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Fluorescence correlation spectroscopy experiments to quantify free diffusion coefficients in
reaction-diffusion systems: The case of Ca2+ and its dyes
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Many cell signaling pathways involve the diffusion of messengers that bind and unbind to and from intracellular
components. Quantifying their net transport rate under different conditions then requires having separate estimates
of their free diffusion coefficient and binding or unbinding rates. In this paper, we show how performing sets of
fluorescence correlation spectroscopy (FCS) experiments under different conditions, it is possible to quantify free
diffusion coefficients and on and off rates of reaction-diffusion systems. We develop the theory and present a practi-
cal implementation for the case of the universal second messenger, calcium (Ca2+) and single-wavelength dyes that
increase their fluorescence upon Ca2+ binding. We validate the approach with experiments performed in aqueous
solutions containing Ca2+ and Fluo4 dextran (both in its high and low affinity versions). Performing FCS exper-
iments with tetramethylrhodamine-dextran in Xenopus laevis oocytes, we infer the corresponding free diffusion
coefficients in the cytosol of these cells. Our approach can be extended to other physiologically relevant reaction-
diffusion systems to quantify biophysical parameters that determine the dynamics of various variables of interest.
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I. INTRODUCTION

Many cell signaling pathways involve the diffusion of
messengers in the cytoplasm. In most cases these substances
convey their message by binding to target molecules. Fur-
thermore, as they reach their targets they not only diffuse
freely but also bind and unbind to and from other cell
components. For long enough times, the net transport that
results from the combination of free diffusion and binding
or unbinding is described by effective diffusion coefficients
that are weighted averages of the free coefficients of the
messenger and of the substance it interacts with [1]. Differently
from free coefficients, effective coefficients depend on the
concentrations of the reactants and on reaction rates. The
universal second messenger calcium (Ca2+) provides a pro-
totypical example of this behavior. Persistently high cytosolic
Ca2+ concentrations lead to cell death. For this reason, cells
have numerous mechanisms to reduce this concentration, the
fastest one of which is buffering. Buffers are molecules that
bind and unbind to and from Ca2+ ions reducing their free
concentration, altering their spatiotemporal distribution [2,3]
and the eventually evoked end responses [4]. The cytosolic
Ca2+ concentration can attain very different values. The
resulting Ca2+ effective diffusion coefficient then varies across
disparate values depending on the signal type. The range of
values was estimated as ∼ [5,220] μm2/s [5] with increasing
values as the cytosolic Ca2+ concentration increased. How fast
can Ca2+ diffuse inside cells? In order to answer this question
it is necessary to have separate estimates of the Ca2+ and
Ca2+ buffers free diffusion coefficients, their concentrations,
and reactions rates. Ideally, having access to this information
one could eventually compute the Ca2+ effective diffusion
coefficient as a function of its concentration. Ca2+ images
do not provide direct information on Ca2+ transport because
the fluorescence that is collected comes from the dye (either
free or Ca2+-bound), not from the free Ca2+ concentration.
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In the case of the single-wavelength dyes [6,7] that increase
their fluorescence intensity when bound to Ca2+, the Ca2+

currents that can be inferred from the images [8] are very
sensitive to uncertainties in the on rate of the Ca2+-dye binding
reaction and in the diffusion coefficient of the dye [9]. Having
reliable estimates of these parameters is thus unavoidable
to extract quantitative information from the images. In this
paper, we describe and implement an approach that shows
how performing sets of fluorescence correlation spectroscopy
(FCS) [10] experiments under different conditions and using a
reaction-diffusion model to interpret the experimental results
it is possible to obtain separate estimates of the free Ca2+ and
dye diffusion coefficients and of the rates of their binding and
unbinding reaction.

In FCS, the fluorescence intensity in a small volume is
recorded along time and, via an analysis of the temporal
autocorrelation of the observed fluctuations, the transport rates
of the fluorescent species are, in principle, derived [11]. FCS
has been widely used to determine the diffusion coefficients
of fluorescently labeled proteins inside cells [12–14]. When
the fluorescent species diffuse freely in the medium there
is an analytic expression for the autocorrelation function
of the fluorescent fluctuations (ACF) that is used to fit the
experimental observations and derive diffusion coefficients
(see Materials and Methods). When the fluorescent particles
diffuse and react, simple analytic expressions for the ACF can
only be obtained under certain approximations [11,15–20].
Depending on the relative timescales of the problem it is also
possible to quantify reaction rates using FCS [11,16,17]. In
fact, the paper where the method was introduced [11] presented
an application in which the reaction rates of a bimolecular
reaction were derived for a situation in which the lightest
reactant was in excess. A similar situation was considered in
Ref. [16], in which an enhanced version of FCS was introduced
to improve the signal to noise ratio. Deriving the reaction rates
of a bimolecular reaction from FCS experiments was also
the aim of the work in Ref. [17]. In all these examples, the
concentrations of the reactants were assumed to be known a
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priori and the experiments were performed to infer kinetic
parameters. The lightest reactant, on the other hand, was the
marker that increased its fluorescence upon binding to the
heaviest one, the latter being the biological relevant molecule.
Fluctuations were then due to binding or unbinding and
diffusion and by exploiting the timescale separation between
both of them the reaction rates were determined [11,16,17].
In the present paper, we are also interested in a system in
which diffusion and reactions occur. But, as in our previous
works [18–21], the situation of interest is such that the
biologically relevant species (Ca2+ in this paper, a fluorescent
protein in the previous ones) is the lightest reactant and
the quantification of its free (rather than effective) diffusion
coefficient is the main purpose of the investigation. In the
case of fluorescently tagged proteins, the reactions correspond
to interactions with more massive (nonfluorescent) molecules
that hinder their transport [21]. In the present paper, the reac-
tions occur with (more massive) probes that allow the species
of interest to be observed. As shown for the case of fluores-
cently labeled proteins in Refs. [18–20], when the reactions act
on a somewhat faster timescale than diffusion, the correlation
times of the fluctuations are associated to the free diffusion
coefficient of the most massive reactant (if it is mobile) and
to the effective coefficients mentioned before. As analyzed
theoretically in Refs. [18,20], even though the reaction time
does not characterize per se the decay of the ACF, it is
still possible to quantify some of the reaction parameters
via the dependence of the (effective) diffusive timescales on
them. In this paper, we present a practical implementation
of these ideas but for a system in which the reactions are
necessary for the fluorescence to be readily observable, as in
the situations probed in Refs. [11,16,17]. In such a case, one
of the timescales that characterizes the decay of the ACF is
determined by the reaction time. Thus, on and off rates, not
just the dissociation constant as done in Ref. [21], could in
principle be derived. We envisage the approach presented here
as a first step toward its application in real cells, where the
concentrations of the biologically relevant components are
not known a priori. Thus, we seek to infer free diffusion
coefficients and kinetic parameters from the experiments
without using any previous knowledge on the concentrations.
In doing so, we not only derive the free diffusion coefficients
that we are interested in but also quantify reaction rates. The
approach involves performing sets of experiments for different
concentration ratios so as to maximize the information that
can be drawn from the data. In the present paper, we present
a practical implementation for the case of Ca2+ and two
single wavelength Ca2+ dyes. We show that, even if the free
diffusion time of Ca2+, being the lightest reactant, does not
correspond to any of the characteristic decay times of the
ACF, its value can be estimated by combining the various
effective and free coefficients that can be quantified directly
from the experiments without any previous knowledge of the
concentrations involved. Although the transport of Ca2+ in the
cytosol also involves the interaction with other (unobservable)
species, we think that the approach presented here establishes
a layout on how to advance towards its quantification in intact
cells. We thus expect to be helping obtain reliable estimates of
parameters that are key to determine the propagation range of

the signals and to infer from their images the underlying Ca2+

distributions.
In order to advance with the practical implementation

presented here, we first study theoretically the behavior of
the ACF for the case of Ca2+ and a single wavelength dye
analyzing with numerical simulations the applicability of
an analytic approximation that is valid when the reaction
timescale is small enough. We then show the results of a series
of FCS experiments performed in aqueous solutions containing
Ca2+ and different amounts of the Ca2+ indicator Fluo4
dextran both in its high and low affinity versions (Invitrogen-
Molecular Probes, Carlsbad, CA). Fitting the observed ACF
by the analytic approximation we corroborate the validity of
the approximations and derive diffusion coefficients and the
off-rate of the Ca2+-dye binding reaction, in solution. A similar
approach can be used to characterize the kinetic properties of
other Ca2+ dyes. As we mentioned before, our final aim is to
be able to apply a similar approach to experiments performed
in intact cells. As a preliminary step we here obtain an estimate
of the free diffusion coefficients of Ca2+ and its dyes in the
cytosol of Xenopus laevis oocytes by assuming that they only
differ from those derived in solution due to differences in
viscosity between both media. Thus, we assume that the ratio
between the free diffusion coefficients of any two substances
remains the same in both settings. In this way, by solely
quantifying the rate of diffusion of a molecule that diffuses
freely in the cytosol and in solution we can infer the free
diffusion coefficient of Ca2+ and the dyes in the cytosol as
well. We present such quantification in the Appendix. Thus,
the practical implementation presented in this paper not only
highlights the advantages of our approach but it also allows us
to derive a preliminary estimate of a parameter that is key to
quantify the free Ca2+ distribution that underlies a Ca2+ image.

Ca2+ signals are not the only example in which being able
to tell apart the contributions of free diffusion and reactions
on the net transport rate of labeled substances is relevant. We
have recently shown [21] the necessity of going beyond the
description of effective coefficients to interpret correctly the
apparently disparate estimates of the protein, Bicoid, diffusion
coefficient derived from FCS [22] and fluorescence recovery
after photobleaching (FRAP) [23] experiments. This example
also shows that the comprehensive quantifiable description of
a physiological process requires having a biophysical model
for the dynamics of the relevant concentrations that depends
on concentration-independent biophysical parameters. It is via
such a model that the response of the system over time in front
of different stimuli can be predicted. Being able to derive
estimates of the concentration-free biophysical parameters
in situ is thus relevant to achieve a meaningful description.
The approach presented in this paper can be adapted and
applied to other problems. Therefore, its relevance goes
beyond quantifying the biophysical parameters associated to
Ca2+ and its dyes.

II. MATERIALS AND METHODS

A. FCS Theory

Fluorescence correlation spectroscopy (FCS) monitors the
fluctuation of the fluorescence in a small volume. Fluctuations
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TABLE I. Aqueous solutions probed with FCS experiments. They also contain 100 mM KCl and 30 mM MOPS at pH 7.2.

Fluo4 high affinity Fluo4 low affinity

Aqueous solution Ca2+
tot (nM) [F4]tot(nM) Aqueous solution Ca2+

tot (nM) [F4]tot(nM)

1 4285 429 10 4285 214
2 4285 857 11 4285 429
3 4285 1371 12 4285 857
4 4285 1886 13 4285 1114
5 4285 2571 14 4285 1371
6 4285 4286 15 4285 1886
7 4285 9000 16 4285 2571
8 4285 15 000 17 4285 4286
9 4285 19 286 18 4285 9000

are characterized by the time-averaged autocorrelation func-
tion (ACF), which is defined as

G(τ ) = 〈δf (t)δf (t + τ )〉
〈f (t)〉2 , (1)

where 〈f (t)〉 is the average fluorescence in the sampling
volume and δf (t) is the deviation with respect to this mean
at each time, t . As explained in the Appendix, when the
fluorescence comes from a single species, Pf , that diffuses
freely with coefficient Df (i.e., does not react), the ACF is of
the form

G(τ ) = g(
1 + τ

τf

)√
1 + τ

w2τf

, (2)

where w = wz/wr is the aspect ratio of the sampling volume
and wz and wr are the sizes of the beam waist along z and
r , with z the spatial coordinate along the beam propagation
direction and r a radial coordinate in the perpendicular plane;
the effective volume is Vef ≡ π3/2w2

r wz; τf = w2
r /(4Df ) is

the characteristic time of diffusion of the particles across
the sampling volume and g = G(τ = 0) = 1/(VefPtot), where
Ptot is the particle concentration. When the dynamics of the
fluorescent species is described by a reaction-diffusion model
most often there is not a simple analytic expression for the
ACF. It can always be written as a sum of integrals, each
one associated to one of the branches of eigenvalues that rule
the dynamics of the linearized reaction-diffusion equations of
the model. Each of these integrals is called a “component” of
the ACF. In the case of interest for the present paper, there
are three relevant species: free Ca2+ (C), free dye (F ), and
Ca2+-bound dye [CF ], which diffuse with free coefficients
DC (C) and DF [F and [CF ]] and react according to

C + F

koff

←−−→
kon

[CF ], (3)

with on- and off-rates, kon and koff, respectively. The corre-
sponding (spatially uniform) equilibrium concentrations, Ceq,
Feq, and [CF ]eq satisfy

[CF ]eq = CeqFtot

Ceq + Kd

, (4)

where Kd = koff/kon and Ftot = Feq + [CF ]eq is the total dye
concentration. There are three branches of eigenvalues for

this system and the ACF then has three components. Simple
algebraic expressions can be obtained for the components in
certain limits. In particular, in this paper we present the results
obtained in the “fast reaction limit” that holds when the char-
acteristic time of the reaction Eq. (3) is shorter than the time it
takes for the species to diffuse across the observation volume
[i.e., if τreac ≡ [koff + kon(Ceq + Feq)]−1 < w2

r /(4DF )]. For
more details, see the Appendix, where we also compare the
“full” (integral expression of the) ACF computed numerically
with the analytic approximation derived in the fast reaction
limit that is presented in the Results section and some of their
components separately.

B. FCS Experiments

1. Aqueous solutions

Aqueous solutions were prepared with different concentra-
tions of the Ca2+ indicator Fluo4 dextran high or low affin-
ity (Invitrogen-Molecular Probes, Carlsbad, CA), employing
the solutions of a Ca2+ calibration buffer kit (Invitrogen-
Molecular Probes). Each solution contained 4.3 μM Ca2+,
100 mM KCl, 30 mM MOPS, pH 7.2, and different concentra-
tions of the Ca2+ indicator ranging from 200 nM to 9 μM and
from 400 nM to 20 μM for the low and high affinity version,
respectively. Four or five separate experiments were performed
for each solution. Some of the results were finally discarded
as explained later. The solutions that were probed and fitted
are listed in Table I.

2. Acquisition

FCS measurements were performed on a spectral confo-
cal scanning microscope FluoView 1000 (Olympus, Tokyo,
Japan), employing a 60×, 1.35 N.A. oil-immersion objective
(UPlanSAPO, Olympus) and a pinhole aperture of 115 μm.
Single point measurements at a 50-kHz sampling rate were
performed for a total duration of 167 s (equivalently, 8 365 312
data points) employing a 488-nm line and detecting the
fluorescence in the range (500–600) nm. The measurements
were performed at ∼20 μm from the coverslip.

3. Data analysis

Experimental ACFs were calculated with a custom-made
routine written on the Matlab platform [24]. To this end, each
167-s-long record was divided into N = 1021, 164-ms-long
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FIG. 1. Average ACF. (a) Typical stationary time-course of flu-
orescence fluctuations obtained from FCS measurements performed
in aqueous solutions with Ca2+ and Fluo4 dextran. (b) Prototypical
example of an average ACF.

segments containing 213 points each for the experiments
in aqueous solutions. The ACF was computed for each of
the N = 1021 segments from which the average ACF was
obtained. A prototypical example of an average ACF is shown
in Fig. 1(a). About three experiments were performed for each
set of concentrations of Table I. The respective ACFs were
fitted separately. The biophysical parameters were derived
from the fitting parameters obtained for each experiment. The
average and the standard error of the mean (SEM) of the
biophysical parameters were then computed over the values
obtained for each experimental condition. We also computed
averages and SEM over all experimental values, regardless
of the condition, of those parameters that we expected to
remain invariant in all experiments. Based on the theoretical
calculations presented in the Results section, we fitted the
average ACF by an expression of the form

G(τ ) = g(
1 + τ

τ0

)√
1 + τ

w2τ0

+ g1(
1 + τ

τ1

)√
1 + τ

w2τ1

+ g2e
−ντ

(
1 + τ

τ2

)√
1 + τ

w2τ2

, (5)

where w = wz/wr is the aspect ratio of the sampling volume,
as before, and the various times are related to diffusion
coefficients by τi = w2

r /(4Di), i = 1,2,3, with the beam waist,
wr . Only experiments for which the mean fluorescence in the
observation volume remained approximately constant during
the whole record were fitted. Experiments for which the
average ACF was too noisy were also discarded. In all cases
we tried to fit the experiments leaving all seven parameters
of Eq. (5) (g, g1, g2, τ0, τ1, τ2, ν) free to be fitted. In others,
we set g2 = 0 and only derived g, g1, τ0, and τ1. Thus, we
tried three and two component fits for each experiment. All
fitting parameters were determined for each average ACF via
a nonlinear least squares fit using the Matlab built-in function
nlinfit. In the figures we show the average of the displayed
fitting parameters and the average error computed over all the
experiments in a given set.

4. Characterization of the confocal volume

The radial beam waist and the aspect ratio were determined
to be wr=0.262–0.292 μm and w = wz/wr= 5 by measuring
the translational three-dimensional diffusion of fluorescein

(Sigma, St. Louis, MO) at 100 nM in buffer solution pH 9,
assuming a diffusion coefficient of 425 μm2/s [25]. Thus, the
resulting effective volume was Vef= (0.59 ± 0.1) μm3.

III. RESULTS

A. Theoretical ACF for a solution with Ca2+ and a single
wavelength dye in the limit of fast reactions.

In the fast reaction limit, the ACF for a solution of Ca2+

and a single wavelength dye can be approximated by [17,20]
(see Appendix):

Gapprox(τ )=GF (τ ) + Gef 1(τ ) + Gef 2(τ ), (6)

GF (τ ) = gF(
1 + τ

τF

)√
1 + τ

w2τF

, (7)

Gef1(τ ) = gef1(
1 + τ

τef1

)√
1 + τ

w2τef1

, (8)

Gef2(τ ) = gef2e
−νF τ

(
1 + τ

τef2

)√
1 + τ

w2τef2

, (9)

where τF = w2
r /(4DF ) and τefi = w2

r /(4Defi), i = 1,2, with

Def1 = DC + αDF

1 + α
, (10)

Def2 = αDC + DF

1 + α
, (11)

and α = F 2
eq

FtotKd
, and

νF = koff

(
1 + Feq + Ceq

Kd

)
. (12)

The weights gF , gef1, and gef2 are given by

gF = 1

VefFtot
, (13)

gef1 = 1

Vef[CF ]eq

F 2
eq

FtotKd

Kd

(Kd + Feq + Ceq)
, (14)

gef2 = 1

Vef[CF ]eq

Kd

(Kd + Feq + Ceq)
. (15)

Taking into account the equilibrium conditions Eq. (3) and
konCeqFeq = koff[CF ]eq, it can be shown that the sum of all
the weights is inversely proportional to the concentration of
fluorescent particles:

gtot = gef1 + gef2 + gF = 1

Vef[CF ]eq
. (16)

The sum of the two effective diffusion coefficients satisfies

Def1 + Def2 = DC + DF . (17)

As in Ref. [20], the approximate analytic expression of the
ACF given by Eqs. (6)–(9) is always valid for large enough
τ . The first term, however, is exact. Thus, we expect to be
able to derive DF from all FCS experiments, regardless of the
conditions. The approximations of gef1 and gef2 are valid for all
values of τ provided that τreac ≡ (koff + kon(Ceq + Feq))−1 �
w2

r /(4DC). As shown in Ref. [18], the approximation can
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TABLE II. Parameters used to compute the full and approximated
ACFs numerically. For the concentrations of dye we tried the values
listed in Table I.

Parameter Value

wr 0.28 μm
w 5
DC 760 μm2/s

DF 85 μm2/s

Ctot 4285 nM

High affinity Fluo4 Low affinity Fluo4
Kd 772 nM 2600 nM
koff 80 s−1 300 s−1

still be valid even if both timescales are of the same order
of magnitude. In the Appendix, we compute numerically
the ACF with no approximations that corresponds to a
reaction-diffusion system as the one probed experimentally
in the following sections using the parameters of Table II
and the concentrations of Table I. The difference squared
[ε2 in Eq. (A11)] between the “full” and the approximated
[Eqs. (6)–(9)] ACFs is relatively small even outside the region
of validity under which Eqs. (8) and (9) are derived. For
low enough total dye concentration, Ftot, the two ACFs are
indistinguishable because they are dominated by the term given
by Eq. (7), which is exact. Increasing Ftot a region is reached
where the discrepancy between them is maximum. This occurs
for Ftot∼6.3 μM and Ftot∼3.6 μM in the cases of high and low
affinity Fluo4, respectively. ε2 never exceeds 5.5 10−9. If we
compute χ2/n, instead of Eq. (A11) we obtain values that
never exceed 10−6 for the range of dyes concentrations used
in the experiments. This is smaller than the values obtained
when fitting the experimental data (∼8 10−6–7 10−4). Finally,
the differences between both ACFs decrease as Ftot is further
increased and the fast reaction approximation starts to hold
for all time lags, τ . The other two properties of the ACF that
always hold are those given by Eqs. (13) and (16), although the
former should be considered with care due to uncertainties in
the determination of individual weights from the fits. Equation
(17) provides another useful relationship. As we show in what
follows, the effective coefficients derived from the fits to the
experimental ACF tend to satisfy this relationship even though
their individual values may not correspond to those given by
Eqs. (10) and (11). Thus, their sum can be used to quantify DC

once the free coefficient, DF , is estimated.
Based on the above discussion we propose the following

approach. First, perform a series of experiments of the same
reaction-diffusion system varying the concentration of one of
the reactants. In the experimental implementation presented
here, we vary the concentration of the dye (see Table I). Once
the experimental ACFs for each concentration in the series
are determined, fit them using Eq. (5). This gives seven fitting
parameters, g, g1, g2, τ0, τ1, τ2, ν, for each concentration.
From the analysis of the dependence of the timescales, τ0

and τ1, with the varying concentration, identify the one that
remains invariant with the diffusive timescale of the dye,
τF . This immediately implies the identification τef1 = τ1 and
τef2 = τ2, which can be further validated by comparing the
concentration dependence of τ1 and τ2 with what is expected

of τef1 and τef2 for the system under study (while τef1 decreases
with Ftot, τef2 increases). Derive the free diffusion coefficient
of the dye, DF , from τ0 = τF = w2

r /(4DF ). Since we will
have as many values as concentrations probed, an average
over all those values can be performed. Compute the diffusion
coefficients, D1 and D2, from the fitting parameters, τ1 and τ2

using τi = τefi = w2
r /(4Di). Assuming that they correspond to

Def1 and Def2 so that they satisfy Eq. (17), compute their sum
and analyze whether it remains approximately invariant for
all concentrations probed. Average the sum over the values for
which it remains invariant and equate it to DC + DF . From this
equation, DC can be derived. Identify the total weight derived
from the fitting, g + g1 + g2 with the expected total weight,
gtot, and compute [CF ]eq from Eq. (16) for each solution
probed experimentally. Equivalently, through the identification
g = gF , compute the total dye concentration, Ftot, using
Eq. (13). Given these two concentrations, in principle it is
possible to quantify the dissociation constant of the reaction
from the concentration dependence of the two effective
diffusion coefficients, Def1 and Def2, derived from the fittings.
Namely, Def1 and Def2 depend on the concentrations through
the parameter α = F 2

eq/(FtotKd ) [see Eqs. (10) and (11)] and
Feq can readily be computed as Feq = Ftot − [CF ]eq. However,
this would require that the timescales associated to the two
effective diffusion coefficients be estimated with reasonable
uncertainties, something that one can expect to happen only
in the region of validity of the fast reaction approximation.
Knowing the dissociation constant it is possible to derive the
free Ca2+ concentration for each experiment using Eq. (4) and,
with this and Ftot, the off rate from Eq. (12) identifying the
fitting parameter, ν, with νF . In our experimental application
we perform these computations using the dissociation constant
that we derive from Def2. As we discuss later, in this way
we obtain more reasonable values than using the dissociation
constant provided by the vendor probably because the total
concentrations of dye and Ca2+ that are actually in the
experimental drop are not those that were inferred from the
solution preparation. The approach proposed is illustrated in
Fig. 1. Although it seems pretty straightforward, its practical
implementation may carry a series of problems that we discuss
in what follows. We also analyze to what extent the various
biophysical parameters of the problem under study can be
quantified as proposed.

B. Fitting parameters from FCS experiments in aqueous
solutions with Ca2+ and Fluo4 dextran

In this section we show how we proceed to analyze the
experimental data. In particular, we show the results of using
Eq. (5) to fit the ACFs obtained from the set of experiments of
Table I performed with Fluo4 high and low affinity. The fitting
parameters are g, g1, g2, ν and the characteristic times τ0, τ1,
and τ2 from which we derive three diffusion coefficients D0,
D1, and D2 as explained before. Figure 2 shows the diffusion
coefficients obtained in this way as a function of the total
concentration of the dye used in the solutions, [F4]tot, for
high affinity [Fig. 2(a)] and low affinity [Fig. 2(b)] Fluo4.
The open symbols correspond to the average and the error
bars to the SEM computed over the values obtained for the
various experiments performed under the same conditions that
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FIG. 2. Diffusion coefficients obtained from the fitting of the
experimental data using Eq. (5), D0 (open squares), D1 (circles), D2

(triangles), and the sum, D1 + D2 (solid squares), as functions of the
total calcium dye concentration of the aqueous solutions, [F4]tot. In
solid line, DF = 85 μm2/s, and in dash lines expected effective dif-
fusion coefficients, Def1 (bold) and Def2 (light) given by Eqs. (10) and
(11), respectively, with the calcium and dye concentrations employed
in the aqueous solutions, DCa = 760 μm2/s, DF = 85 μm2/s and the
dissociation constant given by the manufacturer, Kd = 772 nM and
2600 nM for high (a) and low (b) affinity Fluo4.

could be fitted. The solid squares correspond to the sum, D1

and D2. We also plot with curves the expected free diffusion
coefficient of the dye, DF = 85 μm2/s [26] (solid line), and
effective diffusion coefficients, Def1 (bold dashed line) and
Def2 (light dashed line), calculated using Eqs. (10) and (11),
with the dissociation constant given by the manufacturer (Kd =
772 nM for high affinity and Kd = 2600 nM for low affinity),
DC = 760 μm2/s [27], DF = 85μm2/s, and the total calcium
and dye concentrations employed in the solutions.

The identification between the fitting parameters, g, D0, g1,
D1, g2, D2, ν, and the seven quantities, gF , DF , gef1, Def1, gef2,
Def2, νF , of the theoretical formulas Eqs. (6)–(9) is immediate
in the case of the last three, which correspond to the only
component with an exponentially decaying term. For the other
quantities it is not difficult to make the correspondence because
DF < DC implies that DF � Def1. Furthermore, as may be
observed in Fig. 2, there is one diffusion coefficient obtained
from the fitting, D0, that remains approximately invariant
for all the analyzed concentrations. This should correspond
to the free diffusion of the dye, DF , which is concentration
independent. In particular, the average and standard deviation
computed over the means obtained for each experimental
condition give 〈D0〉 = 65 μm2/s, σD0 = 22 μm2/s for the
high affinity dye and 〈D0〉 = 89 μm2/s, σD0 = 25 μm2/s for
the low affinity one. The corresponding SEMs, 7 μm2/s and
8 μm2/s, respectively, are about 10% of the average. The other
two diffusion coefficients obtained from the fitting, D1 and D2,
change more noticeably with the dye concentration. In par-
ticular, we obtain 〈Def1〉 = 419 μm2/s, σDef1 = 237 μm2/s,
〈Def2〉 = 437 μm2/s, σDef2 = 331 μm2/s for the high affinity
dye and 〈Def1〉 = 648 μm2/s, σDef1 = 359 μm2/s, 〈Def2〉 =
487 μm2/s, σDef2 = 121 μm2/s for the low affinity one. We
interpret them as effective diffusion coefficients. Making the
identifications D1 = Def1 and D2 = Def2, we know that their
lower and upper limits are the free diffusion coefficients of
the dye, DF , and of calcium, DC , respectively. In fact, both
D1 and D2 are larger than D0. Furthermore, in Fig. 2(a), D1

decreases with [F4]tot, while D2 increases similarly to their
theoretical counterparts, Def1 and Def2. This trend is not as

clear in Fig. 2(b) as in Fig. 2(a). The numerical simulations of
the Appendix, on the other hand, show that fitting the ACF with
Eq. (5) can give fitting parameters, D1 and D2, that differ from
the theoretical ones, Def1 and Def2 for certain concentration
values. It is because of these uncertainties that we try not to
use their individual values, but their sum, D1 + D2 (shown in
Fig. 2 with solid squares) to derive biophysical parameters.
We observe in Fig. 2(a) that, with the exception of the [F4]tot

values for which, according to the simulations, it is hardest to
determine diffusion coefficients other than the one associated
to the dye ([F4]tot < 1 μM) or for which the performance of
the fast reaction approximation is worst (4 μM < [F4]tot <

10 μM), the sum remains relatively invariant with varying
[F4]tot. In order to determine solely from the experiments
the range of [F4]tot values for which D1 + D2 does not vary
much we proceed as follows. We compute the average, 〈D1 +
D2〉, and standard deviation, σD1+D2, of the means obtained
for each experiment type. If σD1+D2/〈D1 + D2〉 > 0.2, we
discard the means that differ the most from the average and
recompute the average and standard deviation. We repeat the
procedure until σD1+D2/〈D1 + D2〉 � 0.2. In particular, if we
keep all the data points of Fig. 2(a) we obtain 〈D1 + D2〉 =
1193 μm2/s and σD1+D2 = 507 μm2/s which transform into
〈D1 + D2〉 = 856 μm2/s and σD1+D2 = 156 μm2/s after the
application of our iterative procedure. This procedure pre-
scribes that the data points coming from the experiments with
[F4]tot = 0.857, 1.371, 4.286, and 9 μM need to be discarded.
If we apply a similar procedure to the coefficient, D0, we have
to discard the data points with [F4]tot = 0.429 and 4.286 μM
and obtain 〈D0〉 = 64 μm2/s, σD0 = 10 μm2/s, which do not
differ much from the values obtained if all the data points
are kept. This is an indication that D0 can be determined
quite accurately for the whole range of concentration values
explored in the paper and that it can be safely identified with
the free coefficient of the dye, DF . If, on the other hand, we re-
compute the average and standard deviation of 〈D1 and D2〉 but
keeping only the experiment types for which their sum remains
approximately constant according to the iterative procedure
we obtain: 〈Def1〉 = 668 μm2/s, σDef1 = 489 μm2/s, 〈Def2〉 =
525 μm2/s, σDef2 = 395 μm2/s. The large ratios between the
standard deviation and the average are an indication that these
coefficients do vary with [F4]tot and, thus, correspond to
effective rather than free coefficients. Applying the iterative
procedure to the coefficient, D0, of Fig. 2(b) we have to
discard the results of the experiments with [F4]tot = 0.214
and 9 μM and obtain 〈D0〉 = 78 μm2/s and σD0 = 15 μm2/s,
which are also similar to the values obtained keeping all
the data. Applying the procedure to the sum, 〈D1 + D2〉,
we have to discard the results of the experiments with
[F4]tot = 0.214 and 0.857 μM and obtain 〈D1 + D2〉 = 998,
σD1+D2 = 180 μm2/s. Discarding the same experiment types
we obtain 〈Def1〉 = 500 μm2/s, σDef1 = 185 μm2/s, 〈Def2〉 =
500 μm2/s, σDef2 = 134 μm2/s for the individual coefficients.
In this case, the ratios between the standard deviation and the
average are smaller than for the high affinity dye but are still
larger than those of the sum. Taking all of this into account,
we do make the identification D1 = Def1 and D2 = Def2 for
both types of experiments for the concentration values for
which the iterative procedure prescribes that their sum remains
approximately invariant.
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FIG. 3. Parameters derived from the fitting of the experimental ACFs (with symbols) and theoretical expected values (solid curves) computed
using the concentrations of Table I and the dissociation constants of Table II. (a, d) Inverse of gF as function of the total dye concentration
used in the solutions, [F4]tot. (b, e) Inverse of the sum of all the weights, gtot, as function of the Ca2+-bound dye concentration, [CF4],
computed theoretically setting [CF4] = [CF ]eq and Ftot = [F4]tot in Eq. (4) with the constant, Kd , given by the manufacturer (Table II) and
C

(s)
tot = [CF4] + Ceq with C

(s)
tot and [F4]tot, the total concentrations of Table I. (c, f) ν as function of the total dye concentration used in the

solutions, [F4]tot. (a, b, c) correspond to experiments with Fluo4 high affinity and (d, e, f) with Fluo4 low affinity.

We now test to what extent two of the weights derived
from the fitting depend on the concentrations used to make
the solutions as predicted by the theory. We do it with the two
weights that do not involve any approximation and that would
be used to derive concentrations in case they were unknown:
the total weight, gtot, and the one that we identify with vgF . We
show in Figs. 3(a), and 3(d) the inverse of the latter as functions
of the total dye concentration used in the solutions, [F4]tot,
for high and low affinity Fluo4, respectively, with symbols.
Superimposed are the curves of the expected values computed
using Eq. (13) with the concentrations of Table I and the
observation volume derived from the calibration. Figures 3(b)
and 3(e) are analogous to Figs. 3(a) and 3(d), respectively,
but for the total weight as functions of the Ca2+-bound dye
concentration, [CF4], computed with the same parameters as
in Figs. 3(a) and 3(d) and the dissociation constants provided
by the vendor (listed in Table II). In this case the theoretical
expression is computed using Eq. (16). We use a logarithmic
scale to compare the scaling of the different quantities
with the varying concentration. In particular, we observe
in Figs. 3(a) and 3(d) that the experimental values scale as
1/[F4]tot as predicted by the theory [see Eq. (13)]. If we fit the
experimental results using the values, [F4]tot, determined by
construction of the solution, the effective volume, Vef, can be
obtained from the fitting. Considering the inverse of gF versus
[F4]tot, we found expected values (Vef = (0.54 ± 0.08) μm3

and Vef = (0.56 ± 0.08) μm3 for high affinity and low affinity
Fluo4, respectively) that are consistent with the one obtained
from the calibration (Vef = (0.59 ± 0.1) μm3). Analogously,

the experimental values displayed in Figs. 3(b) and 3(e) also
scale with the Ca2+-bound dye concentration as predicted by
the theory [Eq. (16)], but there is a mismatch in the ordinate.
As before, we can fit the experimental results using the
equilibrium values, [CF4], derived from the concentrations
used in the solutions and the dissociation constant provided
by the vendor. Considering the inverse of gtot versus [CF4]
and fitting with a linear relation, the effective volume inferred
was (0.23 ± 0.02) μm3 for Fluo4 high affinity and (0.17 ±
0.01) μm3 for the low affinity version of the dye, which are
lower than the one obtained from the calibration (Vef = (0.59 ±
0.1) μm3). We discuss later possible causes for this mismatch.

Finally, we show the values of νF derived from the fitting
and the theoretical curve obtained using the fast reaction
approximation, Eqs. (6)–(9), as a function of [F4]tot for high
affinity [Fig. 3(c)] and low affinity [Fig. 3(f)] Fluo4. The
experimental values were derived using our experimentally
estimated concentrations and dissociation constant. There we
observe that the values obtained for low [F4]tot concentrations
are the ones that can be associated to the theoretical expression
[Eq. (12)] from which an estimate of koff can be derived. In
order to estimate koff, however, we used all the data available
as explained in the Discussion.

C. Using the theory to determine free diffusion coefficients and
reaction rates from the fitting

Being able to identify the parameters of the fitting with those
of the theoretical ACF, Eqs. (6)–(9), allow us to go further
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FIG. 4. Parameters of the underlying biophysical model derived from the fitting parameters for each aqueous solution, DC , DF , and koff

(mean and SEM over two or three experiments with one or two fits) and average of the values obtained for all experiment types in the case
of DF and koff and only those for which the sum D1 + D2 remains invariant in the case of DC (solid line), see Table III. (a, b, c) Fluo4 high
affinity and (d, e, f) Fluo4 low affinity. In all cases we include the expected values (dashed line) based on the total concentrations used in the
solutions and on the previous estimates of Table II.

and to quantify some relevant parameters of the underlying
biophysical model for each aqueous solution, such as the
free Ca2+ diffusion coefficient. This entails solving an over-
determined problem (seven equations with six unknowns).
Based on the numerical exploration of the Appendix and the
discussions presented before, we use the information given by
gF and gtot and do not use gef1 and gef2 separately because these
weights carry the largest errors. As already explained, knowing
DF , Def1, Def2, gF , gtot, and νF (which we identify with six of
the seven parameters of the fitting) it is possible to infer the
off-rate, koff, and the dissociation constant, Kd , of the Ca2+-dye
reaction, the total dye concentration, Ftot, the Ca2+-bound
dye concentration, [CF ]eq, and the free diffusion coefficients,
DC and DF . We show in Fig. 4 the values, DC , DF , and
koff, obtained as functions of the total dye concentration used
in the aqueous solutions, [F4]tot, both for the high affinity
[Figs. 4(a)–4(c)] and the low affinity [Figs. 4(d)–(f)] versions
of the dye. The symbols correspond to the values derived from
the averages of the fitting parameters and the error bars are
obtained via error propagation of the range of allowed fitting
parameter values determined experimentally. This is why the
final ranges embrace negative values that have no physical
meaning but which reflect that the corresponding parameter
is determined with a large uncertainty. The values, DC , were
computed as D1 + D2 − 〈D0〉 with the latter calculated over
the means of all the experiment types. Since the solutions only
differed in the total amount of dye koff, DC and DF should
remain approximately constant for all solutions. Based on our
discussion on the behavior of the sum, D1 + D2, we expect
DC to be poorly determined for the experiment types for which
D1 + D2 does not remain invariant and cannot be identified

with Def1 + Def2. If we drop the values, DC , derived from the
experiment types that should be discarded according to the
application of the iterative procedure to the sum, D1 + D2, we
obtain DC = (801±70) μm2/s and DC = (915±68) μm2/s
for Fluo4 high and low affinity, respectively.

IV. DISCUSSION AND CONCLUSIONS

In this work we have shown how free diffusion coefficients,
reaction rates, and concentrations can be quantified in reaction-
diffusion systems by performing sets of FCS experiments in
different conditions and using a biophysical model to interpret
the experimental results. In particular, we have applied this
approach to the case of Ca2+ and a single wavelength Ca2+

dye. Given that we can only monitor the fluorescence of the
dye, which increases by over an order of magnitude upon
Ca2+ binding, the only way to study Ca2+ diffusion with this
technique is by allowing that several reactions between Ca2+

and the dye occur within the observation volume. To analyze
the experiments we computed an approximated (analytic)
expression of the fluorescence fluctuations ACF that is valid
for fast reaction timescales and analyzed numerically its limits
of applicability. We then performed a series of experiments in
solutions containing Ca2+ and the Ca2+ dye Fluo4 dextran
(both high and low affinity) with which we validated the
approach and established its limitations. This application
showed, among other things, that the ACF could be used
outside its limits of applicability to extract reliable information
on certain parameters. The analysis of the experiments yielded
estimates of the free diffusion coefficients of Ca2+, of two
single wavelength Ca2+ dyes (high and low affinity Fluo4)
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TABLE III. Parameters estimated with our model from FCS experiments performed with high and low affinity Fluo4 (HAF4 and LAF4,
respectively). Results are expressed as mean ± SEM.

Parameters Our estimates (HAF4) Our estimates (LAF4) Previous estimates

DF (65±7) μm2/s (89±8) μm2/s 85 μm2/s [26]
DC (801±70) μm2/s (915±68) μm2/s 760 μm2/s [27]
koff (88±19) 1/s (483±61) 1/s

and of the reaction rates between them, all of them in aqueous
solution. Although the free diffusion coefficient of Ca2+ is
already well known (DC ∼ (750–800) μm2/s [27,28]), being
able to derive it from the observation of a system in which it is
not diffusing freely is quite relevant and provides hints on how
to proceed in other settings. Addressing fundamental problems
in Ca2+ signaling requires the combination of experiments and
modeling for which quantifying key biophysical parameters,
such as the Ca2+ diffusion coefficient, in situ, is most relevant
[29]. Optical techniques are ideal to probe intracellular trans-
port with minimum disruption [30]. Measuring intracellular
Ca2+ transport in this way, however, is not straightforward
because of the multiple interactions of the ions with different
cell components [31,32] and because Ca2+ dyes are also Ca2+

buffers that alter the ions transport rate [33]. The quantification
of diffusion coefficients and reaction constants in such a case
requires a careful interpretation of the experimental data in
terms of an underlying biophysical model [21]. The work
contained in this paper constitutes a necessary first step to
advance in this direction.

The approximation of the ACF [Eqs. (6)–(9)] with which
we analyzed the experimental data had been used previously to
study other systems [17]. Our particular application highlights
some of the differences with respect to these previous studies.
In particular, Eq. (7) shows that the free diffusion coefficient
of the massive molecule (the biologically relevant one in
Ref. [17]) can readily be obtained from the ACF with
no approximations. In our case, instead, the free diffusion
coefficient of the biologically relevant substance (Ca2+) only
enters the ACF through the effective diffusion coefficients.
We thus had to derive it from them. It is also important
to note that, in the limit opposite to the fast reaction one,
the ACF is characterized only by the free coefficients of the
fluorescent substances [18] (and by reaction rates if some of
them are immobile [19]). In this regard, the case of Ca2+ and
its dyes is different from the situation of a fluorescent protein
that interacts with immobile or slowly moving binding sites
studied in Refs. [20,21] for which reducing the observation
volume (and, thus, the diffusion timescale) could be an option
to quantify the free diffusion coefficient of the protein. The
only possibility of withdrawing DC from FCS experiments
performed with Ca2+ dyes is then by working in conditions
in which some of the correlation times depend on effective
diffusion coefficients. The application presented in this paper
shows that is not necessary to be well within the region
where the reaction timescale is much smaller than the (free)
diffusion one to be able to extract useful information from
these coefficients. In particular, the fact that their sum has
to remain constant for all dye concentrations provides a tool
with which to probe the results and the key to derive DC .
In fact, the dye concentration values for which the sum

departed the most from a constant (concentration independent)
value approximately overlapped with those for which our
numerical studies indicated that the difference between the
approximated and the full ACFs was about maximal or that
the estimates of the effective diffusion timescales could be
poor because the ACF was dominated by the component
associated to the free diffusion of the dye (see Figs. 4
and 6). Variations in the estimate of the free diffusion of
the dye also allowed us to pinpoint the concentration range
for which the fast reaction approximation was not good. In
this way, solely based on the experimental observations we
derived estimates of the free diffusion coefficients of the dyes
(58–97 μm2/s) and of Ca2+ (731–983 μm2/s) that are
consistent, respectively, with the value obtained in solu-
tion for the 10 kDa tetramethylrhodamine-dextran (TMR-D,
85 μm2/s) [26] and with previously estimated values [27,28],
see Table III. This indicates that even in the absence of an
a priori theoretical study a relatively accurate value of the
free diffusion coefficient of the dye and of its sum with the
free diffusion coefficient of Ca2+ can be inferred from the
experiments. The studies of Ref. [19], on the other hand, show
that, given a finite time observation, it takes much longer
for the individual weights than for the correlation times to
converge to their expected (asymptotic) values. Based on these
observations we concluded that in order to derive biophysical
from fitting parameters it was best to work with the timescales
associated to the free diffusion of the dye and the one that
enters the exponential term, with the sum of the other two
diffusion coefficients, with the weight that can be identified
with gF and with the total weight of the ACF. In any case,
we also estimated the dissociation constant of the dye using
one more fitting parameter. Using our estimated Kd gave more
reasonable values than using the constant provided by the
vendor. As discussed in what follows this might be due the
fact that those quantities which estimates require knowing
Kd depend on this constant through a ratio with respect to
concentrations. It then seems that the errors in Kd and the
estimated concentrations somehow cancel out.

Given the expected uncertainties in the determination of
the weights, we performed a series of self-consistency checks
on their behavior. The comparison of the total Fluo4 or the
Ca2+-bound dye concentration dependence of the inverse of
the experimentally determined weights, gF and gtot, with the
theoretical expressions, Eqs. (16) and (13) showed agreement
between theory and experiment in the case of gF [Figs. 3(a)
and 3(d)] and a mismatch in that of gtot [Figs. 3(b) and
3(e)]. Fitting the experimental points by a linear relationship
between the inverse of gF and [F4]tot we obtained (0.54 ±
0.08) μm3 for high affinity and (0.56 ± 0.08) μm3 for low
affinity Fluo4, in good agreement with the experimentally
calibrated volume, Vef= (0.59 ± 0.1) μm3. In the case of the
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FIG. 5. (a) Inverse of the total weight of the ACF computed theoretically using the dissociation constant provided by the vendor, the
effective volume of the calibration, Vef = 0.59 μm3, and the total Ca2+ and dye concentrations of the experimental solutions (Vef[CF4], solid
curve) or the fractions, ζC = 0.2 and ζF = 0.5, respectively, of those total concentrations (Vef[CF ]eq, dashed curve) as functions of [CF4] for
the high affinity dye. (b) Similar to (a) but for the low affinity dye. (c) Ratio between the total weights, gtot (circles), obtained in experiments
with high and low affinity Fluo4 and ratios of the theoretical values, [CF ]eq(low)/ [CF ]eq(high) (dashed line) and [CF4](low)/ [CF4](high)
(solid line), displayed in (a) and (b) as functions of the total dye concentration used to prepare the solutions, [F4]tot.

inverse of gtot versus [CF ]eq relationship, the experimental
points lied below the theoretical prediction, as if the actual
concentrations of Ca2+-bound dye were smaller than those that
can be derived from Eq. (4) using the ones of the solutions and
the dissociation constant provided by the vendor. If, as before,
we fit the experimental points by a relationship between the
inverse of gtot and [CF4] we obtain (0.23 ± 0.02) μm3 for
high affinity and (0.17 ± 0.01) μm3 for low affinity Fluo4,
which are smaller than the calibrated one. One possibility
for the mismatch between the theoretically predicted curve
and the experimental points in Figs. 3(b) and 3(e) is that
part of the Ca2+ ions and/or of the dye molecules be trapped
by the coverslip where the drop with the solution is placed.
In fact, protein adsorption by the sample holder was argued
to explain the differences observed in the pseudo-first-order
reaction rates that could be estimated with FCS in Ref. [16]. If
Ca2+ or the dye had been partially adsorbed by the glass in our
experiments, then the actual total concentrations in the bulk of
the drop, Ctot and Ftot, would have been different from those
used to prepare the solutions, Ca2+

tot and [F4]tot. In such a
case, gtot would have been given by Eq. (16) with [CF ]eq

the actual Ca2+-bound dye concentration in the bulk, not
[CF4], the one that can be computed using the concentrations

employed in the solutions. We show in Figs. 5(a) and 5(b)
plots of Vef[CF4] (solid lines) and Vef [CF ]eq (dashed line)
as functions of [CF4], for the high [in Fig. 5(a)] and the
low [in Fig. 5(b)] affinity dyes. In both figures we computed
[CF ]eq under the assumption that the fractions, ζC = 0.8 and
ζF = 0.5 of the total Ca2+ and dye concentrations of the
solution, respectively, had been adsorbed by the coverslip.
The dashed curves are similar to those of Figs. 3(b) and
3(e), in particular, they show the reduction of the mismatch
with increasing [F4]tot observed in the experiments. Although
glass adsorption could be playing a role, we must also recall
that the relationship between gtot and the Ca2+-bound dye
concentration also depends on the dissociation constant of
the Ca2+-dye reaction and that using larger Kd values would
decrease the mismatch between the experimental points and
the theoretical curve. In order to analyze to what extent the
results obtained for both dyes agree with what can be expected
theoretically based on the values of Kd provided by the vendor
and on the concentrations used in the solutions we show
in Fig. 5(c) the ratio of total weights obtained using each
dye (weight for high over weight for low affinity Fluo4 with
symbols) as a function of the total dye concentration for which
we had experiments performed with both dyes. We also show

FIG. 6. (a) Difference between the full and approximated ACFs obtained using the parameters of Table II for Fluo4 high (solid line) and
low (dashed line) affinity. (b) Ratios τ0/τF (solid line), τ1/τef1 (dashed line), τ2/τef2 (dotted line), and νF /ν (dashed-dotted line) between fitting
and fast reaction approximation times as functions of [F4]tot for high affinity Fluo4 when all parameters are free to fit in Eq. (5). (c) Similar to
(b) but for the ratios between the fitted and the fast reaction weights, g/gF (solid line), g1/gef1 (dashed line), g2/gef2 (dotted line), as functions
of [F4]tot for Fluo4 high affinity when the timescales in Eq. (5) are fixed at the fast reaction approximation values.
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in the figure the ratios of the values of [CF ]eq (dashed) and
of [CF4] (solid) of Fig. 5(b) over those of Fig. 5(a). The
theoretical and experimental ratios should be equal according
to Eq. (16). We observe that they mostly agree regardless
of whether we compute the ratio assuming Ca2+ and dye
adsorption by the coverslip (dashed curve) or not (solid curve),
although the former seems to provide a better description. Now,
having a reduced total dye concentration in the experiment
would also lead to a larger value of the weight, gF , compared
to the expected one and although the experimental points and
the theory are slightly off, they only differ by about 10%
on average [see Figs. 3(a) and 3(d)]. In any case, we do
expect individual component weights to carry larger errors
than the that of the total weight. Thus, it could be reasonable
that the weight associated to the dye could be not completely
accurate. Another possibility to explain the mismatch could be
an error in the calibration of the effective volume. In particular,
changing the concentrations could produce a change in the
refractive index of the sample that would in turn change the
volume where the light is focused [34–36]. Thus, experiments
performed using different solutions could correspond to
different values of the effective volume that was calibrated in a
medium with fluorescein and no added Ca2+ or Ca2+ dye. The
calibration was performed using 100 nM of fluorescein and the
solutions listed in Table I had concentrations that were orders
of magnitude larger. Given that water has a smaller refractive
index than the immersion medium of the objective (oil) and
refractive indices increase with increasing solute concentration
[37], the mismatch between the indices of the sample and
of the objective’s immersion medium would decrease with
increasing concentration. The illuminated volume could then,
in principle, be smaller for the Ca2+ dye experiments than
during the calibration. The change in refractive index within
the concentrations explored in this paper, however, would
be too small [37] to account for a factor of 2 difference
between the calibrated volume and the one that we could
derive by fitting the experimental points in Figs. 3(b) and
3(e) by a straight line. Based on this discussion we conclude
that most probably adsorption by the coverslip is affecting the
experimental results. It is reassuring to note, however, that such
a problem would not be present in intact cells. On the other
hand, the low sensitivity of the ratio depicted in Fig. 5(c) on
changes in the total dye or Ca2+ concentrations within those
probed experimentally suggests that errors in the determination
of the concentrations or the dissociation constant could be
smoothed out when taking ratios of these quantities. This
could explain why we obtained more reasonable estimates
of the off-rate, koff, when using the dissociation constant and
concentrations determined from the experiments than if we
used the Kd provided by the vendor. As may be observed
in Fig. 3, the comparison of the experimental and theoretical
results in the case of the inverse of the exponential correlation
time derived [ν and νF given by Eq. (9)] showed the values of ν

seemed to display the correct behavior only for those solutions
with the smallest dye concentrations.

In any case, applying the theory to all the experimental
results regardless of [F4]tot gave values of koff within the
same order of magnitude [see Figs. 4(c) and 4(e)]. Using
the average of these values we obtained koff = (88±19) s−1

and koff = (483±61) s−1 for the high and low affinity Fluo4,

respectively. Using the dissociation constant provided by the
manufacturer, we obtained k∗

off = (49±12) s−1 and k∗
off =

(624±94) s−1 instead. We did use the dissociation constant of
the vendor to derive the on rates as kon = koff/Kd . In this way,
for the high and low affinity versions of the dye, we found
similar values (kon = (0.114±0.025) nM−1s−1 and kon =
(0.186±0.023) nM−1s−1, respectively). This is consistent with
the fact that, in BAPTA (1,2-bis(o-aminophenoxy)ethane-
N,N,N′,N′-tetraacetic acid) based calcium indicators, increas-
ing values of Kd result from an increase in the dissociation
rate constant and negligible or only modest decreases in the
association rates [38,39].

It is important to note that, while concentrations at
equilibrium do not depend on koff and kon, separately, but
on Kd = koff/kon, their time evolution does. Therefore, the
values of koff and kon affect the behavior of the observed Ca2+

signals and knowing them is absolutely necessary to infer
the spatiotemporal distribution of free Ca2+ from the images
[8,9]. Knowing the free diffusion coefficients of Ca2+ and its
dyes in the cytosol is necessary as well for this purpose. The
values derived in the Results section, however, correspond
to coefficients in aqueous solution (Table III). Assuming that
the differences in the free diffusion coefficients in solution
and in the cytosol are due to differences in viscosity between
both media, we may assume that the ratio between the free
diffusion coefficients of any two substances remains the same
in both settings. Thus, by quantifying the rate of diffusion of a
molecule that diffuses freely in the cytosol and in solution, we
can infer the free diffusion coefficient of Ca2+ and the dyes in
the cytosol as well. A word of caution must be introduced here
as to what the meaning of “free diffusion coefficients” is in the
context of cells where the displacement of molecules and ions
is spatially restricted. As discussed in various papers [40–42],
one should talk about a variety of coefficients depending on
the timescale over which mean displacements are computed.
As shown in Ref. [42], while at the 25–100 nm scale molecules
seem to diffuse at the same rates in cells and in aqueous solu-
tions, while above 100 nm, although the transport is not purely
diffusive, an estimate of its rate shows a threefold reduction.
The effective diffusion coefficient of Eq. (10) corresponds
to computing the mean displacement over yet larger time
or spatial scales. The main difference between this effective
coefficient and those that arise due to spatial restrictions is
the concentration dependence of the former that derives from
the fact that the rate of binding depends on the concentration of
the diffusible substance. In that regard, the “free” coefficients
that we can derive applying our approach to experiments
performed in cells should be considered as the concentration-
independent coefficients that describe the displacement of the
substances within the timescale that can be resolved with the
experimental setup. With this view in mind the results of FCS
experiments performed in oocytes of Xenopus laevis using
TMR-D that we present in the Appendix should be interpreted.
Fitting the ACF by an expression of the form Eq. (2),
we obtained DTMR = (27 ± 1) μm2/s. Considering that the
TMR-D diffusion coefficient in solution is DTMR = 85 μm2/s
[26], we obtained DTMR-D(solution)/DTMR-D(oocyte) ∼3.
Assuming that DTMR-D(solution)/DTMR-D(oocyte) ∼ Dfree

(solution)/Dfree(oocyte), where Dfree stands for free diffusion
coefficient of any substance, we can use the free transport
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rates (in the sense mentioned before) of Ca2+ and of its dyes
in solution to infer their values in the cytosol. We obtain
DC ∼ (244–290) μm2/s and DF ∼ (19–24) μm2/s starting
from the free diffusion coefficients in solution obtained in the
experiments performed with high affinity Fluo4, see Table III.
The values derived for DC are of the same order of magnitude
as the one obtained in cytosolic extracts [5], although the
latter (220 μm2/s) is below our lower bound. Even though
the cytosolic values estimated here are preliminary and will
be further tested with FCS experiments performed directly
in oocytes, this slight mismatch could be due to the fact
that the effective diffusion coefficient obtained in Ref. [5]
is the single molecule one and a misinterpretation of its
meaning could lead to an underestimation of the actual
diffusion rate of Ca2+ [1]. This highlights the need of having
an underlying biophysical model to interpret transport rates
when diffusion and reactions are intermixed. It also shows
how by changing the experimental conditions it is possible
to quantify concentration-independent biophysical parameters
in these systems as done, e.g., in Ref. [43] by varying the
observation volume. We thus expect the approach presented
here to be useful for the quantification of transport rates in
other biologically relevant reaction-diffusion systems.
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APPENDIX

1. FCS theory

a. ACF for a system with freely diffusing particles

When the fluorescence comes solely from a single type
of particles, Pf , that diffuse freely with coefficient, Df , the
fluorescence is given by

f (t) =
∫

QI (r)[Pf ](r,t)d3r, (A1)

where [Pf ](r,t) is the particle concentration at time, t ,
and spatial point, r , the parameter, Q, takes into account
the detection efficiency, the fluorescence quantum yield and
the absorption cross-section at the wavelength of excitation
of the fluorescence. The region from where the fluores-
cence comes from is commonly approximated by a three-
dimensional Gaussian:

I (r) = I (0) e
− 2r2

w2
r e

− 2z2

w2
z , (A2)

with z the spatial coordinate along the beam propagation
direction, r a radial coordinate in the perpendicular plane,
and wz and wr the sizes of the beam waist along z and r ,
respectively. In this case, there is an analytic expression for the
ACF, which is given by Eq. (2). Fitting the ACF obtained from
experiments by Eq. (2), two parameters can be determined:

g and the characteristic time τf . A previous calibration of
the geometric parameters of the sample volume is required in
order to obtain Df from τf . This is done performing the same
experiments on a sample for which Df is already known. Once
wr and wz are determined, the unknown Df can be estimated
from the characteristic time τf and Ptot from g.

b. “Full” ACF of a system with Ca2+ and a single wavelength dye

The equations that describe the dynamics of Ca2+, C, and
a single wavelength dye, F , that react and diffuse as described
in Sec. II are

∂[C]

∂t
=DC∇2[C] − kon[C][F ] + koff[CF ], (A3)

∂[CF ]

∂t
=DF ∇2[CF ] + kon[C][F ] − koff[CF ], (A4)

∂[F ]

∂t
=DF ∇2[F ] − kon[C][F ] + koff[CF ], (A5)

In FCS experiments in aqueous solution containing Ca2+ and
F it is assumed that both species are uniformly distributed
and in equilibrium, so that their mean concentrations are given
by the equilibrium concentrations Ceq, Feq and [CF ]eq, that
satisfy Eq. (4), Ceq + [CF ]eq = Ctot and Feq + [CF ]eq = Ftot.
Neglecting the fluorescence from the Ca2+-free dye, the
fluorescence intensity is given by

f (t) =
∫

QI (r)[[CF ]](r,t)d3r, (A6)

with Q and I as before. As done in Sigaut et al. [20],
we follow Krischevsky and Bonnet [44] to determine the
spatiotemporal dependence of the fluorescence fluctuations in
this case. Namely, the evolution Eqs. (A3)–(A5) are linearized
around the equilibrium solution, Eq. (4). The solution of
these linearized equations is then computed in Fourier space
and written in terms of branches of eigenvalues, λ(q), and
eigenvectors, χ (q), with q the variable in Fourier space
[conjugate to the spatial vector (r,z)]. The fluorescence
fluctuations are then obtained as in Eq. (A6) but replacing
[CF ] by the corresponding component of the solution of the
linearized problem, δ[CF ]. The calculation of the ACF finally
assumes that the correlation length of the concentrations at any
given time is much smaller than the intermolecule distance and
that the number of molecules obeys Poisson statistics so that its
variance and its mean are equal. In this way the ACF, G(τ ), can
be written as a sum, G(τ ) = GλF

(τ ) + Gλ1 (τ ) + Gλ2 (τ ), of as
many components as branches of eigenvalues of the linearized
problem with GλF

(τ ) given by Eq. (7) and

Gλ1 (τ ) = 1

2(2π )3h[CF ]eq

∫
d3qI (q)

[
1 + (a − h)νF

(a + h)(q)

+ (DC − DF )q2

(q)

]
eλ1t , (A7)

Gλ2 (τ ) = 1

2(2π )3h[CF ]eq

∫
d3qI (q)

[
− 1 − (a − h)νF

(a + h)(q)

+ (DC − DF )q2

(q)

]
eλ2t , (A8)
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where I (q) = exp[−(w2
r
q2

r
+ w2

zq
2
z
)/4], qr and qz

are the Fourier coordinates conjugated to the
radial and axial coordinates, r and z, respectively,
a = Feq/Kd , h = FT /Feq, νF = koff(a + h), (q) =√

(DF − DC)2q4 + 2q2(DF − DC)(h − a)koff + (h + a)2k2
off

and the eigenvalues:

λ1 = −1

2
[koff(a + h) + (DF + DC)q2] + 

2
, (A9)

λ2 = −1

2
[koff(a + h) + (DF + DC)q2] − 

2
. (A10)

c. Approximated ACF of a system with Ca2+ and a single
wavelength dye

Although Gλ1 (τ ) and Gλ2 (τ ) can be computed numerically,
in general there is no analytic algebraic expression for these
two components as there is for the one that corresponds to the
branch of eigenvalues, λF = −DF q2, associated to the free
diffusion coefficient of the dye, DF [see Eq. (7)]. As done in
Ref. [20] an analytic expression for Gλ1 (τ ) and Gλ2 (τ ) and,
consequently, for the ACF can be obtained in the limit of small
q which is always valid for long enough times, τ . Expanding
the integrands that define G2(τ ) and G3(τ ) in powers of q

and keeping the expansion up to O(q2), we obtain Eq. (6).
This limit is valid provided that the reactions occur on a
faster timescale than diffusion across the observation volume,
i.e., if τreac ≡ [koff + kon(Ceq + Feq)]−1 � w2

r /(4DC) but is
also good even if both timescales are of the same order of
magnitude [18].

2. Limits of applicability of the fast reaction approximation

In order to study when the fast reaction approximation
of the ACF can be used to estimate different biophysical
parameters we computed numerically the full ACF, G(τ ) =
GλF

+ Gλ1 + Gλ2 , using the parameters of Table II and an
adaptive Lobatto quadrature algorithm with the quadl function
on MatLab [24] to compute Eqs. (A7) and (A8). We compared
the results of these computations with the approximated ACF,
Gapprox(τ ), given by Eqs. (6)–(9) using the same parameters.
For the comparison we computed the difference between both
functions given by

ε2 = 1

n

n∑
i=1

[
G(τi) − Gapprox(τi)

]2
, (A11)

with n the total number of data points. In Fig. 6(a) we plot
ε2 as a function of [F4]tot for high (solid line) and low
(dashed line) affinity Fluo4. There we observe that, for both
dyes, ε2 first increases and then decreases with increasing
[F4]tot. The difference is larger for the low affinity dye
attaining a maximum value, ∼3.3 10−10, at [F4]tot∼3.7 μM.
The maximum value, ∼1.1 10−10 occurs at [F4]tot∼6.5 μM for
the high affinity dye. G(τ ) and Gapprox(τ ) are indistinguishable
for the lowest dye concentrations used in the experiments,
while Gapprox(τ ) decays faster with τ than G(τ ) for the values,
[F4]tot, for which their difference is approximately maximal
(data not shown).

We then analyzed what correlation times could be derived
by fitting the full ACF with Eq. (5). The results of the fits
depended on the time resolution with which we computed the
ACF. Here we show the results of using the same resolution as
in the experiments. For the fits, we probed two options. First,
we fixed the timescales as in the fast reaction approximation
and fitted the weights. Second, we fitted both the weights
and the timescales. From the second test we determined that
the fitted values obtained for τ0, νF and the weights, g, g1,
and g2, were similar to those prescribed by the fast reaction
approximation. The other two fitted times differed slightly
from those of the approximation. These results are illustrated in
Fig. 6(b), where we show the ratios τ0/τF , τ1/τef1, τ2/τef2, and
νF /ν, between the fitted values and those of the fast reaction
approximation for high affinity Fluo4. The difference, ε2,
between the fitted and the full ACF was less than 2.289 10−10

using these fitting parameters. Similar results were obtained for
low affinity Fluo4 with ε2 � 2.785 10−10. Similar values of ε2

(2.278 10−10 and 2.606 10−10 for Fluo4 high and low affinity,
respectively) were obtained when only the weights were fitted
and the timescales were fixed at the fast reaction approximation
values. We show in Fig. 6(c) the ratios between the fitted
and the fast approximation weights for the high affinity
Fluo4.

3. FCS experiments in aqueous solution and in Xenopuslaevi s
oocytes with tetramethylrhodamine-dextran to determine the

factor by which free diffusion coefficients are rescaled
in the cytoplasm

We here present the results of performing FCS experiments
with tetramethylrhodamine-dextran (TMR-D) in aqueous so-
lution and in Xenopus laevis oocytes. The aim of these
experiments is to determine the conversion factor between
free diffusion coefficients in the two media.

X. laevis oocytes, previously treated with collagenase and
stored in Barth’s solution, were loaded with 37 nl of TMR-D
at different concentrations. Intracellular microinjections were
performed using a Drummond microinjector. Assuming a 1 μl
cytosolic volume, the final concentration of TMR-D was 0.9,
1.1, 1.4, or 1.85 μM. FCS measurements were performed
on a spectral confocal scanning microscope FluoView 1000
(Olympus, Tokyo, Japan), employing a 60×, 1.35 N.A. oil-
immersion objective (UPlanSAPO, Olympus) and a pinhole
aperture of 115 μm. Single point measurements at a 50 kHz
sampling rate were performed for a total duration of 167 s
(equivalently, 8 365 312 data points) employing a 543-nm line
and detecting the fluorescence in the range (555–655) nm. For
the aqueous solutions the measurements were performed at
∼20 μm from the coverslip and for the oocytes, at the cortical
granules region in the animal hemisphere. Experimental ACFs
were calculated with a custom-made routine written on the
Matlab platform [24]. To this end, each 167-s-long record was
divided into Nsol = 1021, 164-ms-long segments containing
213 points each for the experiments in aqueous solutions
and into Noo = 510, 328-ms-long segments containing 214

points each for the experiments in X. laevis oocytes. The
ACF was computed for each of the Nsol = 1021 or Noo = 510
segments from which the average ACF was obtained. As
the confocal volume dimensions are wavelength-dependent
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FIG. 7. (a) ACF obtained from FCS experiments performed in X. laevis oocytes microinjected with 37 nl of TMR-D = 30 μM (dashed
line) fitted by Eq. (2) (solid line). (b) As in (a) for solution of TMR-D = 50 nM. (c) ACFs from the fits performed in (a) and (b) (solid and
dashed line, respectively), normalized.

we used the FCS experiments with TMR-D in solution
to estimate the beam waist and aspect ratio at 543 nm.
Assuming a diffusion coefficient of DTMR-D = 85 μm2/s [26]
we obtained wr = (0.199 ± 0.003) μm and w = wz/wr = 5.
The ACF was fitted using only one (diffusive) component as in
Eq. (2).

We show in Fig. 7 the ACF obtained from FCS ex-
periments performed in X. laevis oocytes with TMR-D
[Fig. 7(a)]. Using Eq. (2) to fit the data of Fig. 7, we ob-
tain DTMR(oocyte) = (27 ± 1) μm2/s. The TMR-D diffusion
coefficient in solution is DTMR(solution) = 85 μm2/s [26].
Thus, it is DTMR-D(oocyte)/DTMR-D(solution) ∼3.
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