listed in table 3).

ε ε

Table 3. The parameters used in the four configurations for setup 
B discussed in the text and in figure 6, and the resulting computed 
energies, final momenta pf, and positions i

peak( )ε  of the peak values of 
the reaction probability (RP).

VL EL0 E∆ pf i
peak( )ε

0.800 −0.3769 0.1306 0.722 0.1157
0.775 −0.3599 0.1136 0.698 0.1327
0.750 −0.3430 0.0967 0.673 0.1496
0.725 −0.3264 0.0801 0.648 0.1662

Note: All values are given in a.u.
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shown in figure 7 for the three-dimensional model. Due to the 
Coulomb interaction the DQD accommodates a two-electron 
resonance which derives from the one-electron states L1 and 
R0. The L R1 0  resonance energy and decay rate (inverse life-
time) are shown as black dots in figure 7. Decay rates in QDs 
can be computed using different methods [25, 27, 50]. We 
follow here the approach employed in [25] in which the reso-
nance state L R1 0  is prepared by imaginary time propagation 
followed by the real time evolution to find its total decay rate.

The capture process occurs in the presence of the reso-
nance as indicated in figure 8 so that different electron capture 
scenarios can be imagined.

As before in setup B, electron capture into the L0 state 
with simultaneous release of the other electron from the R0 
state is one possible pathway (direct ICEC). Moreover, if the 
energy of the resonance is above the threshold, the incoming 
electron can be captured into the two-electron resonance state 

∣L R1 0 . After this it decays through a process called intera-
tomic Coulombic decay (ICD), [25, 27, 29–32] that means 
by deexcitation of the electron in the left QD ( L L1 0∣ → ∣  ). 
The released energy is used to emit the electron from the right 
QD ( R e0∣ → −) [25]. We denote this pathway as the reso-
nance channel and the process as resonance-enhanced ICEC. 
After being populated by the incoming electron, the reso-
nance can also decay by emitting elastically the electron to 
the left. This decay resembles that of a shape resonance: [49] 

∣ → ∣ → ∣+ +− −e R L R R e0 1 0 0 . This decay is of course only 
possible when the resonance energy EL R1 0 is higher than ER0, 
a situation that was not usually fulfilled in the systems where 
ICD was investigated earlier. For completeness we mention 
that the incoming electron energy is sufficiently low so that 
direct electron capture into the L1 state is energetically for-
bidden for all cases considered here.

The time evolution of the electron density ( )ρ z t,  has been 
calculated for different left well depths VL  =  0.65, 0.67, 0.71, 

and 0.74 a.u. (figure 9, left panels). Comparing with the 
results for setup B (figure 6) a clear difference is observed 
for the density emitted from z  =  0 to the right. In setups C a 
continuous decay with an exponential time constant is visible 
while an almost instantaneous electron emission takes place 
for setups B. This indicates that the mechanisms involved 
in the capture and emission processes are different for both 
setups. It is also noteworthy that the emitted electronic density 
to the left becomes more complex in case C showing clear sig-
natures of interference with the incoming WPi. The electron 
emitted elastically to the left is responsible for these interfer-
ence effects.

The results obtained for ICEC in section 5.2.2 show that the 
ICEC probability is highest if the total energy ET matches the 
negative of the energy difference ∆E. It is, therefore, worth-
while to study the behavior of the ICEC probability in relation 
to the value of ∆E in the presence of a resonance. Figure 7 
shows that the resonance energy crosses −∆E around the 
value VL  =  0.70 a.u. We previously addressed the configura-
tion with VL  =  0.71 a.u. which is near the crossing point of 
the energies = −∆E EL R1 0  [33]. In this case, the coincidence 

Figure 7. Width (top panel) and energies (bottom panel) of the L R1 0  
two-electron resonance (solid brown cross, one-dimensional model, 
solid black circles, three-dimensional system) playing a relevant 
role in enhancing the ICEC probability in setup C as function of the 
depth VL of the left QD. Shown are also the energies of all the single-
electron states L0 ( ), R0 ( ), and L1 ( ). The value of 
the energy difference E E EL R0 0−∆ = −  is also shown ( ).
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Figure 8. Schematic view of interatomic Coulombic electron 
capture in a model potential for a double QD in the presence of a 
two-electron resonance L R1 0  (dashed red lines). The incoming 
electron can be captured into L R1 0  (middle panel) because the 
resonance energy lies above the threshold. Then, the resonance 
decays by ICD (middle to bottom panel), a process in which the 
excited electron of the left QD decays from L1  to the L0  state 
while transferring the excess energy to the electron in the right QD 
which is emitted to the continuum.
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of the RP peak and the resonance energy lead to an extraor-
dinary increase of the ICEC probability. The presence of the 
resonance enables an extra channel that can be tuned to coop-
eratively augment the emission. The RP for this and three 
other VL values belonging to configurations above and below 
the mentioned crossing point are shown in the right panels of 
figure 9. The incoming WPi also depicted in figure 9 is dif-
ferent for each of the configurations because the RP region of 
interest changes with the resonance energy. Nevertheless, the 
energy range shown is the same in the four plots.

We observe that for VL  =  0.65 and 0.67 a.u. the RP 
develops one large peak with a shoulder indicating a second 
peak. These two peaks correspond to the direct and the reso-
nance-enhanced ICEC channels of the scattering process. The 
vertical lines depicted in the corresponding panels of figure 9 
stand for the energy of the resonance and of the ICEC peak 
computed from equation  (24). The maxima of the RP are 
seen to be slightly displaced from these lines. In this sense 
the simple picture of independent resonance and direct ICEC 
peaks is not strictly valid and a correction taking the interac-
tion between them into account is needed in order to obtain 
the correct peak positions. It should also be clear that both 
channels may interfere. It is noteworthy that the RPs now take 
on values of 10 and 16%, respectively, which are substantially 
higher than in the case of setup B where only the direct ICEC 
channel is operative.

The choice of VL  =  0.71 a.u. in panel (c) provides an 
extraordinary increase of the capture and emission prob-
ability. This probability of 22% indicates that the direct 
and resonance ICEC pathways coherently contribute to the 
same channel + −R e0 . The peak height strongly depends 
on whether the values of Eres and −∆E (depicted in figure 9 
and listed in table 4) coincide. We see in figure 9 for case (d) 
where VL is slightly enhanced that the peak height, now about 
5 %, is again smaller than in case (c). Clearly, the increase 

of the ICEC probability in case (c) derives from the concur-
rence of both processes. The total width of the RP peak for 
case (c) is very narrow and given by the inverse lifetime of 
the resonance, as opposed to the other cases where a wider RP 
with more than one peak is obtained. This narrowness can be 
utilized to design an energy selective device [33].

In case (c) the emitted electron density reaches the grid 
boundary before the resonant emission from the DQD has ter-
minated. This has no effect on the RP values as we find when 
using longer grids where the full emission is possible before 
reaching the absorbing boundary. This is demonstrated explic-
itly in the following section.

5.2.4. ICEC in the one-dimensional effective model. In 
addition to the results given by the full three-dimensional 
simulations we performed computations using the one-
dimensional model described in section 3.2. These calcul-
ations are much less time consuming and also allow to use 
much larger grids.

The result for configuration (a) of Setup B is shown in 
figure 10 demonstrating that the RP is structurally and quantita-
tively similar to that of the full three-dimensional computation. 
Without showing the picture we note that also the evolution of 
the electron density in the one-dimensional effective model is 
very similar to that of figure 6 for the full three-dimensional 
computation.

Figure 9. Evolution of the electronic density and obtained reaction probability (RP, ) for setup C of figure 3. The incoming wave 
packet (WPi, ) approaches from the left to the DQD centered at z  =  0 a.u. which is initially occupied by an electron in the right 
QD (R0 state). The left dot binds two states L0 and L1 and the depth of the left dot VL is varied as: (a) VL  =  0.650, (b) VL  =  0.670, (c) 
VL  =  0.710, (d) VL  =  0.740. The emission of the electron initially located in R0 takes place through the process shown in figure 8. In the 
right panels the energy of the two electron resonance (L1R0, ) and that of the direct ICEC peak ( ) are indicated with vertical lines 
and tabulated in table 4. In case (c) the matching of both energies (resonance and direct) gives a huge enhancement of the emission with a 
narrow energy distribution, which corresponds to the width of the resonance (see table 4).

ε ε

Table 4. Depth VL of the left QD, resonance and ICEC peak values 
in a.u. for the setup C cases.

VL Eres E−∆ i
peak( )ε Γ 10 4( )× − RP( )Γ 10 4( )× −

0.65 0.179 0.003− ± −0.148 0.0980 130 9± 130 10±
0.67 0.183 0.008− ± −0.164 0.0826 92 6± 95 8±
0.71 0.196 0.002− ± −0.194 0.0518 39 2± 38 2±
0.74 0.202 0.002− ± −0.218 0.0285 26 2± 23 4±
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Since the computation times are considerably reduced for 
the one-dimensional model, we can perform the simulations 
on much longer grids than those used for the 3D calculations. 
Now, we can address numerically the question whether the RP 
obtained from equation (19) reproduces the population of the 
L0 state via ICEC computed by employing incoming mono-
energetic electrons. The initial wave packet WPi can now be 
chosen to be spatially wider with ∆ =x 20 a.u., with a reduced 
dispersion in energy ε∆ ≈ 0.0130WPi  a.u. As indicated in sec-
tion 5.2.3, the maximum population of the L0 state over time 
can now be computed for a selected value of the energy εi of 
the incoming electron. This determines the RP at that energy. 
Clearly, we need to repeat the simulation using different 
incoming energies in order to construct a full RP curve. An 
example of an RP curve constructed in this manner is depicted 
in figure 11. We observe that the maxima of the L0 populations 
follow closely the values of the RPs obtained from the flux 
determined via equation (19), even though the energy distri-
butions ε∆ WPi of the WPis used to describe mono-chromatic 
incoming electrons are not extremely narrow as they should 
be. If they were infinitely narrow, then we would expect both 
RP results to coincide.

The RP does not change if we use different WPs. We 
can demonstrate this by using an energetically narrow wave 
packet with ε∆ ≈ 0.0130WPi  a.u. to compute the RPs and com-
paring the result with the RPs computed using a wide WP 
with ε∆ ≈ 0.0255WPi  a.u. The lower panels in figure 11 show 
that the respective RP curves compare very well in the energy 
regions where both curves are valid.

The comparison of the full 3D and the one-dimensional 
model for setup C is shown in figure 12. We chose the para-
meters of configuration (c) of figure 9, where the greatest RP 
due to resonance-enhanced ICEC occurs. As for setup B, the 
evolution of the electronic density is very similar to that of 
figure 9(c) and the RP is almost identical.

The one-dimensional RPs were computed for three dif-
ferent grid lengths, and no difference with the results of the 
computed full 3D RPs (270 a.u.) is observed for grids up 
to 960 a.u. This shows that the RP is a robust and reliable 
quantity which is independent of the WP used and, to a great 
extent, also of the grid size. This important point is further 
discussed below.

In principle, one could estimate the RP for a given energy 
by studying the populations PL0 or PR0 of the one-electron 
states L0 and R0 of the left and right QDs computed using an 
energetically narrow WP and a long grid. For setup B this esti-
mate works well as we did use a narrow WP. For setup C, 
however, we used in the full 3D calculations an energetically 
wide WP and a rather short grid and one cannot expect the 
above mentioned estimate to produce realistic results. Indeed, 
our calculations of these populations and of the norm N(t) 
of the wave packet show that these quantities decay due to 
absorption into the boundaries of the grid before the estimate 
takes on the correct value. This is mainly because the WP used 
is very wide. This raises the question on why is then the RP 
computed employing equation  (19) not affected by the grid 
size as is demonstrated in figure 12. The answer is that this 
equation keeps collecting the flux on the boundary as long as 
the population PR0 on the right QD decreases and that of the 
left QD, PL0, increases (see equations (19)and (20)). Clearly, 
absorption on the boundaries does not affect the RP of ICEC 
when computed via these equations. In other words, the RP is 
very robust against absorption and this also explains the insen-
sitivity of the results to the size of the grid and width of the 
wave packet as found above.

The results show that the overall density evolution is very 
similar and the 1D model provides very good results for the 
RP in both setups B and C. Moreover, sometimes it is only 
possible to perform one-dimensional computations using 
grids long enough to show the complete ICEC process. This 
assertion strongly supports the use of one-dimensional effec-
tive models when εi is low and thus is not able to produce 
excitations in the lateral confinement. The one-dimensional 
model is a very useful tool if the RPs of many different con-
figurations needs to be analyzed, because it allows to quickly 
identify the relevant energy range and shape of the RPs.

6. Discussion

We demonstrated that ICEC is operative and in some cases a 
very effective electron capture mechanism in DQDs. In the 
previous sections we have shown how a simple full-dimen-
sional model can be constructed to describe the process. 
Nevertheless, our model includes only electron correlation to 
mediate electron capture, although other capture mechanisms 
are likely to be as effective as ICEC. Therefore we stick to an 
estimation on the importance of ICEC with respect to other 
processes. As we will show, the capture times for ICEC are in 
the same order or even faster than other common mechanisms.

The capture rate into QDs is the commonly used quantity 
to characterize the efficiency of an electron capture process 
and it depends strongly on the amount of time it takes for the 

Figure 10. Comparison of the ICEC reaction probability (RP) 
for configuration (a) of setup B (see figure 6) obtained using the 
one-dimensional effective model of section 3.2 and the result of 
the full 3D computation. The RP of the full calculation ( ) 
compares very well to the one-dimensional result ( ). The 
vertical black dashed line indicates the value of i

peak( )ε  given by 
equation (24).
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capture to be completed, i.e. a faster capture leads to a greater 
efficiency. The importance of ICEC is then determined by 
comparing the time it takes ICEC to complete capture com-
pared to the electron capture times reported for other pro-
cesses available in the system [19, 21, 51, 52].

To estimate the speed of ICEC we transfer the parameters 
of our model to realistic semiconductor structures using the 
effective mass conversion of table 1. It is applicable to gate 
defined DQDs with quasi-one dimensional geometry [2, 53] 
or to QDs embedded in nanowires, [7] so we compare ICEC 
times with those obtained for other capture processes in these 
systems. Table  5 shows the energies and sizes for different 
materials in setup B, case (a) and table  6 those for setup 
C, case (c). The energies obtained are well in the range of 
intraband level spacings of QDs in nanowires [7, 9] and of 
intrashell levels in self-assembled QDs [22].

Let us first analyze setup B. The time window shown in 
Figure 6 is about T  =  1400 a.u. and by transforming to SC 
materials of table  5 we obtain =T 77.8GaAs , =T 71.3InP , 

=T 6.1AlN , =T 267.3InAs  ps. The time it takes the ICEC pro-
cess to capture and emit the electron can be estimated from the 
reaction probability if we take into account the time-energy 
uncertainity and the fact that the process gives a peak-shaped 
RP. The RP line shape can then be fitted to a Breit–Wigner 
resonance line shape. We performed such a fitting and find 
for case (a) =t 28ICEC

RP  a.u., and the times in different mat-
erials are accordingly: =t 1.6ICEC

GaAs , =t 13.1ICEC
InP , =t 0.12ICEC

AlN  
and =t 5.45ICEC

InAs  ps. We stress that this time estimation only 
makes sense because we obtained a resonant behavior, rather 
than a non zero contribution for all energy values.

The surprisingly short time scale it takes ICEC to occur 
makes ICEC a promising mechanism competitive with other 

Figure 11. Upper panels: comparison of two methods to determine the reaction probability RP for case (a) of setup B. The one-dimensional 
model was employed. The left panel shows the RP obtained by the flux analysis using equation (19) with a single energetically wide WPi, 

0.130, 0.0255WP WPi iε ε= ∆ =  a.u. and x 10.0WPi∆ =  a.u. ( ) and that obtained from several simulations at individual energies at the 
maxima of L0 population of energetically narrower WPis, x 20.0WPi∆ = , 0.0130WPiε∆ ≈  a.u. ( ). Regarding the latter, the population 
of L0 as a function of time for three different WPis 0.090WPiε = , 0.120, 0.150 a.u. (( ) middle, ( ) top and ( ) bottom line, 
respectively) is shown in the right panel. The corresponding WPis are shown in the left panel (( ) on the left, ( ) in the middle 
and ( ) in the right). To obtain the brown curve in the left panel each maximum of the L0 population was assigned to the respective WPiε  
in the left panel and values were interpolated. Lower panels: Comparison of the reaction probabilities (RPs) obtained from different WPs. 
The RP from the wide WPi shown in the upper panels ( ) is compared with the RP obtained from the energetically narrower WPis, 

0.090WPiε = , 0.120, 0.150 a.u., 0.0130WPiε∆ ≈  a.u., x 20.0WPi∆ =  a.u. (( ), ( ), and ( )). The corresponding WPis are 
shown with dashed lines.
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capture processes. It is faster than the reported capture times 
of 100 ps for free carriers in bulk GaAs into InAs/GaAs QDs 
in single layer samples measured at room temperature [54].

The time scale of ICEC obtained for the different geom-
etries always gives shorter times for smaller sizes of the DQD. 
This fact stresses the importance of confinement for the pro-
cess to be competitive. It can be connected to previous studies 
on ICD in molecular dimers, where the length scale of about 
0.3 nm typically corresponds to lifetimes in the range of sev-
eral fs [29].

For the setup C case (c) the time window shown in figure 9 
is of T  =  2700 a.u. and transforming it to the semiconductor 
materials of table 5 we obtain =T 150.0GaAs  , =T 137.5InP  ,  

=T 11.8AlN  , =T 515.6InAs  ps. We can in this setup estimate 
the duration of the emission using the lifetime of the involved 
resonance L R1 0 . We have that for case (c) τ = 256.8 a.u.  
which gives the following times in real semiconductors 
τ = 14.26GaAs , τ = 13.08InP , τ = 1.12AlN , τ = 49.04InAs  ps. 
From the observed values of the GaAs energy spacings and 
electron energies in the range of  <5 meV, the decay of the 
L R1 0 resonance in ICEC seems to be competitive with relaxa-
tion via phonons. The times for ICEC are, however, faster than 
reported intraband decay times due to acoustic phonon emis-
sion for InGaAs/GaAs QDs of 100 ps [22].

Our work is focused on strongly laterally confined struc-
tures, such as nanowires, and is thus suitable for the use of 
a one-dimensional effective potential. In all cases and setups 
treated here both the full and one-dimensional descriptions 
provided almost identical qualitative and quantitative results. 
The main result obtained from this comparison for the cases 
studied in this work is that the physics in the strongly laterally 
confined model can be correctly described using the effective 
potential when the characteristic lateral energies are about 
twice or more than those of the QDs.

7. Conclusions

Ultrafast electron capture in single QDs is an extensively 
studied topic nowadays [16, 19, 21] due to its relevance in the 
development of a wide variety of technological applications 
[19, 21, 23]. As shown here, electron capture via the ICEC 
processes, in which the neighboring QD in a DQD is getting 
ionized, is particularly fast and can play a significant role in the 
dynamics contributing to the energy transfer between QDs. The 
ICEC mechanisms in DQDs could, in principle, be exploited to 
be implemented in devices which generate a nearly monochro-
matic low energy electron in a given direction.

The implementation of DQDs in nanowires using mat-
erials with long carrier lifetimes such as InP [9, 21] should 
be favorable for ICEC. The rate at which the electron capture 
occurs varies with material and radius of the wire. Reported 
times for carrier trapping cover a large range from fast values 
of 10 ps for GaAs [57] and 160 ps for ZnO [21] to very slow 
ones such as 1 ns for InP nanowires [58]. Using wires with 
long carrier trapping times are favorable for ICEC to be active.

The process is driven by long-range Coulomb interactions,  
so we expect ICEC to be also applicable to other QDs geometries 
like, e.g. self-assembled vertically stacked dots [4, 5, 19, 22].

We have derived an effective one-dimensional approach 
that correctly describes the dynamics and RPs of all the cases 

Figure 12. Comparison of the ICEC reaction probability (RP) for 
configuration (c) of setup C (see figure 9) obtained using the one-
dimensional effective model of section 3.2 and the result of the full 
3D computation. The RP of the full calculation (+) compares very 
well to the one-dimensional results (°) even for very large grids. 
( ) indicates the value of i

peak( )ε  given by equation (24) and 
( ) the L L0 1  resonance energy.
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Table 5. Realistic values of the parameters in different 
semiconductors for geometry (a) in setup B.

Parameter GaAs InP AlN InAs

R 97.94 89.89 11.24 286.15

b

1

R L/
9.79 8.99 1.12 28.61

l 3.86 3.70 1.58 6.08
VL 9.48 4.87 120.52 2.76
VR 7.11 7.75 90.39 2.07
EL0 −4.47 −4.87 −56.78 −1.30
ER0 −2.92 −3.18 −37.10 −0.85

Note: The energies are given in meV and the lengths in nm. Effective masses 
and dielectric constants taken from [55, 56].

Table 6. Realistic values of the parameters in different 
semiconductors for geometry (c) in setup C.

Parameter GaAs InP AlN InAs

R 97.94 89.89 11.24 286.15

b

1

L
17.88 16.41 2.05 52.24

b

1

R
9.79 8.99 1.12 28.61

l 3.86 3.70 1.58 6.08
VL 8.42 9.17 106.96 2.45
VR 7.11 7.75 90.39 2.07
EL0 −5.23 −5.69 −66.40 −1.52
ER0 −2.92 −3.18 −37.10 −0.85
E EL R1 0− 0.57 0.62 7.19 0.16

Note: The energies are given in meV and the lengths in nm. Effective masses 
and dielectric constants taken from [55, 56].
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we have considered. This approach reduces considerably the 
computational efforts and also demonstrates, by compar-
ison with full 3D computations, that the physics involved is 
described correctly by a one-dimensional model as long as the 
characteristic confinement energy is about twice or more than 
that of the QD.

The calculations presented were performed for the same 
distance R between the dots. Since long-range correlation is 
involved in ICEC a rather pertinent question is how the reac-
tion probability changes with R. The answer has been partially 
given in the first publications on ICEC in atoms and molecules 
(see [38]) and for the related ICD decay (see [25] and [26]). 
The ICEC cross section has an asymptotic 1/R6 decay with the 
distance, according to previous theoretical estimates for atoms 
and molecules. However, there are important contributions not 
considered in the asymptotic formulas leading to 1/R6 which 
are due to orbital overlap (see, [25] for ICD in QDs and [59] 
for molecules). These contributions can lead in some cases to 
a much faster ICD process. Furthermore, the quasi-one dimen-
sional geometry of the dots considered here has a clear influence 
on ICD ([25]) and probably also on ICEC. The calculations are 
rather cumbersome and at the moment there is no exhaustive 
analysis of this kind for ICEC, but it will be done in the future.
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