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Abstract

This article proposes tests for slope homogeneity across individuals in quantile
15regression fixed effects panel data models. The tests are based on the Swamy statis-

tic. We establish the asymptotic null distribution of the tests under large panels.
A prominent advantage of the proposed tests is that they are easy to implement in
empirical applications. Monte Carlo experiments show evidence that the tests have
good finite sample performance in terms of size and power. The tests are then

20applied to study the cross-section of firms’ excess asset returns using financial data
on U.S. firms. The tests allow us to assess, for a given quantile of the distribution of
excess returns, whether the linear effect of the pricing factors in standard linear
asset pricing models is the same across stocks. The results confirm the validity of
those models for the mean and central quantiles. However, for tail quantiles, the

25slope homogeneity tests reject the null hypothesis providing empirical evidence of
pricing anomalies. This suggests that the effect of firm characteristics on the distri-
bution of excess returns is heterogeneous across stocks during booms and busts.
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1 Introduction

The collection of more data is a welcome feature of modern empirical economics and

5finance. Given the larger datasets, researchers are able to consider more realistic models

that allow for heterogeneity. An important class of statistical models that control for

(unobserved) heterogeneity is panel data models. It has become usual in panel data appli-

cations to impose a concomitant assumption of heterogeneous individual-specific inter-

cepts and homogeneous slope coefficients across individuals. The former condition has

10become standard in the panel data literature. However, the latter constraint might be

seen as excessively strong and has become controversial as the availability of data

increases.

Moved by the question on the benefits of pooling vis-�a-vis heterogeneous estimators,

there is a literature investigating the advantages and disadvantages of estimating the panel

15data model separately for each cross-sectional unit or by pooling the data (see, e.g.,

Maddala and Hu, 1996; Maddala et al., 1997; Baltagi, Griffin, and Xiong, 2000; Maddala,

Li, and Srivastava, 2001). These models are based on the intuition that homogeneity of the

slope coefficients is often an unreasonable assumption, and thus they allow for cross-

section heterogeneity.1 Hsiao and Sun (2000) argue that if the individuals do not share

20homogeneous coefficients, fixed effects (FE) estimation may not estimate any parameter of

interest and hence, in empirical work, it is important to use formal tests to evaluate the con-

jecture of homogeneous coefficients across individuals.

There are several tests available in the literature for the hypothesis of slope homogeneity

across individuals for average regression models, including, among others, Pesaran, Smith,

25and Im (1996), Phillips and Sul (2003), Pesaran and Yamagata (2008), Blomquist and

Westerlund (2013), and Su and Chen (2013). Pesaran, Smith, and Im (1996) propose an

application of the Hausman (1978) procedure where the FE estimator is compared with the

mean group estimator. Phillips and Sul (2003) suggest a “Hausman-type” test in the context

of stationary first-order autoregressive panel data models, where the cross-section, n, is fixed

30as the time-series, T, goes to infinity. Hsiao (2003) describes a variation of the Breusch and

Pagan (1979) test, which is valid when both n and T dimensions tend to infinity. More

recently, Pesaran and Yamagata (2008) propose a dispersion-type test based on Swamy

(1970) type test. They standardize the Swamy-type test so that the test can be applied when

both n and T are large. Blomquist and Westerlund (2013) develop a test that is robust to gen-

35eral forms of cross-sectional dependence and serial correlation. Su and Chen (2013) propose

a test for slope homogeneity in large-dimensional panel data models with interactive FE.

Nevertheless, to the best of our knowledge, there is no available test of slope homogeneity for

quantile regression (QR) panel data models.

QR is an important tool to analyze heterogeneity in statistical models. Recently, there

40has been a growing literature on estimation and testing using QR panel data models. These

models have provided a valuable method of statistical analysis of the heterogeneous effects

1 Another related literature includes random coefficient models. Swamy and Tavlas (2007) and Hsiao

and Pesaran (2008) are good surveys for these models. For a general discussion on the modeling of

heterogeneity, see Browning and Carro (2007).
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of policy variables. This is especially true for program evaluation studies in economics and

statistics, where these methods help to analyze how treatments or social programs affect

the outcome distributions of interest. Koenker (2004) introduces a general approach to esti-

mation of QR models for panel data. Controlling for individual-specific heterogeneity via

5FE while exploring heterogeneous covariate effects within the QR framework offers a flexi-

ble approach to the analysis of panel data.2

Motivated by the fact that formal tests for homogeneity of the slopes in panel data mod-

els are an indispensable tool for practitioners and also by the recent strong influence of QR

panel data methods, this article contributes to the literature by developing testing proce-

10dures for homogeneity of the slope coefficients across individuals for FE-QR models. Thus,

we propose two tests, a Swamy (Ŝ) and a standardized Swamy (D̂) type tests, with the null

hypothesis of slope homogeneity across individuals for a given quantile, s, of interest. We

derive the limiting distributions of the tests under different asymptotic sample size condi-

tions. In particular, we show that under some regularity conditions and the null hypothesis

15of the homogeneous slope coefficients, Ŝ converges to a chi-square distribution as T !1
and n is fixed; and also D̂ converges to the standard normal distribution as both

ðT;nÞ ! 1, sequentially and jointly. When the null hypothesis of homogeneous slope coef-

ficients is rejected for some s, there is evidence of heterogeneous covariate effects across

individuals, and as a result using FE-QR assuming homogeneous slope coefficients is

20inappropriate.

The theoretical results of this article suggest that the proposed statistics require large

values of n and T for validity. In light of these requirements (as well as the relationship

between n and T), we perform an extensive Monte Carlo experiment that explores the tests’

performance for a wide variety of sample sizes. We are interested in exploring the finite-

25sample performance of the test for static and dynamic linear regression models. The simula-

tion results show that the asymptotic distribution is accurate for both processes, with the

proposed tests possessing empirical size very close to the nominal size and good power per-

formance even for relatively small values of T compared to n.

This novel testing methodology is applied to statistically assess the correct specification

30of linear asset pricing models for describing the conditional quantile function of the excess

returns on risky assets. To do this, and motivated by the theoretical contributions of Rostek

(2010), and more specifically, de Castro and Galvao (2017), and Giovannetti (2013), that

extends standard linear average asset pricing formulations to the quantile process, we con-

sider a quantile model for the risk premium on risky assets. In this setup, our slope homoge-

35neity tests allow us to assess, for a given quantile of the distribution of excess returns,

whether the effect of the pricing factors in standard linear asset pricing models is the same

across stocks. By doing so, we extend cross-sectional linear asset pricing formulations for

the risk premium to the quantile process. Our approach is more general than the quantile

processes obtained from standard location-scale models for asset returns. As a byproduct of

40our test, under the null hypothesis, our QR panel data model can be interpreted as a linear

2 For other recent developments in QR panel data, see, for example, Wei and He (2006), Wang and

Fygenson (2009), Kato, Galvao, and Montes-Rojas (2012), Galvao, Lamarche, and Lima (2013),

Chernozhukovet al. (2013), Galvao and Wang (2015), Arellano and Bonhomme (2016), Chetverikov,

Larsen, and Palmer (2016), and Galvao and Kato (2017).
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asset pricing model that accommodates different coefficients across quantiles and that is

robust to the presence of asset-specific FE.

In this empirical application, we focus on the recent contributions of Kogan and

Papanikolaou (2013, 2014) relating firm characteristics and stock returns. These authors

5propose a linear model to explain the risk premium on a cross-section of U.S. stocks as a

function of firm characteristics. We extend this model to the QR case. To do this, we

exploit a dataset comprising 294 firms’ asset returns that are regressed on a set of risk fac-

tors given by a market portfolio excess return and several firm characteristics such as earn-

ings before interest and taxes as a proportion of total assets, market-to-book ratio, market

10debt ratio, depreciation as a proportion of total assets, the log of asset size, and a variable

that captures the proportion of property, plant, and equipment over total assets.

The results of the empirical exercise do not provide statistical evidence to reject the null

hypothesis of homogeneity of the slope parameters for the mean and central quantiles of

the distribution of the firms’ excess asset returns. In particular, the estimates obtained from

15the panel data regression models are in line with those of Kogan and Papanikolaou (2013)

and reveal the statistical significance of firm characteristics for predicting the excess asset

returns of U.S. stocks. The results of the tests cast strong doubt, however, on the homogene-

ity of the sensitivity of these returns to firm characteristics in the tails of the distribution of

excess asset returns. These tests are also applied to assess the homogeneity of the marginal

20effects of specific risk factors on the excess asset returns. In line with the results for the joint

slope homogeneity tests, we do not find significant evidence to reject homogeneity in the

mean and central quantiles for most of the regression variables acting as risk factors.

Nevertheless, we find strong empirical evidence to reject the null hypothesis for the mar-

ginal effect of firms’ book-to-market ratio. In order to obtain a clearer insight into this

25result, we divide our sample into value stocks and growth stocks, and apply the slope

homogeneity testing procedure for each subsample. The test rejects the null hypothesis of

slope homogeneity for growth stocks but nor for value stocks. We interpret these results as

empirical evidence of the suitability of our empirical panel data equation for pricing more

established, value stocks, but not for pricing riskier and newer, growth stocks.

30The rest of the article is organized as follows. Section 2 describes and discusses the null

hypothesis and the tests proposed. Section 3 presents the asymptotic properties of the test

statistics. The Monte Carlo simulation results are reported in Section 4. In Section 5, we

illustrate the new approach with an application to empirical asset pricing, and Section 6

concludes the article. An Appendix contains the mathematical proofs.

352 The Null Hypothesis and the Proposed Tests

We consider a linear FE-QR panel model with n individuals and T time periods for each

individual as

Qyit
ðsjxit; ai0ðsÞÞ ¼ ai0ðsÞ þ x>it bi0ðsÞ t ¼ 1; . . . ;T; i ¼ 1; � � � ;n; (2.1)

where yit is the response variable for the i-th individual at time t, ai0 is the i-th individual

effect, xit is a k dimensional vector of explanatory variables, Qyit
ðsjxit; ai0ðsÞÞ is the

s-quantile of yit given ðai0;xitÞ. In general, the coefficients ai0ðsÞ and bðsÞ can depend on the

40quantile index s. Since s is fixed throughout the article, we will suppress this dependence
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for notational simplicity. We make no parametric assumption on the relationship between

ai0 and xit.

For notational simplicity, let X it be the corresponding covariates with the first element

being one, and hi0 :¼ ðai0; b
>
i0Þ
> be a kþ 1 vector of coefficients. Thus, model (2.1) can be

5written concisely as

Qyit
ðsjX itÞ ¼ X>it hi0 ¼ ai0 þ x>it bi0: (2.2)

For a given s 2 ð0; 1Þ, we wish to test the following hypothesis of slope homogeneity

across individuals

H0 : bi0 ¼ b0

for some fixed vector b0 for all i, against the alternatives

H1 : bi0 6¼ bj0 9 i; j:

10To implement the tests, the strategy is to estimate the QR coefficients using the time ser-

ies for each individual, and then compare these resulting estimates with b0. Under the null,

the estimates for all individuals should be close to b0. Therefore, a large deviation of the

individual estimates from b0 indicates that the null should be rejected. However, in general,

we do not observe the true coefficients b0, and thus we replace it with a weighted average

15of the estimates, b̂i, from each individual. Under the null, all the b̂i should be close to each

other, and to any weighted average of those estimates.

More specifically, first we estimate bi0 for each individual i. Denote the slope regression

quantile estimate for each individual i by b̂ i :¼ Nĥi, with N :¼ ½0k�1jIk�k�, and

ĥ i :¼ arg min
h2Rkþ1

1

T

XT

t¼1

qsðyit � X>it hÞ; (2.3)

and qsðuÞ :¼ uðs� 1fu� 0gÞ as in Koenker and Bassett (1978). Thus, for each individual i

regression, the matrix N selects the slope coefficients of interest.

20Next, we need to estimate b0. To do so, we use a FE minimum distance (MD) estimator,

which is a weighted average of the slope regression quantiles. Define the following MD

estimator

b̂MD ¼
Xn

i¼1

V̂
�1

i

 !�1Xn

i¼1

V̂
�1

i b̂i; (2.4)

with V̂ i :¼ N ~̂ViN
>, where ~̂V i is a consistent estimator of the asymptotic variance–cova-

riance matrix of the individual regression quantiles

~V i :¼ sð1� sÞC�1
i XiC

�1
i ;

with Ci :¼ E½fið0jX itÞX itX
>
it � and Xi :¼ E½X itX

>
it � if the data are independent and identically

distributed (i:i:d:) within each individual. We discuss the practical estimation of ~Vi below.

25The weighted mean of the b̂ i defined above is a MD estimator with weights being the

inverse of the asymptotic variance–covariance matrices of the slope regression quantiles.

Galvao and Wang (2015) propose this MD-QR estimator for panel data models with FE

and establish its asymptotic properties. For a thorough discussion of the MD estimators,
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see Newey and McFadden (1994), and Hsiao (2003). This FE-MD-QR is the benchmark

for the comparison with the b̂i’s in our tests.

To formally test the hypothesis of interest (H0 : bi0 ¼ b0) we need a metric to compare

the estimates b̂ i and b̂MD. Thus, we propose a QR version of the Swamy-type test as

ŜðsÞ :¼
Xn

i¼1

ðb̂i � b̂MDÞ>
V̂ i

T

 !�1

ðb̂ i � b̂MDÞ;

and also a standardized Swamy test as

D̂ðsÞ ¼
ffiffiffi
n
p 1

n ŜðsÞ � kffiffiffiffiffiffi
2k
p

 !
:

5Both tests ŜðsÞ and D̂ðsÞ depend on the quantile index s, however we suppress this depend-

ence for simplicity. As it will be clear later, when T is large and n is fixed, Ŝ is asymptoti-

cally v2
ðn�1Þk distributed. Therefore, E 1

n Ŝ
h i

is approximately k and Var 1
n Ŝ
h i

is

approximately 2k
n . In fact, under some mild conditions, the previous statement holds, and

the standardized Swamy test statistic can be approximated by a standard normal random

10variable.

The intuition behind the tests is that under the null of slope homogeneity, all bi0 are the

same, and then all estimates b̂ i are close to each other and consequently to b0, which is esti-

mated by the weighted average b̂MD. Therefore, both Ŝ and D̂ should be small. If there is

evidence that either Ŝ or D̂ is large, this casts doubts that the null hypothesis of homogene-

15ity of the slope coefficients holds.3

3 Asymptotic Properties of the Tests

In this section, we investigate the asymptotic properties of the proposed tests. The strategy

followed is to derive the results under the i:i:d: assumption first, and then extend the results

to processes exhibiting serial dependence, and in particular to a stationary b� mixing proc-

20esses, such as those encountered when modeling financial data.

We follow both the slope heterogeneity testing and the panel QR literatures and present

results for large panels. In particular, we derive the limiting distribution of the Swamy test

(Ŝ) as T !1, and the limiting distributions of the standardized Swamy test (D̂) under two

different asymptotics: T and n tending to infinity sequentially and simultaneously. The

25sequential asymptotics are defined as T diverging to infinity first, and then n. In the defini-

tion of the simultaneous asymptotics, T and n tend to infinity at the same time. We do not

3 It is worth noting that we propose the MD estimator b̂MD as the benchmark to construct the test

statistics in this article. However, one could replace the MD estimator with the standard consistent

FE-QR estimator, b̂FE, introduced by Koenker (2004). There are a few reasons, though, for employing

the MD estimator. First, the use of the MD-QR is analogous to a reweighted version of the FE esti-

mator for the OLS case and similar to the estimator used in Pesaran and Yamagata (2008). Second,

as shown in Galvao and Wang (2015) the MD-QR estimator is efficient in the class of MD estima-

tors, and hence more efficient than the standard FE-QR. Third, the MD estimator simplifies the deri-

vation of the limiting distributions of the test statistics as shown in the proofs.
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specify the exact relationship between n and T, although we maintain that T depends on n.

For notational simplicity, we suppress this dependence. For a detailed discussion on sequen-

tial and simultaneous asymptotics for panel data, see Phillips and Moon (1999, 2000). In

what follows, we adopt the following notation: ðT; nÞseq !1 means that first T !1 and

5then n!1, while ðT; nÞ ! 1 means T and n tend to infinity simultaneously.

We highlight that the use of large panel data asymptotics is common for testing slope

homogeneity in the mean regression literature. The Swamy-type test was originally devised

for panel data with small n and large T, while the standardized Swamy test was developed

for panel data with both n and T large.4 In this article, there are two main reasons for requir-

10ing large panels. First, we need to consistently estimate bi0 for each individual, and the data

employed in its estimation relies only on the time dimension. Second, the benchmark parame-

ter, b0, is estimated by b̂MD, which is similar to a FE-QR estimator. To achieve consistency of

b̂MD, it is also required that T tends to infinity. We note that using large panels is standard in

panel data FE-QR literature (see e.g., Kato, Galvao, and Montes-Rojas, 2012; Galvao and

15Wang, 2015). In general, the FE-QR estimators are subject to the incidental parameters prob-

lem (Neyman and Scott, 1948). Therefore, it is essential to allow T to increase to infinity to

achieve consistency and asymptotic normality of the FE-QR estimators.

Next, we derive the limiting distribution of the test statistics. To this end, we consider

the following set of conditions.

A1. fðyit;X itÞg is independent across i, and independent and identically distributed (i:i:d:)

20for each i.

A2. There is a constant M such that max 1� t�T;1� i�nkX itk < M.

A3. For each d > 0,

�d :¼ inf
1� i� n

inf
khk¼d

E

ðX>it h

0

fFiðsjX itÞ � sgds

" #
> 0;

where FiðsjX itÞ is the distribution function of the innovations conditional on the

covariates.

A4. Let uit ¼ yit � ai0 � x>it bi0. The conditional density fiðujXÞ is continuously differentia-

ble for each X and i, and let f
ð1Þ
i ðujxÞ :¼ @fiðujxÞ=@u. There exist 0 < CL�CU < 1

25such that CL� fiðujXÞ�CU uniformly over ðu;XÞ and i� 1; and there exists Cf > 0

such that jf ð1Þi ðujXÞj �Cf .

A5. There exists dX > 0 such that min 1� i�nmin eigðXiÞ� dX.

Condition A1 assumes, for simplicity, that the data are independent across individuals,

and i:i:d: within each individual. Nevertheless, below we will also study the asymptotic prop-

erties of the tests for the dependent case. Condition A2 assumes that the covariates are uni-

30formly bounded, which is used in Condition A3 of Koenker (2004) and Condition (a) of

Theorem 1 of Chernozhukov and Hong (2001). A slightly weaker assumption in Kato,

Galvao, and Montes-Rojas (2012) assumes uniform boundedness of the regressors almost

surely. In addition, Condition A3 is an identification condition of ðai;bi0Þ. This condition is

4 For example, Phillips and Sul (2003) use n fixed and T diverging to infinity. Hsiao (2003) requires

both n and T tending to infinity. Pesaran and Yamagata (2008) also use both n and T large, and

more recently, Su and Chen (2013) and Ando and Bai (2015).
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usual in the literature. It is the same as A3 of Kato, Galvao, and Montes-Rojas (2012) and

corresponds to Condition 3 of Hahn and Newey (2004). The condition states that ðai0; bi0Þ
produce s-th conditional quantile zero. The first three assumptions are used to guarantee the

uniform consistency of the QR coefficients across individuals. Condition A4 restricts the

5smoothness and the boundedness of the density (and its derivatives) of the errors conditional

on the covariates. This condition is now quite familiar in the QR literature. Condition A5 is

concerned with the asymptotic covariance matrix of b̂i, as presented above. It assures that

X�1
i are bounded uniformly across i. Also, the uniform upper and lower bounds of the contin-

uous density functions together with Conditions A2 and A5 guarantee that both Ci’s and their

10inverses are uniformly bounded across i. Therefore, the variance–covariance matrices of the

regression quantiles ~V i and their inverses are uniformly bounded.

In applications, the variance–covariance matrices are unknown and need to be esti-

mated. For sequential asymptotics, we make the following assumption:

A6. V̂ i ¼ Vi þ opð1Þ for each i as T !1.

In the situation when n and T tend to infinity simultaneously, we impose the following

15condition:

A60. V̂ i ¼ Vi þOpðT�1=2h
�1=2
n Þ for some hn # 0 uniformly across i and lim n!1

n
Thn
¼ 0 as

n!1.

An estimator satisfying these conditions is V̂ i ¼ N ~̂V iN
>, where

~̂V i
¼ sð1� sÞĈ�1

i X̂ iĈ
�1

i ; Ĉ i ¼
1

T

XT

t¼1

Khn
ðûitÞX itX

>
it ; X̂ i ¼

1

T

XT

t¼1

X itX
>
it ;

ûit ¼ yit � â i � x>it b̂i, and Khn
ð�Þ defined as in Kato, Galvao, and Montes-Rojas (2012). For

a study of the convergence rate of the Powell’s kernel estimator, see Kato (2012).

20Now we present the asymptotic distributions of the test statistics.

Theorem 1:

1. Under Conditions A1–A6, we have Ŝ!d v2
ðn�1Þk as T !1 and n is fixed;

2. Under Conditions A1–A6, we have D̂!d Nð0; 1Þ as ðT; nÞseq !1;

3. Under Conditions A1–A5, and A60, we have D̂!d Nð0;1Þ as ðT; nÞ ! 1, provided
n2log n

T jlogdnj2 ! 0, where dn ¼
ffiffiffiffiffiffiffiffi
log n

T

q
.

Proof: See Appendix. h

25It is worth noting the restrictive condition on the times series (i.e., n2log n
T jlogdnj2 ! 0,

where dn ¼
ffiffiffiffiffiffiffiffi
log n

T

q
) for Theorem 1, part 3. This condition is used only to control the remain-

der term when establishing the first-order approximation of the test statistic. It reflects the

fact that the rate of remainder term of the Bahadur representation of the panel data QR

estimator is of order ðT=log n�3=4Þ. The slower convergence rate of the remainder term is

30due to the non-smoothness of the scores. It is also important to note that the growth condi-

tion on T for establishing
ffiffiffiffiffiffiffi
nT
p

-consistency of the MD-QR estimator (or other FE estima-

tors in general) is determined so that the remainder term vanishes. Thus, the rate of the

remainder term is essential in the asymptotic analysis of the FE estimation when n and T

jointly go to infinity.

8 Galvao et al. j Testing Slope Homogeneity



Now we extend the previous results to dependent data such that, within each individual,

the data are stationary and b-mixing. We maintain the independence across individuals as in

A1. To accommodate the dependence across time, we follow the literature (see, e.g., Pesaran

and Yamagata,2008; Blomquist and Westerlund, 2013) and adjust the variance–covariance

5matrices in the corresponding test statistics. In particular, we are interested in testing the same

null hypothesis: H0 : bi0 ¼ b0 using the Swamy and standardized Swamy tests

Ŝ ¼
Xn

i¼1

ðb̂i � b̂MDÞ>
V̂ i

T

 !�1

ðb̂i � b̂MDÞ;

D̂ ¼
ffiffiffi
n
p

1

n
Ŝ � kffiffiffiffiffiffi

2k
p

0
B@

1
CA:

In this context, we need to estimate V̂ i consistently. We first formally state the conditions

for the statistics to have desirable properties.

B1. For each i, fðyit;X itÞ; t�1g is stationary and b-mixing time series with b-mixing coefficient

biðjÞ. There exist constants a 2 ð0; 1Þ and B>0 such that sup i�1 biðjÞ�Baj for all j� 1.

B2. fi;jðu1; u1þjjX1;X1þjÞ is uniformly bounded with respect to all the four variables,

where fi;jðu1;u1þjjX1;X1þjÞ is the conditional density of ðu1;u1þjÞ given

10ðX i;1;X i;1þjÞ ¼ ðX1;X1þjÞ.

Condition B1 relaxes the assumption of i:i:d: within each individual to that of stationary

b-mixing and is similar to Hahn and Kuersteiner (2011). Condition B2 is needed because

the data are not i:i:d: and we need to impose a condition on the joint distributions.

The following theorem collects the asymptotic results for stationary b-mixing data, and

15provides respective extensions of Theorem 1.

Theorem 2:

1. Under Conditions A2–A6 and B1–B2, we have Ŝ!d v2
ðn�1Þk as T !1 and n is fixed;

2. Under Conditions A2–A6 and B1–B2, we have D̂!d Nð0; 1Þ as ðT;nÞseq !1;

3. Under Conditions A2–A5, A60, and B1–B2, we have D̂!d Nð0; 1Þ as ðT; nÞ ! 1, pro-

vided n2log n
T jlogdnj2 ! 0, where dn ¼

ffiffiffiffiffiffiffiffi
log n

T

q
.

Proof: See Appendix. h

20The results in Theorem 2 require condition A6 or A60 to hold for stationary and b-mix-

ing data. In the same fashion, an example of the estimator is V̂ i ¼ N ~̂ViN
>, where

~̂Vi¼ Ĉ
�1

i X̂iĈ
�1

i ;

Ĉi¼
1

T

XT

t¼1

Khn
ðûitÞX itX

>
it ;

X̂i¼
sð1�sÞ

T

XT

t¼1

X itX
>
it þ

X
1�jjj�mn

1�jjj
T

� �
1

T

Xmin fT;T�jg

t¼max f1;�jþ1g
fs�1ðûit�0Þgfs�1ðûi;tþj�0ÞgX itX

>
it

2
4

3
5;
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as discussed in Remark 3.2 in the proof of Theorem 3.2 of Galvao and Kato (2016). Kato

(2012) also studies the rate of convergence of the Powell’s kernel estimator for stationary

b-mixing data. For an alternative estimator satisfying conditions A6 and A60 with depend-

ent data, see Yoon and Galvao (2014). They develop cluster robust inference methods for

5panel QR models with individual FE and serial correlation.

4 Finite Sample Simulations

In this section, we investigate the finite sample properties of both Swamy (Ŝ) and standar-

dized Swamy (D̂) tests proposed above. We report empirical size and empirical power at

5% nominal level of significance for various pairs of n and T. The simulations consider

10sample sizes given by n 2 f100; 200g and T 2 f50;100g. Of particular interest is the case

where T is smaller than n, and more specifically, the case T ¼ 50; n ¼ 200, that corre-

sponds to our empirical application. We investigate the finite sample properties of the tests

for quantiles s 2 f0:10; 0:25; 0:50;0:75; 0:90g. The number of replications is 1000 in each

case.

15As discussed in the previous sections, the computation of the variance–covariance

matrix is a very important step when computing both Ŝ and D̂ tests. Thus, to study the

impact of the estimation of the variance–covariance matrix in the tests, we report results

for two different cases. In particular, we consider the Bofinger and the Hall–Sheather band-

width rules using the bandwidth.rq function in R for every s.5

20In the following tables, for any sample size combination, we present results for the

empirical size (top panels) and empirical power (bottom panels). We collect results for the

Swamy type (Ŝ) test and standardized Swamy (D̂) test for each case.

4.1 Static Model

The static models under study are the location and location-scale models given by the data

25generating process

yit ¼ ai þ bixit þ ð1þ cxitÞuit; (4.1)

for t ¼ 1; � � � ;T and i ¼ 1; � � � ; n. The location model has c¼0, and the location-scale

model considers c ¼ 0:1. The innovations uit are i:i:d: standard normal Nð0;1Þ, and

xit ¼ 0:3ai þ zit, where zit �i:i:d: v2
3. In the simulations, we set ai ¼ i�1

n�1 (which means that ai

are uniformly distributed in the unit interval, and are fixed for different replications as in

Pesaran and Yamagata (2008)).

30We would like to test the null hypothesis H0 : bi ¼ bj for all i; j 2 f1; � � � ; ng against H1 :

bi 6¼ bj for any i 6¼ j. Under the null, we set bi ¼ 1 for all i; under the alternative bi ¼ 0:25þ
i�1

n=2�1 for i� n
2 and 1 otherwise.

We first investigate the location model (c¼0). Note that for this case, for each i, the cor-

responding slopes are biðsÞ ¼ bi, that is, all QR coefficients are equal to the same intra-firm

5 The Bofinger bandwidth is: hn ¼ n1=5½4:52sðtÞ=ðs 00ðtÞÞ2�1=5, where s=s 00 ¼ f 2=½2ðf 0=f Þ2 þ ðf 0=f

�f 00=f Þ� with f ¼ / and ðf 0=f ÞðF�1ðtÞÞ ¼ U�1ðtÞ. The Hall–Sheather bandwidth is: hn ¼ n�1=3z
2=3
a

½1:5sðtÞ=s 00ðtÞ�1=3 with za satisfies UðzaÞ ¼ 1� a=2 and a denotes the size of the test.
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slope coefficient. Furthermore, under the null hypothesis, biðsÞ ¼ b; 8i. Table 1 displays the

results for both Ŝ and D̂. For all quantiles, the empirical sizes are close to the nominal 5%

significance level, and in particular, for T¼ 50 sample sizes which correspond to the empiri-

cal application. Note, however, that the size improves as T increases but there is no

5observed pattern with respect to n. The empirical power is 1.0 in all cases showing that the

tests are responsive to slope heterogeneity.

We then consider the location-scale model (c ¼ 0:1). In this case, for each i, the corre-

sponding slopes are biðsÞ ¼ bi þ 0:1U�1ðsÞ, that is, QR coefficients vary across s.

Furthermore, under the null hypothesis, biðsÞ ¼ bðsÞ; 8i. As such, parameter heterogeneity

10could be the result of two different things: first, differences in bi, second, differences in uit.

For our purposes, our model concentrates on the first type of heterogeneity. Table 2 collects

the results for this location-scale model. As with the previous case, the empirical size is

approximately correct for all sample sizes considered but improves as T increases.

Empirical power is again 1.0 for all cases.

Table 1. Empirical size and power for static location model (c¼ 0) with N(0, 1) innovations

n 100 200

T 50 100 50 100

S D S D S D S D

s Bandwidth Empirical size

0.10 B 0.033 0.033 0.049 0.049 0.069 0.069 0.054 0.054

0.10 HS 0.022 0.022 0.058 0.058 0.015 0.015 0.076 0.076

0.25 B 0.030 0.029 0.054 0.054 0.026 0.026 0.081 0.081

0.25 HS 0.024 0.024 0.036 0.036 0.014 0.015 0.033 0.033

0.50 B 0.075 0.073 0.062 0.062 0.091 0.091 0.058 0.058

0.50 HS 0.018 0.018 0.054 0.053 0.011 0.011 0.052 0.052

0.75 B 0.030 0.029 0.029 0.029 0.021 0.021 0.078 0.078

0.75 HS 0.026 0.026 0.049 0.048 0.014 0.014 0.028 0.028

0.90 B 0.070 0.070 0.068 0.067 0.078 0.078 0.046 0.047

0.90 HS 0.027 0.027 0.054 0.053 0.020 0.020 0.046 0.047

s Bandwidth Empirical power

0.10 B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.10 HS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.25 B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.25 HS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.50 B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.50 HS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.75 B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.75 HS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.90 B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.90 HS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Notes: Monte Carlo simulations based on 1000 replications. Bandwidth: B: Bofinger, HS: Hall–Sheather.
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4.2 Dynamic Model

In this subsection, we investigate the finite sample properties of the tests for a dynamic

autoregressive panel model. The model under study is6

yit ¼ ai þ dyit�1 þ bixit þ uit; (4.2)

for t ¼ 1; :::;T and i ¼ 1; :::; n. We follow the set-up in the static model with uit i:i:d: stand-

ard normal, xit ¼ 0:3ai þ zit, where zit �i:i:d: v2
3, and ai ¼ i�1

n�1. In generating yit we set yi;�49

5¼ 0 and discard the first fifty observations, using the observations t¼ 1 through T for

estimation.

We would like to test the null hypothesis of the static model, that is, H0 : bi ¼ bj for

all i; j against H1 : bi 6¼ bj for any i 6¼ j, and we have the same null and alternative hypoth-

eses as in the previous experiment. However, we consider different persistence parameters

Table 2. Empirical size and power for static location-scale model (c ¼ 0:1) with N(0, 1)

n 100 200

T 50 100 50 100

S D S D S D S D

s Bandwidth Empirical size

0.10 B 0.029 0.029 0.051 0.051 0.035 0.035 0.053 0.053

0.10 HS 0.037 0.037 0.050 0.049 0.073 0.073 0.057 0.057

0.25 B 0.029 0.029 0.071 0.071 0.028 0.028 0.056 0.056

0.25 HS 0.041 0.041 0.053 0.053 0.019 0.019 0.044 0.044

0.50 B 0.070 0.070 0.030 0.030 0.052 0.052 0.026 0.026

0.50 HS 0.040 0.040 0.046 0.046 0.036 0.036 0.067 0.067

0.75 B 0.024 0.024 0.062 0.062 0.025 0.025 0.048 0.048

0.75 HS 0.029 0.029 0.059 0.058 0.033 0.033 0.060 0.061

0.90 B 0.043 0.043 0.058 0.057 0.026 0.026 0.040 0.040

0.90 HS 0.039 0.039 0.051 0.051 0.082 0.082 0.060 0.060

s Bandwidth Empirical power

0.10 B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.10 HS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.25 B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.25 HS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.50 B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.50 HS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.75 B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.75 HS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.90 B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.90 HS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Notes: Monte Carlo simulations based on 1000 replications. Bandwidth: B: Bofinger, HS: Hall–Sheather.

6 We are grateful to an anonymous referee for suggesting the specific form of this experiment.
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d 2 f0:5; 0:95g in order to evaluate the tests performance in dynamic autoregressive

panels.

Table 3 summarizes the empirical size and power. The simulations indicate that the tests

have empirical size below 5% in most cases. In general, the size performance is better for

5d ¼ 0:50 than for d ¼ 0:95. Power, on the other hand, increases as both T and n grow.

The power is higher for moderate persistence d ¼ 0:50 than for high persistence d ¼ 0:95.

The rejection rates are higher at the tails than in the central quantiles. Overall, the simula-

tions show that the tests have good performance when the data generating process is a

dynamic autoregressive panel.

105 Asset Pricing Models Using Firm Characteristics

Recently, in a search for modeling and capturing heterogeneity, quantiles have become cen-

tral in economics, finance, and econometrics. From a theoretical perspective, there have

been developments on quantile objective functions and asset pricing. Manski (1988) and

Rostek (2010) develop the decision-theoretic attributes of quantile maximization and

15examine risk preferences of quantile maximizers. Following these seminal contributions, de

Castro and Galvao (2017) develop a dynamic model of rational behavior under uncer-

tainty, in which the agent maximizes the stream of the future quantile utilities. That is, the

agent has a quantile utility preference instead of the standard expected utility. Giovannetti

(2013) presents a two-period standard economy with one risky and one risk-free asset.

20In this model, the equity premium is no longer based on the covariance between the risky

return and the consumption growth. Instead, it is a linear function of the risky return stand-

ard deviation. Empirically, Bassett, Koenker, and Kordas (2004) show that a general form

of pessimistic optimization based on Choquet approach may be formulated as a problem of

linear QR.

25In a similar spirit to Bassett, Koenker, and Kordas (2004), we propose the following lin-

ear asset pricing equation based on no-arbitrage arguments:

Qre
i;tþ1
ðsjxit; aiðsÞÞ ¼ aiðsÞ þ x>it biðsÞ i ¼ 1; � � � ; n; t ¼ 1; . . . ;T; (5.1)

with s 2 ð0; 1Þ. This function models the quantiles of the excess asset returns conditional on

the set of pricing factors xit. bi0ðsÞ captures the marginal effects of the pricing factors on the

s-th quantile of re
i;tþ1. We make a few remarks. First, as for the conditional expected value,

the asset pricing formulation holds for the quantile process (5.1) if the vector biðsÞ is the

30same across assets. This condition can be interpreted as evidence of a common stochastic

discount factor for pricing the cross-section of risky assets, see Harrison and Kreps (1979)

for the mean process, and entails, under some additional restrictions, the absence of arbi-

trage opportunities. In this way, our slope homogeneity test can be considered as a statisti-

cal device to empirically assess whether the asset pricing specification (5.1) holds for

35different quantiles of the distribution of excess asset returns. Second, the coefficients biðsÞ
may vary across the quantiles implying that the marginal effect of biðsÞ on the excess

returns may vary along the conditional distribution of re
i;tþ1. Finally, it is important to

notice that in our context, characterized by firm characteristics as risk factors, and unlike

in Fama and French (1993, 2015), the intercept of the pricing equation is not required to be
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Table 3. Empirical size and power for dynamic model with N(0, 1) innovations

n 100 200

T 50 100 50 100

S D S D S D S D

d s Bandwidth Empirical size

0.50 0.10 B 0.050 0.050 0.061 0.061 0.033 0.033 0.043 0.043

0.50 0.10 HS 0.062 0.062 0.050 0.050 0.023 0.023 0.064 0.064

0.95 0.10 B 0.050 0.050 0.048 0.048 0.047 0.047 0.055 0.055

0.95 0.10 HS 0.038 0.038 0.039 0.039 0.027 0.028 0.060 0.060

0.50 0.25 B 0.050 0.050 0.032 0.032 0.017 0.017 0.028 0.028

0.50 0.25 HS 0.032 0.032 0.049 0.048 0.076 0.076 0.045 0.045

0.95 0.25 B 0.064 0.064 0.030 0.030 0.042 0.042 0.020 0.020

0.95 0.25 HS 0.043 0.043 0.041 0.040 0.027 0.027 0.031 0.031

0.50 0.50 B 0.066 0.066 0.029 0.029 0.047 0.047 0.070 0.070

0.50 0.50 HS 0.061 0.061 0.031 0.031 0.064 0.064 0.033 0.033

0.95 0.50 B 0.083 0.083 0.037 0.037 0.050 0.050 0.078 0.078

0.95 0.50 HS 0.074 0.074 0.062 0.062 0.059 0.060 0.027 0.027

0.50 0.75 B 0.041 0.041 0.035 0.034 0.027 0.027 0.031 0.031

0.50 0.75 HS 0.031 0.031 0.052 0.052 0.063 0.063 0.047 0.047

0.95 0.75 B 0.056 0.056 0.032 0.032 0.044 0.044 0.027 0.027

0.95 0.75 HS 0.043 0.043 0.051 0.051 0.032 0.032 0.044 0.044

0.50 0.90 B 0.048 0.047 0.042 0.042 0.022 0.023 0.059 0.059

0.50 0.90 HS 0.048 0.048 0.055 0.055 0.043 0.043 0.034 0.034

0.95 0.90 B 0.054 0.054 0.051 0.051 0.036 0.036 0.060 0.060

0.95 0.90 HS 0.052 0.052 0.060 0.060 0.020 0.020 0.056 0.056

d s Bandwidth Empirical power

0.50 0.10 B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.50 0.10 HS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.95 0.10 B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.95 0.10 HS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.50 0.25 B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.50 0.25 HS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.95 0.25 B 0.779 0.779 1.000 1.000 0.947 0.947 1.000 1.000

0.95 0.25 HS 0.785 0.785 1.000 1.000 0.932 0.932 1.000 1.000

0.50 0.50 B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.50 0.50 HS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.95 0.50 B 0.568 0.567 1.000 1.000 0.685 0.685 1.000 1.000

0.95 0.50 HS 0.572 0.572 1.000 1.000 0.706 0.706 1.000 1.000

0.50 0.75 B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.50 0.75 HS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.95 0.75 B 0.782 0.784 1.000 1.000 0.951 0.951 1.000 1.000

0.95 0.75 HS 0.799 0.799 1.000 1.000 0.920 0.920 1.000 1.000

0.50 0.90 B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.50 0.90 HS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.95 0.90 B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.95 0.90 HS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Notes: Monte Carlo simulations based on 1000 replications. Bandwidth: B: Bofinger, HS: Hall–Sheather.
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zero. This feature is easily accommodated by our slope homogeneity test that makes allow-

ance for the presence of FE, aiðsÞ, that are stock and quantile specific.

The empirical representation of the quantile pricing equation (5.1) based on panel data

analysis is

re
i;tþ1 ¼ aiðsÞ þ x>it biðsÞ þ ei;tþ1; (5.2)

where the innovation term ei;tþ1 satisfies Qs½ei;tþ1jaiðsÞ;xit� ¼ 0. The relevant set of slope

5homogeneity tests, indexed by s, is

H0ðsÞ : b10ðsÞ ¼ . . . ¼ bn0ðsÞ ¼ b0ðsÞ: (5.3)

In this application, we apply this test to assess the empirical validity of the asset pricing

model proposed by Kogan and Papanikolaou (2013, 2014). These authors consider firm-

specific characteristics as the risk factors that describe the risk premium on the cross-

10section of stock returns. In recent years, this approach has gained support due to the strong

evidence of co-movement in stock returns of firms with similar characteristics that is unre-

lated to their exposures to the market portfolio. These empirical patterns are also motivated

by the failure of existing models to rationalize the co-movement in returns resulting from

sorting firms on firm characteristics. Kogan and Papanikolaou (2014), for example, provide

15a theoretical framework to study empirical return patterns associated with firm characteris-

tics related to growth opportunities.

The panel of U.S. firms is obtained from Compustat Industrial dataset. The sample con-

sists of annual CRSP/Compustat data from the years 1970 through 2011. Following stand-

ard practice, we exclude financial firms (SIC codes 6000–6999), regulated utilities (SIC

20codes 4900–4999), and nonprofit organizations (SIC codes greater than or equal to 9000).

We omit firm-years with a missing or negative value for fixed assets and sales, with a miss-

ing or less than ten million 1983 dollar book value of total assets, and with growth rates of

fixed assets, sales, and book value of total assets greater than 100%. The log of total assets

is the one variable that is not a ratio, and is deflated to the 1983 dollar with the consumer

25price index obtained from the Bureau of Labor Statistics. The final sample includes a bal-

anced panel of 297 firms with 42 years of data. Three firms are dropped from our original

sample due to a lack of convergence for QR models, implying that n¼ 294. In addition, the

predictive character of the empirical pricing equations implies that T¼41. The firms’

excess returns are the annual excess return on assets computed over the annual interest rate

30offered by 1-month U.S. Treasury bills.

Although there is no consensus in the literature on the length of the time dimension, we

acknowledge that our time dimension selection criteria might favor larger and more mature

companies, which may lead to the results being valid only for large and mature companies.

However, the average estimated effects from our sample are in line with the literature con-

35sensus, and thus, the results could be applied to all companies. Summary statistics are pro-

vided in Table 4.

We work with three different model specifications of the vector of factors xit in (5.2),

defined as three-, six- and seven-variable specifications. The first case, three-variable speci-

fication, corresponds to a model that considers the pricing factors discussed in Fama and

40French (1992). That is, we entertain a market portfolio return, MKT and two more covari-

ates given by the firm’s market-to-book ratio, denoted as MB, and the log of the firm’s asset
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size, denoted as LNTA. The second model, six-variable specification, only entertains firm-

specific characteristics. Thus, as a measure of profitability we consider MB and LNTA as

above, and add earnings before interest and taxes as a proportion of total assets, denoted as

EBITTA; market debt ratio, defined as book value of debt over market value of assets and

5denoted as MDR (to capture firms’ leverage); depreciation as a proportion of total assets,

denoted as DEPTA; and a variable that captures the proportion of property, plant, and

equipment over total assets, FATA. The third model, seven-variable specification, extends

the second model by including the market portfolio return MKT as an additional regressor.

5.1 Three-variable Specification

10Consider first the three-variable specification proposed by Fama and French (1992). The

first two columns of Table 5 present the evaluation of the joint hypothesis of equal slopes

for all three covariates. The table reports the p-values of the S and D tests. The null hypoth-

esis is not rejected for central quantiles and the mean parameter vector.7 These findings

reveal the existence of a common set of parameters for predicting the risk premium in cen-

15tral quantiles of the distribution of firms’ excess asset returns, and hence, are informative

about the risk premium on the cross-section of risky assets. The null hypothesis of slope

homogeneity is rejected for extreme quantiles of the distribution of excess returns. In the

context of Fama and French (1996) and Kogan and Papanikolaou (2013), this result sug-

gests that the factors that capture firm-specific characteristics are an adequate description

20of the risk premium for the mean and central quantiles but not for the tails of the distribu-

tion of excess returns on common stocks. The differences observed in the slope coefficients

of the panel data regression models for extreme quantiles suggest that it is not possible to

Table 4. Summary statistics. Firm characteristics

Variable Obs Mean Std. dev. Min Max

RTN 12,177 0.003 0.795 �10.17 10.48

MDR 12,177 0.270 0.207 0.000 0.998

EBITTA 12,177 0.112 0.096 �1.466 1.103

MB 12,177 1.224 0.925 0.025 36.91

DEPTA 12,177 0.043 0.020 0.000 0.338

LNTA 12,177 20.59 1.934 14.36 26.25

FATA 12,177 0.343 0.188 0.000 0.935

MKT 12,177 6.626 16.797 �51.234 30.160

Notes: Sample consists of 1970–2011 for 294 firms. MDR: market debt ratio¼ book value of (short-term plus

long-term) debt (Compustat items [9]þ[34])/market value of assets (Compustat items [9]þ[34]þ[199]*[25]).

EBITTA: profitability: earnings before interest and taxes (Compustat items [18]þ[15]þ[16]), as a proportion

of total assets (Compustat item [6]). MB: market-to-book ratio of assets¼ book liabilities plus market value of

equity (Compustat items [9]þ[34]þ[10]þ[199]*[25]) divided by book value of total assets (Compustat item

[6]). DEPTA: depreciation (Compustat item [14]) as a proportion of total assets (Compustat item [6]). LNTA:

log of asset size, measured in 1983 dollars (Compustat item (6)*1,000,000, deflated by the consumer price

index. FATA: fixed asset proportion: property, plant, and equipment (Compustat item [8)]/total assets

(Compustat Item [6]). MKT: market portfolio excess return.

7 For the mean parameter vector we apply the version of the Swamy-type test obtained from the

mean MD estimator fully developed in Pesaran (2006).
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pool the information on the cross-section and time-series dimensions. We interpret this as

empirical evidence that rejects the possibility of using firm characteristics as pricing factors

for the tail quantiles of the distribution of firms’ stock returns.

To add robustness to our analysis and gather more empirical evidence on the predictive

5power of different firm characteristics, we also perform a marginal analysis of slope homo-

geneity for each firm characteristic. The p-values for the marginal tests of slope homogene-

ity, reported in Columns 3–8 of Table 5, exhibit patterns very similar to those discussed for

the joint test. More specifically, these marginal tests provide empirical evidence to reject the

null hypothesis in the tails of the distribution but not in the central quantiles. Interestingly,

10this robustness analysis uncovers the existence of heterogeneity in the effect of the firm’s

market-to-book ratio on the risk premium of risky assets.

To understand this finding in more detail and to obtain a better insight into the effect of

firm characteristics on the risk premium, we divide the sample into two subsamples accord-

ing to the average value of the market-to-book ratio across firms. This sample split allows

15us to classify firms into value stocks and growth stocks. More specifically, we classify as

Table 5. The p-values test results. Three-variable specification

Joint MB LNTA MKT

S D S D S D S D

Mean-based model

1.000 1.000 0.001 0.000 1.000 1.000 1.000 1.000

T QR models

0.05 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.10 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.999

0.15 0.749 0.752 0.002 0.001 0.199 0.201 1.000 1.000

0.20 1.000 1.000 0.670 0.677 0.999 0.997 1.000 1.000

0.25 1.000 1.000 0.775 0.778 1.000 1.000 1.000 1.000

0.30 1.000 1.000 0.987 0.983 1.000 1.000 1.000 1.000

0.35 1.000 1.000 0.995 0.992 1.000 1.000 1.000 1.000

0.40 1.000 1.000 0.998 0.996 1.000 1.000 1.000 1.000

0.45 1.000 1.000 0.998 0.996 1.000 1.000 1.000 1.000

0.50 1.000 1.000 0.995 0.993 1.000 1.000 1.000 1.000

0.55 1.000 1.000 0.950 0.945 1.000 1.000 1.000 1.000

0.60 1.000 1.000 0.851 0.850 1.000 1.000 1.000 1.000

0.65 1.000 1.000 0.702 0.708 1.000 1.000 1.000 1.000

0.70 1.000 1.000 0.127 0.125 1.000 1.000 1.000 1.000

0.75 1.000 0.999 0.010 0.007 1.000 1.000 0.999 0.998

0.80 0.125 0.124 0.000 0.000 0.822 0.822 0.237 0.241

0.85 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.90 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.95 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Notes: See notes in Table 4. Firm-characteristics three-variable specification. Mean and quantile slope homoge-

neity tests across firms i of the model RTNi;t ¼ ai þ bi;MBMBi;t þ bi;LNTALNTAi;t þ bi;MKTMKTt þ ei;tþ1. S is

the Swamy-type test and D the standardized Swamy test. The p-values are reported.
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value stocks those firms with market-to-book ratio below the sample mean. In contrast,

growth stocks are those with market-to-book ratio above the sample mean.8 In particular,

Table 6 reports the p-values of the slope homogeneity tests for value stocks, and Table 7

reports the p-values of the tests for growth stocks.

5Interestingly, the results of the test for each subsample reveal differences on the effect of

the financial ratio on predicting the stock excess return. Growth stocks exhibit an idiosyn-

cratic slope coefficient for each asset. In contrast, we cannot reject the null hypothesis of

slope homogeneity for value stocks. We can interpret these results as empirical evidence of

pricing differences between more established stocks, value stocks, that can be priced

Table 6. The p-values test results. Three-variable specification. Subsample 1

Joint MB LNTA MKT

S D S D S D S D

Mean-based model

1.000 1.000 0.573 0.588 1.000 0.999 1.000 0.999

T QR models

0.05 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000

0.10 0.000 0.000 0.000 0.000 0.000 0.000 0.930 0.923

0.15 0.005 0.004 0.001 0.000 0.003 0.001 0.997 0.993

0.20 0.988 0.984 0.240 0.247 0.695 0.705 1.000 1.000

0.25 1.000 1.000 0.219 0.224 0.996 0.992 1.000 1.000

0.30 1.000 1.000 0.615 0.628 1.000 1.000 1.000 1.000

0.35 1.000 1.000 0.601 0.615 1.000 1.000 1.000 1.000

0.40 1.000 1.000 0.672 0.683 1.000 1.000 1.000 1.000

0.45 1.000 1.000 0.741 0.748 1.000 1.000 1.000 1.000

0.50 1.000 1.000 0.695 0.704 1.000 1.000 1.000 1.000

0.55 1.000 1.000 0.507 0.522 1.000 1.000 1.000 1.000

0.60 1.000 1.000 0.287 0.296 1.000 1.000 1.000 1.000

0.65 1.000 1.000 0.274 0.283 1.000 1.000 1.000 1.000

0.70 1.000 1.000 0.035 0.029 1.000 1.000 1.000 1.000

0.75 0.957 0.952 0.004 0.002 0.992 0.987 0.987 0.981

0.80 0.212 0.215 0.000 0.000 0.905 0.900 0.486 0.501

0.85 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.002

0.90 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.95 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Notes: See notes in Table 4. Firm-characteristics three-variable specification. Mean and quantile slope homoge-

neity tests across firms i of the model RTNi;tþ1 ¼ ai þ bi;MBMBi;t þ bi;LNTALNTAi;t þ bi;MKTMKTtþ
ei;tþ1; i ¼ 1; 2; :::; 294. S is the Swamy-type test and D the standardized Swamy test. The p-values are reported.

Subsample of firms with average MB below the median.

8 We could have pursued alternative classifications of firms into value stocks and growth stocks

based on other percentiles of the distribution of the market-to-book ratio, as for example, the bot-

tom (top) three deciles of the distribution of firms. Instead, we prefer considering the whole sample

of firms in our analysis.
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homogeneously by our asset pricing model, and newer, smaller, riskier stocks, categorized

as growth stocks, that reject the null hypothesis of slope homogeneity, and with it the

empirical suitability of our panel data asset pricing model.

The absence of statistical evidence to reject the null hypothesis of slope homogeneity for

5the mean and central quantiles allows us to pool the cross-section and time-series dimen-

sions to estimate the empirical three-factor specification using the panel of observations.

Table 8 presents OLS and QR estimates of the linear specification under the presence of FE.

The results provide overwhelming evidence of the significance of the covariates in predict-

ing the risk premium on the cross-section of asset returns. The sign of the parameters

10reveals interesting findings on the relationship between firm characteristics and excess asset

returns. More specifically, firms’ MB has a negative effect on the risk premium. This find-

ing is consistent across quantiles and suggests that investors require a higher risk premium

as the firms’ market-to-book value decreases. Interestingly, for high quantiles of the

Table 7. The p-values test results. Three-variable specification. Subsample 2

Joint MB LNTA MKT

S D S D S D S D

Mean-based model

0.998 0.997 0.000 0.000 1.000 0.999 1.000 1.000

T QR models

0.05 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.10 0.510 0.519 0.030 0.024 0.195 0.198 1.000 0.999

0.15 1.000 1.000 0.483 0.499 0.992 0.987 1.000 1.000

0.20 1.000 1.000 0.971 0.963 1.000 1.000 1.000 1.000

0.25 1.000 1.000 0.996 0.992 1.000 1.000 1.000 1.000

0.30 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000

0.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.50 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000

0.55 1.000 1.000 0.995 0.991 1.000 1.000 1.000 1.000

0.60 1.000 1.000 0.990 0.984 1.000 1.000 1.000 1.000

0.65 1.000 1.000 0.945 0.937 1.000 1.000 1.000 1.000

0.70 1.000 1.000 0.662 0.674 1.000 1.000 1.000 0.999

0.75 0.999 0.999 0.326 0.338 0.999 0.996 0.987 0.981

0.80 0.199 0.200 0.052 0.045 0.479 0.495 0.145 0.145

0.85 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.90 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.95 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Notes: See notes in Table 4. Firm-characteristics three-variable specification. Mean and quantile slope homoge-

neity tests across firms i of the model RTNi;tþ1 ¼ ai þ bi;MBMBi;t þ bi;LNTALNTAi;t þ bi;MKTMKTtþ
ei;tþ1; i ¼ 1; 2; :::; 294. S is the Swamy-type test and D the standardized Swamy test. The p-values are reported.

Subsample of firms with average MB above the median.
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distribution of asset returns, the value of this financial ratio does not have a statistical effect

on the risk premium. Note, however, that for tail quantiles the slope homogeneity test is

rejected invalidating model estimates for these quantiles obtained from pooling the data

across stocks.

5The analysis of the effect of firms’ asset size on the risk premium of the cross-section

also provides interesting insights. In this case, we observe a positive relationship between

risk premium and asset size. This empirical finding is similar to those reported by Fama and

MacBeth (1973) and Fama and French (1992). Table 8 also reveals a small but statistically

significant effect of the market portfolio return on the risk premium on risky assets.

10Interestingly, the sign of the slope parameter for this market factor becomes negative for

the highest quantiles of the distribution of excess asset returns and suggests the decoupling

between the market portfolio return and firms’ asset returns for very large firms’ returns.

Nevertheless, as noted above by the QR slope homogeneity test, the sensitivity of asset

returns to the pricing factors is different for each firm in the tails of the distribution casting

15doubts on the reliability of the pooled estimates for the tail quantiles.

5.2 Six-variable Specification

Consider now the econometric specification solely characterized by the above six-firm char-

acteristics. The first two columns of Table 9 present the p-values of the joint slope homoge-

neity tests S and D for the mean and quantile processes. The results are the same as in the

20previous specification. The slope homogeneity tests do not reject the null hypothesis for the

mean and central quantiles, but report overwhelming evidence that rejects the null hypothe-

sis in the tails of the distribution of firms’ asset returns.

Columns 3–14 of Table 9 provide the p-values of the marginal slope homogeneity tests

for each firm characteristic. The p-value of the market-to-book variable is 0.019 and sug-

25gests that the sensitivity of the firms’ excess asset returns to variation of this financial ratio

is different across stocks. These findings are confirmed by the results of the tests for the sub-

samples determined by the mean value of the MB financial ratio but are not reported for

the sake of space. As in the preceding exercise, the marginal slope homogeneity test for the

MB ratio fails to reject the null hypothesis for value stocks but rejects it for growth stocks.

30Table 10 presents the OLS and QR parameter estimates with FE. The results are qualita-

tively similar to the previous specification; in particular, the sign of the MB and LNTA

Table 8. FE and FE-QR estimation results. Three-variable specification

Variables Mean s ¼ 0:10 s ¼ 0:25 s ¼ 0:50 s ¼ 0:75 s ¼ 0:90

MB �0:137			 �0:194			 �0:161			 �0:140			 �0:129			 �0:116			

(0.010) (0.013) (0.003) (0.000) (0.006) (0.028)

LNTA 0:076			 0:136			 0:0886			 0:0680			 0:0415			 0.017

(0.010) (0.014) (0.004) (0.001) (0.005) (0.018)

MKT 0:001	 0:003			 0:002			 0:0001			 �0:0005			 �0:002			

(0.0004) (0.0007) (0.0002) (0.000) (0.0002) (0.0007)

Notes: See notes in Table 4. Firm-characteristics three-variable specification. Mean and quantile FE model

RTNi;tþ1 ¼ ai þ bMBMBi;t þ bLNTALNTAi;t þ bMKTMKTt þ ei;tþ1. Standard errors in parentheses. *significant

at 10%, **significant at 5%, ***significant at 1%.
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slope parameters is the same of the previous specification. The model also includes a profit-

ability measure, EBITTA, a depreciation variable, DEPTA, a variable that captures the pro-

portion of physical assets, FATA, and a variable that measures the firm’s leverage, MDR.

The parameter estimates indicate a negative effect of firms’ profitability on the excess asset

5return. The magnitude of this effect is large and statistically significant across quantiles.

The proportion of physical assets over total assets also has a positive and significant effect

on the cross-section of asset returns. Interestingly, the leverage of the firm, MDR, defined

as debt over equity, also has a positive effect on the excess asset return. Firms’ depreciation

as a proportion of total assets has, on the other hand, a negative effect on the risk premium.

10It is worth noting that the model estimates for the tail quantiles obtained from pooling the

data across stocks are not supported by the QR slope homogeneity tests.

5.3 Seven-variable Specification

This last specification extends the previous model by also including MKT. The empiri-

cal findings are consistent across models. It is worth noting that the marginal slope

15homogeneity test associated with the covariate given by the market portfolio return

rejects only the null hypothesis for the higher quantiles of the distribution and not for

the lower quantiles as do the rest of covariates. As in the two previous specifications,

the slope homogeneity test presents some anomalies associated to market-to-book

value, in particular, Table 11 reports a p-value of 0.024 and 0.020 for the test statistics

20S and D, respectively.

The estimates of the model parameters for this specification, reported in Table 12, are

also very similar to previous specifications. The parameter associated with the market port-

folio excess return is small, compared to the magnitude of the rest of model parameters, but

statistically significant, helping in the prediction of the risk premium.

Table 10. FE and FE-QR estimation results. Six-variable specification

Variables Mean s ¼ 0:10 s ¼ 0:25 s ¼ 0:50 s ¼ 0:75 s ¼ 0:90

EBITTA �0:602			 �0:286		 �0:510			 �0:530			 �0:615			 �0:539			

(0.098) (0.113) (0.031) (0.000) (0.037) (0.171)

MB �0:042			 �0:046			 �0:035			 �0:041			 �0:020			 0.001

(0.010) (0.011) (0.003) (0.000) (0.003) (0.013)

LNTA 0:058			 0:137			 0:081			 0:051			 0:027			 0.007

(0.010) (0.010) (0.003) (0.000) (0.003) (0.015)

FATA 0:620			 1:178			 0:751			 0:480			 0:432			 –0.104

(0.091) (0.095) (0.029) (0.000) (0.033) (0.145)

MDR 1:089			 1:076			 0:943			 0:894			 1:097			 1:293			

(0.051) (0.057) (0.016) (0.000) (0.019) (0.083)

DEPTTA �5:112			 �4:265			 �3:633			 �3:626			 �5:053			 �5:064			

(0.598) (0.602) (0.184) (0.000) (0.218) (0.993)

Notes: See notes in Table 4. Firm-characteristics seven-variable specification. Mean and quantile FE model

RTNi;tþ1¼aiþbEBITTAEBITTAi;tþbMBMBi;tþbLNTALNTAi;tþbFATAFATAi;tþbMDRMDRi;tþbDEPTADEPTAi;t

þ ei;tþ1. Standard errors in parentheses. *significant at 10%, **significant at 5%, ***significant at 1%.
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5.4 Discussion of Results

The absence of statistical evidence to reject the null hypothesis of slope homogeneity vali-

dates the existence of an empirical asset pricing equation to price the risk premium of the

cross-section of firms’ stocks at the mean and central quantiles. This powerful result does

5not hold, however, for the tail quantiles of the distribution of firms’ excess returns. In these

cases the slope homogeneity test is rejected suggesting that the effect of firm characteristics

is heterogeneous across stocks.

A simple interpretation of the rejection of the null hypothesis under our QR estimation

methodology for panel data is to consider that excess asset returns in the tails correspond to

10distress and boom periods. In these periods the heterogeneity in the risk premium of risky

assets is produced by investors’ overreaction, which produces the underpricing of distressed

stocks (see Lakonishok, Shleifer, and Vishny, 1994; MacKinlay, 1995; Fama and

French,1996) and overpricing of boom stocks. Risk and reward are driven in these cases by

individual circumstances and not by a common asset pricing model.

15An alternative interpretation of the rejection of the slope homogeneity hypothesis in

the lower and upper quantiles of the distribution of the excess asset returns is due to mis-

specification of the variance of the test statistics. QR models have higher variance for

extreme quantiles as compared to central quantiles, and thus, we could be capturing this

effect rather than firm heterogeneity. In order to investigate this issue, Figure 1 reports

20the distribution of the estimated firm-specific coefficients for all quantiles, together with

the mean-based estimates. More specifically, each chart reports, for each s-quantile and

the OLS model, the 0.05, 0.10, 0.20, 0.80, 0.90, and 0.95 percentiles of the firm-specific

coefficients. These charts provide empirical evidence suggesting that slope heterogeneity

increases in the tail quantiles, with a larger variability of the parameter estimates across

25stocks in the upper quantiles than in the lower quantiles.

Table 12. FE and FE-QR estimation results. Seven-variable specification

Variables Mean s ¼ 0:10 s ¼ 0:25 s ¼ 0:50 s ¼ 0:75 s ¼ 0:90

EBITTA �0:602			 �0:286		 �0:510			 �0:530			 �0:615			 �0:539			

(0.098) (0.113) (0.031) (0.000) (0.037) (0.171)

MB �0:042			 �0:046			 �0:035			 �0:041			 �0:020			 0.001

(0.010) (0.011) (0.003) (0.000) (0.003) (0.013)

LNTA 0:058			 0:137			 0:081			 0:051			 0:027			 0.007

(0.010) (0.010) (0.003) (0.000) (0.003) (0.015)

FATA 0:620			 1:178			 0:751			 0:480			 0:432			 –0.104

(0.091) (0.095) (0.029) (0.000) (0.033) (0.145)

MDR 1:089			 1:076			 0:943			 0:894			 1:097			 1:293			

(0.051) (0.057) (0.016) (0.000) (0.019) (0.083)

DEPTA �5:112			 �4:265			 �3:633			 �3:626			 �5:053			 �5:064			

(0.598) (0.602) (0.184) (0.000) (0.218) (0.993)

MKT 0:002			 0:003			 0:002			 0:001			 0:0004			 –0.0007

(0.0004) (0.0005) (0.0002) (0.000) (0.0002) (0.0006)

Notes: See notes in Table 4. Firm-characteristics seven-variable specification. Mean and quantile FE model RTNi;tþ1

¼ ai þ bEBITTAEBITTAi;t þ bMBMBi;t þ bLNTALNTAi;t þ bFATAFATAi;t þ bMDRMDRi;t þ bDEPTADEPTAi;tþ bMKT

MKTtþ ei;tþ1. Standard errors in parentheses. *significant at 10%, **significant at 5%, ***significant at 1%.
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6 Conclusion

We have proposed Swamy and standardized Swamy tests for the null hypothesis of slope

homogeneity in QR panel data FE models. These tests are important tools for practitioners,

since they allow researchers to investigate the poolability of individual slopes in the FE-QR

5framework. We have derived the limiting distribution of the tests for large panels under

sequential and joint asymptotics. The interpretation of the test results is simple. If the tests

do not reject the null hypothesis of slope homogeneity across individuals, one could esti-

mate the standard FE-QR model. On the other hand, if the tests reject the null hypothesis,

one should estimate the parameters of interest using data separately for each individual; for

10instance, estimating individual QR using time series data.

These tests were applied to assess statistically the validity of linear asset pricing specifica-

tions for the quantile of excess asset returns in cross-sectional settings. Our application to a

cross-section of U.S. firms reveals the empirical suitability of firm characteristics such as
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Figure 1. Seven-variables specification, distribution of firm-specific coefficients.

Notes: 0.05, 0.10, 0.20, 0.80, 0.90, and 0.95 percentiles of the estimated firm-specific QR (for each s)

and OLS coefficients. MD-OLS: solid line. MD-QR: solid line with circles. Mean and quantile regression

firm-specific i model:

RTNi ;tþ1 ¼ ai þ bi ;EBITTAEBITTAi ;t þ bi;MBMBi;t þ bi ;LNTALNTAi ;t þ bi ;FATAFATAi;t þ bi ;MDRMDRi ;tþ bi ;DEPTA

DEPTAi;tþ bi ;MKTMKTt þ ei;tþ1.
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earnings, leverage, asset size, debt, among a few others, as pricing factors. For central quan-

tiles, the sensitivity of excess asset returns to variation in firm characteristics is homogeneous

across stocks and allows us to interpret our time series prediction model as a panel data pric-

ing equation. However, for tail quantiles the slope homogeneity test rejects the null hypothe-

5sis. This result is interpreted as evidence of pricing anomalies that suggest that the sensitivity

of returns to firm characteristics is different across stocks during booms and busts.
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Appendix

Proof of Theorem 1.1: For the Swamy-type test
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where Zi are i:i:d: normal distributions with mean zero and variance Vi. The fact thatffiffiffiffi
T
p
ðb̂ i � bÞ!d Zi is by the standard argument as in Koenker (2005) for i.i.d. data. Thus, the
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asymptotic distribution of Ŝ is v2ðkðn� 1ÞÞ for fixed n and T tending to infinity. Intuitively,

the degree of freedom of the v2 distribution should be kn instead of kðn� 1Þ. However,

because we are using b̂ for Ŝ rather than b, the true value of the slope parameter, k degrees

of freedom is lost. Therefore, the degree of freedom of the v2 distribution is kðn� 1Þ. For

5more details of the Swamy-type test, see pp. 149–153 and 323–324 of Rao (1965). h

Proof of Theorem 1.2: Now we consider the standardized Swamy test, D̂ ¼
ffiffiffi
n
p 1

nŜ�kffiffiffiffi
2k
p , for

ðT;nÞseq !1. To show the result, we first fix n. From the proof of Theorem 1.1, we know

that for fixed n, Ŝ!d v2ðkðn� 1ÞÞ as T !1. By continuous mapping theorem,
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p 1
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2k
p !d
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p 1
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2k
p as T tends to infinity.

10
Now we work with
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p and derive the asymptotic distribution as n!1. To

this end, we transform
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Using the fact that v2ð�Þ��ffiffiffiffi
2�
p !d Nð0;1Þ as � !1, we have

ffiffiffi
n
p 1

n v2ðkðn� 1ÞÞ � kffiffiffiffiffiffi
2k
p !d Nð0; 1Þ;

as n!1. Hence, we conclude that D̂!d Nð0; 1Þ as ðT; nÞseq !1. h

15The proof of Theorem 1.3 is more involved. Denote SiTðhÞ :¼ 1
T

XT

t¼1

wsðyit � X>it hÞX it,

where wsðuÞ :¼ s� 1fu�0g; X it ¼ ð1;xitÞ>, and hi0 :¼ ðai0; b
>
i0Þ
>. Let SiðhÞ :¼ EðSiTðhÞÞ ¼

E½s� FiðX i1ðh� hi0ÞjX i1Þ�. It is well know that the term
ffiffiffiffi
T
p
ð½SiTðĥ iÞ � SiTðhi0Þ� � ½SiðĥiÞ

�Siðhi0Þ�Þ ¼ opð1Þ for each individual since it is stochastic equicontinuous and ĥ i!
p

h.

However, for the panel data, we need to consider the order of max 1� i� nf½SiTðĥ iÞ�
20SiTðhi0Þ� � ½Siðĥ iÞ � Siðhi0Þ�g. The following lemmas provide such an order. They are auxili-

ary results to establish the result in Theorem 1.3. These lemmas, and corresponding proofs,

are Lemmas 1, 4, and 5, respectively, in Galvao and Wang (2015). We state these results

for completeness.

Lemma 6.1: Under Conditions A1–A3, we have max 1� i� nkĥ i � hi0k ¼ opð1Þ as ðT; nÞ
25!1 and log n

T ! 0.

Lemma 6.2: If max 1� i� nkĥ i � hi0k ¼ OpðdnÞ, where lim n!1 dn ¼ 0, then under

Conditions A1–A5, we have max 1� i�nf½SiTðĥiÞ � SiTðhi0Þ� � ½Siðĥ iÞ � Siðhi0Þ�g ¼ OpðdnÞ,
where dn ¼ jlog dn j

T _
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dn jlog dn j

T

q
.
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Lemma 6.3: Under the conditions of Lemma 6.2, we have max 1� i�nkĥ i � hi0k ¼
Op

ffiffiffiffiffiffiffiffi
log n

T

q� �
.

From Lemmas 6.2 and 6.3, we notice that dn ¼
ðlog nÞ1=4

ffiffiffiffiffiffiffiffiffiffiffi
jlog dn j
p

T3=4 . Now we are ready to

5prove Theorem 1.3.

Proof of Theorem 1.3: Expanding SiðĥiÞ around hi0 and using Lemma 2.12 of van der

Vaart (1998), we obtain

Siðĥ iÞ ¼ Siðhi0Þ þ
@Siðhi0Þ
@hi

ðĥ i � hi0Þ þOpððĥ i � hi0Þ2Þ:

10After rearranging and noting that Ci ¼ @Siðhi0Þ
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, we have
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Note that the remainder term OpðdnÞ depends on n only. So it is a uniform version of a

15Bahadur representation.
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For the first term, we have
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5Therefore, the second term is opð1Þ since
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Thus, for the standardized Swamy test, in the case when ðT; nÞ ! 1,
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For some small positive constant �, we have Ejẑij2þ� < K < 1 by condition A2. Also, E

ẑi ¼ k for all i. Therefore, by Lindberg–Feller Central Limit Theorem, we have

D̂!d Nð0; ĝ2Þ;

where ĝ2 :¼ lim n!1
1
n

Xn

i¼1

VarðẑiÞ
2k

� �
. Finally, it just remains to show that ĝ2 ¼ 1, and the

5proof is complete.

Since VarðẑiÞ ¼ EðẑiÞ2 � k2, we need to verify that EðẑiÞ2 ¼ 2kþ k2 þ oð1Þ uniformly

across i as T !1. Let Zit ¼ V
�1=2
i NC�1

i wsðyit � X>it hi0ÞX it, we have EZit ¼ 0, and

EZitZ
>
it ¼ I. Let Zitl be the l-th element of Zit. Since Zitl is linear combination of the vector

X it, and wsð�Þ is a uniformly bounded function, it follows that EZ2
itlZ

2
itm and EZ4

itl are both

10uniformly bounded for any l and m. Note that we do not have that Zit follows normal dis-

tribution. Consequently, the elements in each vector Zit need not be independent, although

they are uncorrelated. Nonetheless, Zit are independent across i and t by Condition A1.

Now we compute EðẑiÞ2.

E ẑið Þ2 ¼ T2E S
>
iT hi0ð ÞC�1

i N>V�1
i NC�1

i SiT hi0ð Þ
� �2

¼ 1

T2
E
XT

t¼1

ws yit � X>it hi0

	 

X>it C

�1
i N>V

�1=2
i

XT

t¼1

V
�1=2
i NC�1

i ws yit � X>it hi0

	 

X it

" #2

¼ 1

T2
E

XT

t¼1

Zit

 !>XT

t¼1

Zit

" #2

¼ 1

T2
E
Xk

l¼1

XT

t¼1

Zitl

 !2
2
4

3
5

2

¼ 1

T2

Xk

l¼1

E
XT

t¼1

Zitl

 !4

þ 2

T2

X
m< l

E
XT

t¼1

Zitl

 !2 XT

t¼1

Zitm

 !2

¼ 1

T2

Xk

l¼1

XT

t¼1

EZ4
itl þ 3T T � 1ð ÞEZ2

i1lEZ2
i1l

 !

þ 2

T2

X
m< l

E
XT

t¼1

Z2
itl þ 2

X
s< t

ZitlZisl

 ! XT

t¼1

Z2
itm þ 2

X
s< t

ZitmZism

 !

¼ 3kþ 1

T

Xk

l¼1

EZ4
itl � 3

	 

þ 2

T2

X
m< l

E

 XT

t¼1

Z2
itl

XT

t¼1

Z2
itm þ 2

X
s< t

ZitlZisl

XT

t¼1

Z2
itm

þ 2
X
s< t

ZitmZism

XT

t¼1

Z2
itl þ 4

X
s< t

ZitlZisl

X
s< t

ZitmZism

!

(6.2)
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Line (6.2) follows since the expectations of all other terms from the expansion of the

fourth-order polynomial are zeros. And the third term equals

2

T2

X
m< l

E
XT

t¼1

XT

s¼1

Z2
itlZ

2
ism þ 2

X
s< t

XT

r¼1

ZitlZislZ
2
irm þ 2

X
s< t

XT

r¼1

ZitmZismZ2
irl þ 4

X
s< t

X
r< q

ZitlZislZirmZiqm

 !

¼ 2

T2

X
m< l

XT

t¼1

EZ2
itlZ

2
itm þ T T � 1ð Þ þ 4

X
s< t

EZitlZitmZislZism

 !

(6.3)¼ k k� 1ð Þ þ 2

T2

X
m< l

XT

t¼1

EZ2
itlZ

2
itm � T

 !

¼ k k� 1ð Þ þO 1=Tð Þ:

(6.4)

Equality (6.3) follows because the second and the third terms in the parentheses in the line

5above are zeros. Equality (6.4) follows since EZitlZitmZislZism ¼ EZitlZitmEZislZism ¼ 0. Thus,

EðẑiÞ2 ¼ 3kþ kðk� 1Þ þOð1=TÞ ¼ 2kþ k2 þOð1=TÞ. h

Proof of Theorem 2.1: The proof is analogue to that of Theorem 1.1. The only difference

is how to establish
ffiffiffiffi
T
p
ðb̂ i � bÞ!d Zi. Indeed, instead of using the standard results for i.i.d.

data, we apply asymptotic results for stationary b-mixing data. h

10Proof of Theorem 2.2: The proof uses the proof of Theorem 2.1 and follows from the

same argument as that of the proof of Theorem 1.2. h

Next, to prove Theorem 2.3, we state lemmas collecting intermediate results for the

dependent case. These lemmas, and corresponding proofs, are Lemmas 6, 7, and 8, respec-

15tively in Galvao and Wang (2015). We state these results for completeness.

Lemma 6.4: Under Conditions A2–A3 and B1, we have max 1� i�nkĥ i � hi0k ¼ opð1Þ as

ðn;TÞ ! 1 and log n
T ! 0.

Lemma 6.5: Assume conditions A2–A5 and B1–B2 hold. For any c 2 ð0; 1Þ and dN such

that jlog dN j Oðlog NÞ, we have max 1� i�nf½SiTðĥ iÞ � SiTðhi0Þ� � ½Siðĥ iÞ � Siðhi0Þ�g ¼
20OpðT�ð1�cÞðlog nÞ _ T�1=2d1=2

n ðlog nÞ1=2Þ.

Lemma 6.6: Assume conditions A2–A5 and B1–B2 hold. We have max 1� i�nkĥ i � hi0k
¼ Op

ffiffiffiffiffiffiffiffi
log n

T

q� �
for b-mixing data.

Proof of Theorem 2.3: The proof is similar to that of Theorem 1.3. Instead of applying

Lemmas 6.1, 6.2, and 6.3, we apply Lemmas 6.4, 6.5, and 6.6. h
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