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Abstract

The investigation of the diffusive transport of charged particles in a turbulent magnetic field remains a subject of
considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the
presence of a mean magnetic field. Here we consider thediffusion of charged particles in fully three-dimensional
isotropic turbulent magnetic fields with no mean field, which may be pertinent to many astrophysical situations.
We identify different ranges of particle energy depending upon the ratio of the Larmor radius of the charged
particle to the characteristic outer length scale of the turbulence. Two different theoretical models are proposed to
calculate the diffusion coefficient, each applicable to a distinct range of particle energies. The theoretical results are
compared to those from computer simulations, showing good agreement.

Key words: astroparticle physics – cosmic rays – diffusion – magnetic fields – scattering – turbulence

1. Introduction

Transport of charged particles in many astrophysical systems
is governed by the highly turbulent magnetic field, which leads
to the diffusion of charged particles in space. Some of the most
notable ideas in the study of diffusion of charged particles in
magnetic turbulence are quasilinear theory (Jokipii 1966), field
line random walk theory (FLRW; e.g., Jokipii & Parker 1968),
and nonlinear guiding center theory (Matthaeus et al. 2003).
These theories focus on calculating the diffusion of charged
particles in directions parallel and perpendicular to a constant
mean magnetic field B0, under theinfluence of a fluctuating
magnetic field b x( ) that depends on position x but not on time.
A considerable modification to these theories is required when
the fluctuations are isotropic with a zero (or very small) mean
field. Such modification turns out to be of the highest
importance when describing the transport of cosmic rays
(CRs) in the Galaxy, as well as for the modeling of diffusive
CR acceleration in astrophysical sources. Here we consider the
problem of magnetostatic scattering with =B 00 , and for
fluctuations b that are statistically isotropic, in terms of both
polarization and spectral distribution.

The propagation of CRs in the Galaxy is usually modeled as
diffusive in a turbulent magnetic field where the rms
fluctuations of strength db are of the same order of magnitude
as the large-scale field B0 (e.g., Jansson & Farrar 2012),
d ~b B 10 , although it is not clear whether this condition is
fulfilled both in the diskand the halo of the Galaxy. On the
other hand, supernova shocks, usually invoked to be the main
sites of acceleration of Galactic CRs (Blasi 2013), are observed

to possess intense turbulent magnetic fields, where the large-
scale field, if any, only affects the development of the fast
growing instabilities that lead to the existence of intense
turbulent fields (Caprioli 2015).At the shock itself, the field is
probably well modeled as isotropic with a negligible
mean field.
There have been some studies of diffusion of charged

particles in magnetic turbulence without a mean field (e.g.,
Casse et al. 2002; Parizot 2004; de Marco et al. 2007;
Plotnikov et al. 2011; Snodin et al. 2016), but a clear theory
covering all ranges of particle energies is still lacking. In
particular, the simulations carried out by de Marco et al. (2007)
clearly showed that,in the limit of large d b B 10 , the
diffusion coefficient of particles with aLarmor radiusmuch
smaller than the energy containing scale of the turbulent field
closely resembles the one naively estimated from quasilinear
theory, which isa rather curious result since such theory
applies to the opposite limit. When the field is purely turbulent,
the combination of particle diffusion and random walk of
magnetic field lines is expected to play a crucial role. Diffusion
of magnetic field lines in isotropic turbulence with azero mean
field was examined by Sonsrettee et al. (2015), and that paper is
in some ways an antecedent of the present work. We note that
the high-energy theory described below was originally
presented by David Montgomery.9

The transport of charged particles in interplanetary space and
the interstellar medium, including in regions of particle
acceleration, is highly influenced by the presence of turbulent
magnetic fields and their spectral distribution. The nature of
particle transport in these fields also depends on particle
energy. In general, higher energy particles, with agyro-
raduslarger than the correlation length of the magnetic field,
will sample many uncorrelated field lines within one gyration.
Lower energy particles with agyroradius much smaller than
the magnetic field correlation length, on the other hand, will see
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a relatively coherent large-scale field, and their transport will be
heavily affected by resonances with local magnetic
fluctuations.

In this paper, we classify the diffusive behavior of charged
particles into three different regimes based on the ratio of the
Larmor radius RL of the charged particle to the characteristic
outer length scale of turbulence lc: a high-energy region with

R l 1L c , an intermediate-energy region with ~R l 1L c , and
the low-energy region with R l 1L c . Corresponding to the
two extreme inequalities, we will develop two corresponding
theoretical approaches for particle diffusion in the extreme
energy ranges. First, in the high-energy limit, the path of the
particle experiences only small deviations from its initial
trajectory due to small angle scattering on magnetic field
irregularities. In this case, velocity diffusion is achieved when
the magnetic fluctuations probed by the particles become
uncorrelated. At the opposite extreme, particles with avery
small gyroradius will gyrate about the local field produced by
the large-scale fluctuations while experiencing perturbations,
the most effective of which will be at scales comparable to the
gyroradius. This leads to resonant interactions and a random
walk of the particle pitch angle. The particle guiding center will
eventually reverse direction and parallel spatial diffusion is
achieved. The range of validity of both the high-energy and the
low-energy asymptotic theories will be extended by buildingin
additional decorrelation effects in the relevant Lagrangian
correlation functions, thereby providing an accurate description
of the particle mean-free paths also in the intermediate range of
energies.

The paper is organized as follows. In Section 2, we write
down the fundamental equations describing the diffusive
motion of the particles in velocity (or momentum) space. In
Section 3, we specialize the theory to the high-energy regime.
In Section 4, we show that a nonlinear theory can be developed
that reproduces the high-energy behavior of the diffusion
coefficient (Section 3) for R l 1L c while also describing the
results of numerical simulations down to »R l 0.5L c . Finally,
in Section 5, we describe our formulation of a low-energy
theory that, while accounting for particle-wave resonances, also
keeps amemory of perpendicular decorrelation, thereby
describing simulation results for R l 0.5L c . A detailed
comparison of our theoretically calculated spatial diffusion
coefficients with the results of numerical simulations is
discussed in Section 6. We summarize in Section 7. Three
Appendices are included. The first derives the relationship
between velocity diffusion and real space diffusion for
isotropic turbulence. The second estimates the angular deflec-
tion of a field line over scales in the inertial range and justifies
neglecting such deflection in the low-energy theory. The third
compares the numerical simulation results with the theories
developed in this work when applied to interplanetary
parameters.

2. Velocity Space Diffusion and Spatial Diffusion

Since the turbulence is isotropic, and the the particle speed v∣ ∣
is constant in the absence of electric fields, the velocity space
diffusion tensor is expected to have an isotropic form
(Batchelor 1953),

d= -D v v v D , 1ij ij i j v( ) ( ˆ ˆ ) ( )

which implies that

=D Tr D v
1

2
. 2v ij[ ( )] ( )

The distribution function of test particles obeys the Fokker–
Planck equation in velocity space, which when spatial gradients
are present can be written as

¶
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Plugging in the isotropic form of the velocity space diffusion
(Equation (1)) into Equation (3), we get

¶
¶

+  = ^v
f

t
f D f , 4v

2· ( )

where ^
2 stands for that part of the velocity space Laplacian in

spherical co-ordinates that involves no radial derivatives.
To make a connection with spatial diffusion,we construct a

multiple timescale solution of Equation (4), by breaking down
time and spatial scales into fast (τ, ξ) and slow variables (T, X).
We seek a solution with  = + + +f f f f ...0 1 2 2( ) ( ) ( ) where
  1. The qth order distribution function can be expanded in
the spherical harmonics as
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q
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,
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The details of the multiple timescale solution are given in
Appendix A, where a relationship between the velocity space
diffusion coefficient Dv and spatial diffusion coefficient κ is
obtained:

k k k k= = = =
v

D6
. 6xx yy zz

v

4
( )

The mean-free path (λ) in terms of the diffusion coefficient is
simply

l
k

=
v

3
. 7( )

Particle statistics may be related to the spatial diffusion
coefficient by the Taylor–Green–Kubo (TGK) formula (Tay-
lor 1922; Green 1951; Kubo 1957):

òk º
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This formula, with vx interpreted as the guiding center velocity
in the x-direction, was used to calculate the diffusion coefficient
in theories that have a mean magnetic field, e.g., BAM theory
(Bieber & Matthaeus 1997), the original NLGC theory
(Matthaeus et al. 2003), etc.
The velocity space diffusion coefficient can also be written

in a TGK formulation as

ò=
¥
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To calculate the rate of change of velocity in Equation (9),we
use the Newton–Lorentz equation of motion

g
a= ´ = ´

v
v v
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q
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where q and m are the particle charge and mass, respectively, γ
is the Lorentz factor, c is the speed of light, b is the magnetic
fluctuation field and we define a g= q m c( ). Apply the
Newton–Lorentz equation in Equation (9) to find

 òa= á ñab gh a g b h
¥

xD v dt v v t b b t0 0 .

11

ij i j
2

0
( ) ( ) ( ) ( ) [ ( )]

( )

Assuming that the particle velocity and magnetic field are
uncorrelated (as would be the case, e.g., for an isotropic particle
distribution) and that the turbulence is statistically homoge-
neous, one finds

  òa= á ñá ñab gh a g b h
¥

xD v dt v v t b b t0 0 .

12

ij i j
2

0
( ) ( ) ( ) ( ) [ ( )]

( )

Equation (1) is used to simplify Equation (12). The high-energy
theory and nonlinear theory differ in the treatment of the
correlation tensors in Equation (12) (more details are in
Sections 3 and 4). Section 5 contains a theoretical description
of diffusive transport for low-energy particles.

3. High-energy Theory

Very-high-energy particles with Larmor radii much larger
than the correlation scale will experience only minor deflec-
tions from their original path becausethey complete a distance
equivalent to the correlation length of the magnetic field. This
corresponds to the high-energy theory developed in this
section, applicable when R l 1L c .

The appropriate simplifying assumptions in this case are that
the displacement follows a straight line =x vt t( ) , and, that the
velocity autocorrelation is simply á ñ =a g a gv v t v v0( ) ( ) . Using
these, Equation (12) can be written as

  òa= á = ñab gh a g b h
¥

x vD v v v dt b b t t0 . 13ij i j
2

0
( ) ( ) ( ( ) ) ( )

In view of Equation (2), computing the trace of Equation (13)
gives an expression for the high-energy velocity space
diffusion coefficient,

a d
=D

v b l

3
, 14v

c
2 2

( )

where db is the rms magnetic field and the correlation length is

ò
d
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. 15c

i i0
2
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Notice that Dv is independent of the spectrum of turbulence
because the only thing that matters is the fact that most energy
is in magnetic fluctuations at a fixed scale ~lc and at that scale
we may assume that the effective magnetic field seen by the
particle is the rms field db. Plugging Dv in Equation (6), in
terms of gyrofrequency adW = b0 , the spatial diffusion
coefficient is then

k k k= = =
W
v

l2
. 16xx yy zz

c

3

0
2

( )

This result is not entirely new to the astrophysics community
(see, e.g., Aloisio & Berezinsky 2004), though we give a more
formal derivation. An intuitive derivation of Equation (16)
proceeds as follows. Suppose that most of the power in the

magnetic field spectrum is on a spatial scale lc, which is much
smaller than the Larmor radius of particles. Then one can think
of a very large but otherwise arbitrary distance ld as being tiled
with cells of size lc. In each cell, when R lL c, one has a
deflection of the order l R 1c L . The average angle of
deflection when there are n scatterings satisfies

⎛
⎝⎜

⎞
⎠⎟qá ñ = n

l

R
, 17c

L

2
2

( )

where =n l ld c. Now, the average deflection angle is of
theorder of unity when

=l
R

l
. 18d

L

c

2

( )

At that point the distance is also ~l vtd (because the
displacement from the unperturbed trajectory is small), and
the diffusion coefficient is

k = = = =
W

l

t

l v R v

l

v

l2 2 2 2
, 19d d L

c c

2 2 3

0
2

( )

which is identical to Equation (16).

4. Nonlinear Extended High-energy Theory

For rigidity decreasing towardunity from large values, the
assumption above that the unperturbed particle trajectory is a
straight line with constant velocity becomes less accurate.
Instead, we assume that the velocity autocorrelation is
exponential with a characteristic decorrelation time τ,

dá ñ =a g ag
t-v v t v e3 . 20t2( ) ( ) ( )

However, making use of the TGK formula, Equation (8), one
sees that the spatial diffusion coefficient kxx is related to the
timescale τ by

k t= v
1

3
. 21xx

2 ( )

That is, from Equation (6)

t =
v

D2
. 22

v

2
( )

Then, using Equations (2), (12),and (20) one finds that

òa= = á ñt
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v

e b b t
1

2 3
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23

v ij
t

i i
2

0

2
[ ( )] ( ) [ ( )]

( )

where there is an implied summation over i. The closure for the
Lagrangian correlation in this equation should now be
reconsidered. In particular, we question the approximation of
a straight-line unperturbed trajectory =x vt t( ) that was
previously used in the high-energy theory. To allow for the
effect of perturbations of this trajectory, x t( ) may be treated as
a random variable. Following the familiar procedure used in
other nonlinear diffusion theories (e.g., Matthaeus et al. 2003),
Corrsin’s independence hypothesis (Corrsin 1959) is used to
write the magnetic correlation in terms of the power spectrum
in Fourier space to obtain

òá ñ = á ñx k kb b t d P e0 . 24k x
i i ii

i t( ) [ ( )] ( ) ( )· ( )

3
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In order to evaluate the characteristic functional á ñe k xi t· ( ) , we
now use the approximation of a Gaussian distribution of
displacements, along with the random ballistic decorrelation
(RBD) approximation (Ruffolo et al. 2012). The latter was first
introduced in describing the magnetic FLRW by Ghilea et al.
(2011). Here, the result is

ò má ñ = á ñ = =m
m

m

-
e e d e

kvt

kvt

1

2

sin
. 25k xi t ik vt ik vt

1

1 ( ) ( )· ( )

The random ballistic model is justified since the particles
undergo ballistic motion at earlier times before they reach the
asymptotic diffusive regime.

With τ given by Equation (22), substituting Equation (25)
into Equation (24) and then into Equation (23) gives

ò òa=
¥

-D
v

dkE k dt
kvt

kvt
e

3

sin
, 26v

tD v2
2

0

2 v
2( ) ( ) ( )

where p= kE k k P4 ii
2( ) ( ) is the omnidirectional energy

spectrum. If we take the limit t =  ¥v D2 v
2 ( ) in

Equation (26), Equation (14) is recovered, which is the high-
energy limit. Hence, the nonlinear theory allows departures
from the high-energy limit, but also recovers the exact form of
the high-energy limit as τ becomes large. More generally,
Equation (26) is an implicit equation for Dv and Equation (6)
gives the spatial diffusion coefficient. It is worth pointing out
that another standard approximation would be to treat the
trajectories of the particles as having a diffusive distribution
(DD) for the purpose of calculating the Lagrangian magnetic
correlation function (Matthaeus et al. 2003; Bieber et al. 2004;
Shalchi 2006, 2010). In that case, the ensemble average on the
left-hand side of Equation (25) would then be
á ñ = k-e ek xi t k txx

2· ( ) . This alternative approach, however, fails
to predict the high-energy behavior of the particles where the
particles are ballistic for a long time before undergoing multiple
deflections to reach the diffusive limit. For the intermediate
range DD converges with the RBD model.

5. Low-energy Quasilinear Theory

Low-energy particles ( R l 1L c ) behave entirely differ-
ently because they experience a local mean magnetic field due
to large-scale fluctuations. These small gyroradius particles
typically scatter before moving far enough for the local mean
field to average to zero. In such circumstances, there are two
dominant effects that are expected to contribute to transport and
diffusion: FLRW and a kind of resonant wave particle
scattering in which the local field acts as a mean field that
organizes the particle gyro-motion.

In the presence of FLRW alone, particles would follow
magnetic field lines and achieve spatial diffusion as the
magnetic field lines diffuse in space. Decorrelation of the
particle trajectories due to this mechanism (Jokipii &
Parker 1968; Hauff et al. 2010) gives rise to an energy-
independent mean-free path. This would not explain the results
of our numerical simulations, as discussed below. One may,
however, estimate from a simple Kolmogorov turbulence
theory the degree to which the field lines bend for distances
shorter than a correlation scale, as is done in Appendix B. The
conclusion is that the angular deflection of the mean field seen
by a particle in moving over a scale l is small provided that l lc

is small, i.e., the scale l lies deep in the inertial range. This
conclusion is also empirically supported, in that the numerical
results (Figure 2) show that at low energy the particle mean-
free path is smaller than the correlation length of the magnetic
field. For lower energy the local mean field, due to the large-
scale parts of the spectrum, becomes increasingly coherent.
Making the assumption that the local mean field remains

well defined for a long enough distance, we may examine
whether theresonant scattering of particles on fluctuations with
wavenumbers around the inverse of the Larmor radius
(Jokipii 1966; Fisk et al. 1974) provides effective scattering,
in the regime in which turbulence is weak compared toa
locally evaluated large-scale mean magnetic field. Of course if
the small-scale power is suppressed, then one recovers the
FLRW result (see alsoKarimabadi et al. 1992; Mace
et al. 2012).
In the presence of a guide field, the original quasilinear

theory (Jokipii 1966) represents the standard tool for calculat-
ing resonant pitch angle diffusion coefficients of particles. It is
successful in predicting the resonant scattering of the particles
in the case of a slab fluctuation field (wave vectors parallel to
the mean field) but may require some modification in other
fluctuation geometries (e.g., Qin et al. 2002). Nonlinear
theories are also useful in attaining better agreement with the
results of numerical simulations of particle propagation
(Dupree 1966, 1967; Owens 1974; Matthaeus et al. 2003;
Shalchi et al. 2004; Shalchi 2006).
In the present case of isotropic turbulence, with no guide

field, the assumptions of QLT can no longer be applied, though
we are encouraged to proceed based on the above reasoning
concerning the local mean field. To be specific, it is useful to
first put forward a physical explanation of the approach we
propose to describe the low-energy regime: if the power
spectrum of magnetic fluctuations is such that most power is on
scales of theorder of~lc, then particles with Larmor radius
much smaller than lc move following a roughly ordered
magnetic field line at least until a distance of ~lc has been
covered. On such scales,the propagation is diffusive in the
direction of the local magnetic field, though particles suffer
little motion in the direction perpendicular to that of the local
field. Let us refer to this parallel diffusion coefficient as k,
though the physical meaning of this quantity should be kept in
mind. The effective velocity of particles in the direction of the
local field is k v lp c. When particles move over many times
the coherence scale lc, their transport in the directions
perpendicular to the original local field becomes evident (due
to isotropic turbulence) and one can estimate the global
diffusion coefficient as

k
k

k=  
p L v L

L

1

3

1

3

1

3
. 27c p c

c
( ) ( )

In other words, provided the propagation is diffusive on small
scales, the global diffusion coefficient on large scales proceeds
with a similar diffusion coefficient to that calculated using the
local magnetic field as an effective local guide field. The
problem is now reduced to calculating the diffusion coefficient
experienced by particles along the local magnetic field. This
can be done by using a close analogy to the case of QLT.
The parallel spatial diffusion coefficient k, is calculated

using a well-known relationship between k and the pitch angle
diffusion coefficient mmD (Jokipii 1966; Hasselmann &

4
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Wibberenz 1970; Earl 1974),

òk m
m

=
-

mm-

v
d

D8

1
. 28

2

1

1 2 2( ) ( )∣∣

The diffusion coefficient along a fixed direction (e.g., the x-
direction) is given by

k k q k q= + ^cos sin , 29xx
2 2 ( )

where θ is the angle between the magnetic field direction and
the x-axis. Since the particles are expected to travel parallel to
the local mean field and undergo resonant pitch-angle
scattering, which eventually causes a random walk in the
parallel direction with little average perpendicular motion, we
neglect k̂ in Equation (29) and average over all directions to
obtain

k k k k= = =  3, 30xx yy zz ( )

consistent with Equation (27).
Using the TGK formula, the pitch angle diffusion coefficient

is given by

òm mm= á ¢ñmm
¥

D dt , 31
0

( ) ˙ ˙ ( )

where μ is the pitch angle at time t=0 and m¢ is the pitch angle
at a later time t. Particles are assumed to follow a local field
line. The initial direction of the field line can be assumed
without loss of generality to be the z-direction and using

m=v vz , we get

òm = á ¢ñmm
¥

D
v

dt v v
1

.z z2 0
( ) ˙ ˙

Using Equation (10), one can write

òm
a

= á ¢ ¢ñ + á ¢ ¢ñ

- á ¢ ¢ñ - á ¢ ¢ñ

mm
¥

D
v

dt v v b b v v b b

v v b b v v b b . 32

x x y y y y x x

x y y x y x x y

2

2 0
( ) [

] ( )

The Cartesian x and y components of the velocities are given
by

f f

f f

= =
¢ = W + ¢ = W +

^ ^

^ ^

v v v v

v v t v v t

sin cos

sin cos , 33

x y

x y

0 0

0 0( ) ( ) ( )

where m= -v̂ v 1 2 is the perpendicular component of the
velocity, Ω is the local gyrofrequency, and f0 is the initial
gyrophase of the particle motion. Assuming the product ¢b bi j is
independent of f0, assuming axi-symmetry of magnetic
fluctuations along the local mean field (á ¢ñ = á ¢ñb b b bx x y y and

á ¢ñ = á ¢ñb b b bx y y x ), using elementary identities and after aver-
aging over the initial gyrophase f0, Equation (32) reduces to

⎡
⎣⎢

⎤
⎦⎥òm

a
= W á ¢ñmm

^
¥

D
v

v
dt t b bcos . 34y y

2 2

2 0
( ) ( ) ( )

The Lagrangian two-time correlation function á ¢ñ =b by y

á ñxb b t t0, 0 ,y y( ) ( ( ) ) is greatly simplified using the QLT-like
assumption that the particles locally follow straight magnetic
field lines in the z-direction with constant pitch angle, so that

m=z v t . Using Corrsin’s hypothesis (Corrsin 1959), which is
exact for slab fluctuations that vary only along z, the Fourier
transform of the correlation function á ¢ñb by y in terms of the

power spectrum kPyy ( ) becomes

ò ò òá ¢ñ = á ñmkb b dk dk dk P e e e . 35y y x y z yy
ik v t ik x ik yz x y( ) ( )

In the following two subsections, we proceed to evaluate
Equation (35) by adopting different approximations for the
characteristic functional á ñe eik x ik yx y that describes the statistics
of the local random perpendicular displacements x(t) and y(t).

5.1. Standard QLT Approach

When the perpendicular displacements x(t), y(t) are very
small, we may adopt the approximation á ñ »e e 1ik x ik yx y . This
can be viewed as an approximation that the particle is at its
guiding center, or that the fluctuations bx and by are
independent of x and y. This approximation is implemented
in standard QLT, and is exact in one-dimensional slab
geometry (Jokipii 1966). Using this in Equation (35), one finds

⎡
⎣⎢

⎤
⎦⎥ò ò òá ¢ñ = mkb b dk dk dk P e . 36y y z x y yy

ik v tz( ) ( )

In the usual way, we define ò ò= kE k P dk dky z yy x y( ) ( ) as a
one-dimensional reduced transverse spectrum function. Sub-
stituting Equation (36) in Equation (34), and carrying out the
time integral yields a Dirac delta function that defines the
resonance. Then, the integral over the parallel wave number
(kz) gives

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

pa m
m

=
- =

mm
m
W

D
v

E k1
, 37

y z v2 2 ( )( )
∣ ∣

( )∣ ∣

which is the standard QLT result.
One modification applicable to isotropic turbulence that we

would like to discuss in detail is related to the μ dependence of
mmD in Equation (37). It is well known that quasilinear theory

does not provide correct pitch angle diffusion coefficients for
pitch angles close to 90° (m » 0) where nonlinear effects are
important (Bieber et al. 1988; Tautz et al. 2008; Shalchi 2009,
p. 362). This problem was discovered in the years after
quasilinear theory had been proposed (Jones et al. 1973;
Owens 1974; Goldstein 1976). The strict quasilinear calcul-
ation using Equation (37) (for typical spectra of turbulence) has

mmD 0 as m  0, which is applicable in slab turbulence (Qin
& Shalchi 2009) where nonlinear effects are weak. In most
other geometries, however, for any realistic finite amplitude
fluctuations, nonlinear orbit effects (Karimabadi et al. 1992)
allow particles to scatter more easily through the neighborhood
of m = 0 than would be expected from QLT calculations (see
also Qin & Shalchi 2009). Our numerical results also indicate
that the quasilinear theory for isotropic turbulence as derived
using Equations (28), (30), and (37) gives mean-free paths
much larger than those obtained from anumerical simulation,
since the parallel diffusion coefficient is unrealistically
amplified by mmD near zero in the denominator.
To account for such nonlinear effects, we consider an ansatz

that the pitch angle dependence of mmD is of the form
mµ -mmD 1 2 and set m = 1∣ ∣ inside the square bracket of

Equation (37) so that mmD has a finite nonzero value at m = 0.
Before implementing this, we checked our numerical simula-
tion results for the pitch angle distribution. For mµ -mmD 1 2

(isotropic scattering), the eigenfunctions of the diffusion
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operator are Legendre polynomials, and at late times when the
pitch angle distribution is nearly isotropic, the distribution
should be dominated by the most slowly evolving eigenfunc-
tions, =P 10 and m=P1 , yielding a nearly linear pitch-angle
distribution. We indeed found this in our simulation data. Thus
we implemented the ansatz, which is more appropriate for our
case of isotropic turbulence with =B 00 than for a perturbative
situation with b B0, where nonlinear effects are weak. The
ansatz is also justified a posteriori in Section 6, where the
theoretical predictions now provide a much better fit to the
numerical results.

With this physically motivated modification, the simplified
pitch-angle diffusion coefficient can be written as

⎜ ⎟⎛
⎝

⎞
⎠

pa m
=

-
=

W
mmD

v
E k

v

1
. 38z z

2 2( ) ( )

If we assume that the local mean field is constant throughout the
system with magnitude Blocal,then in Kolmogorov turbulence

~ -E kz z
5 3 and (from Equation (10)) a = W Blocal with

W = v RL, it is straightforward to show that the substitution of
Equation (38) into (28) gives k ~ vl R lc L c

1 3( ) and the mean-
free path (Equation (7)) scales as l ~ l R lc L c

1 3( ) .
A further correction that we apply here is related to the

variability of the magnetic field strength in an isotropic random
field. In the realization of turbulence used here, the components of
the magnetic field have a Gaussian distribution (this is also usually
a reasonable approximation for fully developed turbulence).
Therefore, the gyrofrequency g aW = =qb mc b( ) and Larmor
radius g a= =R mvc qb v bL ( ) ( ) vary in space as the magnetic
field strength b changes. In fact, b is likely to undergo major
changes during the parallel scattering process described byk∣∣. It is
fairly simple to show that b has a Maxwellian distribution given
by


p d

= -
db db

b

b
e db3

2
, 393 2

2

3

b
b

3 2

2 2( ) ( )

where db is the root-mean-square field strength. With the above
Maxwellian distribution, we use Equation (38) to compute the
average mmmD ( ) over the local field b before substitution in
Equation (28) to obtain

òk m
m

=
-

mm-

v
d

D8

1
. 40

2

1

1 2 2( ) ( )∣∣

Equation (30) gives the spatial diffusion coefficient along a
particular axis. The mean-free path scaling of l ~ l R lc L c

1 3( )
is also maintained.

5.2. Extended Low-energy Theory

As an extension to the above quasilinear approach, we now
take into account the perpendicular displacements that enter
into consideration in Equation (35). Assuming a Gaussian
distribution of the perpendicular displacements x and y implies
that

á ñ = - á ñ +á ñe e e . 41ik x ik y x k y kx y x y
1
2

2 2 2 2 ( )[ ]

Since we are assuming locally an unperturbed orbit about a
well-defined local mean magnetic field, it is clear that
á ñ = á ñ ~x y RL

2 2 2. In particular, for pitch angle θ and

gyrophase f,

q f q f= =x R y Rsin cos , sin sin . 42L L ( )

After omnidirectional averaging of x2 and y2 over θ and f,
Equation (41) can be written as

á ñ = - ^e e e , 43ik x ik y k R 6x y L
2 2 ( )

where = +k̂ k kx y
2 2 2. This statistical description of the

perpendicular displacement is consistent with our earlier
assumption that ¢b bi j is independent of the initial gyrophase.
Using Equation (34) along with Equations (35) and (43),one
finds

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥ò

m
p a m

m

=
-

´
=

mm

m¥

^ ^

^
W

- ^

D
v

k dk
P k k

e

2 1

,
.

44

yy z v k R

2 2 2

0

6L
2 2( )

( ) ( )

∣ ∣

( )

∣ ∣

According to the arguments used in Section 5.1, we take into
account the presence of nonlinear orbit effects near a90° pitch
angle and modify the pitch angle dependence so that

m~ -mmD 1 2( ) and set m = 1∣ ∣ inside the square bracket of
Equation (44). For the extended case, the pitch angle diffusion
coefficient is now given by

⎜ ⎟⎛
⎝

⎞
⎠ò

m
p a m

=
-

´ =
W

mm

¥

^ ^ ^
- ^

D
v

k dk P k k
v

e

2 1

, . 45yy z
k R

2 2 2

0

6L
2 2

( ) ( )

( )

Note that when the exponential term is set to unity (e.g., for
R 0L ), this reduces to Equation (38). As described in

Section 5.1, we average Equation (45) over a Maxwellian
distribution of the magnetic field magnitude b before substitu-
tion in Equation (28) to obtain our final result for the spatial
diffusion coefficient.
The exponential term can be seen as another modification to

the original quasilinear theory appropriate for the pitch angle
diffusion of low-energy particles in isotropic turbulence.
Hence, we use this extended low-energy theory in the
following Section 6 to compare with numerical simulation
results.

6. Comparison thewith Numerical Simulation

In this section, we present results of numerical simulations of
charged particle propagation in synthetic magnetostatic turbu-
lence with a specified spectrum. The numerical results are
compared to the theoretical formulations described above.
The numerical simulations make use of a homogeneous and

isotropic magnetic fluctuation field, generated on a spatial grid
with a specified energy spectrum. Trajectories of 2000 particles
are obtained by numerical solution of the Newton–Lorentz
equation, using a fifth-order Runge–Kutta method with
adaptive time-stepping. To satisfy the magnetostatic assump-
tion, the velocity v of the particles is chosen so that v vA,
where vA is the Alfvén speed. The electric field is ignored
becauseit is of the order of v B cA , where B is the magnetic
field and c is the speed of light.
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The random magnetic field realization is generated in a
periodic box as described by Sonsrettee et al. (2015). The
functional form of the omnidirectional spectrum used in the
numerical simulation is given by

l
l
l

=
+

E k C
k

k1
,c

c

c

4

2 17 6
( ) ( )

[ ( ) ]

with a normalization constant C, which isused to control the
magnetic field strength b. The parameter lc is the bendover
scale, which is of the same order as the correlation length. This
form of E(k) is chosen so that µE k k4( ) for low k to be
consistent with strict homogeneity (Batchelor 1969), and

µ -E k k 5 3( ) for high k to represent Kolmogorov scaling in
an inertial range of turbulence. We have chosen the
Kolmogorov spectrum becauseis often assumed in scattering
theory (Harari et al. 2002; Parizot 2004), but emphasize that the
theoretical approach can be applied to any reasonable spectrum.

The diffusion coefficient is calculated from the asymptotic
rate of increase of the mean square displacement of the particles

k =
áD ñ
D¥

x

t
lim

2
. 46xx

t

2

( )

The results of the numerical simulations are shown in
Figure 1. The general asymptotic trends for the mean-free path
at low energies ( R lL c) and high energies ( R lL c) are easy
to identify. In the low-energy regime, the mean-free path scales
as l µ Rxx L

1 3, while in the high-energy regime l µ Rxx L
2, and

these scalings are valid whether the particles are relativistic or
non-relativistic. As discussed above, this high-energy scaling is
obtained irrespective of the power spectrum, provided most
power is concentrated on scales around ~lc. These results
confirm previous functional forms proposed by Aloisio &
Berezinsky (2004) and Parizot (2004) and the numerical results
of Casse et al. (2002), de Marco et al. (2007), and Snodin et al.
(2016). Observations of isotopic composition (Obermeier
et al. 2012; Aguilar et al. 2016) also support a scaling of
l µ Rxx L

1 3 at R lL c.

The resonant nature of particle scattering in the low-energy
regime makes thenumerical simulation rather challenging, in
that the resulting mean-free path is sensetive to the resolution in
real space, which is equivalent to the number of independent
degrees of freedom in k-space used to represent the magnetic
power spectrum (see also Snodin et al. 2016). In Figure 1, we
show the results of our simulations for 5123, 10243, and 20483

real space grid points, from which it is possible to see that the
lower resolution (5123) case does not correctly match the
scaling of the mean-free path with Larmor radius. This is
because the 5123 simulation does not numerically resolve the
resonant scales corresponding to the Larmor radius of the
particles. On the other hand, no appreciable difference can be
seen in the two higher resolution cases with 10243 and 20483

simulations. Hence, we will use the 10243 realization for a
subsequent discussion of the results.
The mean-free path calculated using the theoretical frame-

work developed above is compared to the results of simulations
in Figure 2. These results may be considered as representative
of propagation of very-high-energy CR protons in the Galactic
magnetic field (Ruzmaikin et al. 2013) with a correlation length
of lc=10 pc and aroot-mean-square magnetic field
ofd =b 0.1nT. The Larmor radius of the particles equals the
correlation length of the magnetic field fluctuations at energy
~ ´E 9 1015 eV, somewhat above the knee in the all-particle

spectrum of Galactic CRs. However, we note that when plotted
this way, as mean-free path versus Larmor radius, with both
quantities normalized to the correlation scale of the turbulence,
the actual curves are identical for any energy range. In
Appendix C, we provide a short account of the results of our
analysis when applied to non-relativistic and moderately
relativistic particles in isotropic turbulence that has parameters
akin to heliospheric parameters.

7. Discussion and Conclusions

The spatial diffusion of charged particles in the presence of
turbulent magnetic fields is significant in describing the

Figure 1. Mean-free path of protons as a function of R lL c (gyroradius divided
by correlation scale). The solid line is the high-energy scalingl ~ Rxx L

2 and the
dashed line is the low-energy scaling l ~ Rxx L

1 3. The inverted triangles are the
results of the5123 numerical simulation, circles are those of the 10243

simulation, and the crosses are the results of the 20483 numerical simulation.

Figure 2. Theoretical vs. numerical results for cosmic rays in isotropic
turbulence with azero mean field, showing good agreement. The circles
represent the numerical results, thesolid line represents the high-energy theory,
thedashed line is the nonlinear theory and thedotted–dashed line is the
theoretical estimate for low energies. The energy ranges are shown for cosmic
rays in our Galaxy.
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transport of charged particles in the interplanetary, interstellar,
and intergalactic media. Most of the standard descriptionsof
diffusion involvethe existence of a non-negligible ordered
field. In this paper, we considered the case of a vanishingly
small background ordered magnetic field and studied the
diffusive transport of charged particles in isotropic magnetic
field (magnetostatic) turbulence. The turbulent Galactic magn-
etic field, where the mean magnetic field is of the order of
fluctuations, is found to have reversals in the field orientation
implying the existence of regions with negligible regular fields
(Minter & Spangler 1996). Similarly the extragalactic voids
might have negligible regular fields (Kronberg 1994; Blasi
et al. 1999). In the highly turbulent plasma near supernova
shocks that are actively accelerating CRs (Blasi 2013) there
may be regions in which the fluctuations might be so large that
the present fully isotropic model is applicable. The isotropic
assumption is also relevant in other highly disturbed and
turbulent plasmas, such as planetary wakes (Gombosi
et al. 1979).

Naturally, in the Galactic system, the turbulent magnetic
field is not the only complication that appears in a realistic
scenario of CR transport. The complex composition of
background plasma and the presence of neutral hydrogen
atoms that suppress the propagation of waves through ion-
neutral damping are examples of factors that could influence
the charged particle propagation. Including these complexities
in our theoretical calculations is beyond the scope of the current
paper. Here we have developed a systematic derivation of
charged particle diffusion in the presence of an isotropic
turbulent magnetic field and tested its validity using aMonte-
Carlo simulation of particles in a synthetically generated
turbulent magnetic field. In fact, we would like to point out that
incorporating the several factors mentioned above will
probably require MHD, hybrid, or PIC simulations that provide
a self-consistent picture of the development of the CR transport
phenomenon (e.g., Reville et al. 2008; Caprioli & Spit-
kovsky 2014).

The transport of charged particles in a magnetic field is
conceptually simple, requiring mostly the integration of particle
trajectories using the Lorentz force (Equation (10)). The
detailed treatment is complex, influenced by several parameters
like the particle energy, correlation length of turbulence, the
geometry of fluctuations, the presence of a dissipation range,
and the magnetic Reynolds number. In particular, the study of
transport of particles in isotropic magnetic field turbulence is
found to be complicated by the different conditions seen by
charged particles at high, low, and intermediate energies as
defined. Here the controlling parameter is the rigidity, or
theratio of Larmor radius (RL) to the turbulence correlation
length (lc). When the ratio R lL c is much smaller than one, we
refer to the low-energy limit, when it is greater than one, this is
the high-energy limit and in between low and high energy lies
the intermediate-energy region. We have devised two different
theoretical models in an attempt to understand the transport
processes in these three regions. Rather than just using
parametric and scaling arguments, we provide systematic and
thorough theoretical constructs to describe the diffusive
transport of particles in each range of energy.

The paths of the higher energy particles are almost straight
up to the correlation length of the magnetic field, where the
particles undergo only a slight change from the original
trajectory. In contrast, the lower energy particles are almost

strictly tied to their initial field lines and are pitch-angle
scattered due to resonance with small-scale irregularities of the
field line. The intermediate-energy particles have a more
complicated nonlinear diffusion that connects the two
extremes.
The theoretical ideas presented here have been tested against

results of detailed numerical experiments using Monte-Carlo
simulations of particle propagation in stochastic magnetic
fields. The magnetic field constructed for numerical purposes
has three-dimensional isotropic fluctuations with a standard
Kolmogorov spectrum and no mean field. Diffusion coeffi-
cients are calculated using the microscopic displacements of
particles along the trajectory. The diffusion coefficients
obtained using our numerical simulation are compared to
theoretical predictions yielding very good agreement.
Referring again to Figure 2, we can see that both the

asymptotic low-and high-energy limits are fitted well by our
theoretical approach. The high-energy theory fails in the
intermediate- and low-energy regime because the particle
velocity changes over a shorter period of time, contrary to the
high-energy assumption. The extended low-energy theory
compares well with the numerical data even in the inter-
mediate-energy regime when R l 0.5L c . However, it fails
when R l 0.5L c as a consequence of the fact that the
effective guide field becomes ill-defined. The nonlinear theory
best describes the scattering of the intermediate-energy
particles in the range of R l 0.5L c . The two extended
theories give equal results at »R l 0.3L c where they each
differ from the numerical results by about 30%.
In summary, we have devised theoretical descriptions of

charged particles in isotropic turbulence with no mean field that
are applicable to distinct ranges of particle energies. Different
reasoning enters in the various ranges of rigidity R lL c.
Properly normalized, the results apply equally well to
relativistic and non-relativistic particle transport, provided that
the random magnetic field is isotropic with zero mean.

This research is supported in part by the NSF Solar
Terrestrial Program Grant AGS-1063439 and SHINE grant
AGS-1156094, the NASA Heliophysics Grand Challenge
Research Theory & Modeling Program, NNX14AI63G, the
MMS Theory and Modeling project, the Solar Probe Plus
project, POR Calabria FSE-2007/2013, EU Turboplasmas
project, and by grant RTA5980003 from the Thailand
Research Fund.

Appendix A
Relation between Diffusion Coefficients in Velocity Space

and Position Space

We proceed using spatial and temporal variables divided into
slow variables X and T, and fast variables ξ and τ, respectively.
The slow and the fast variables can be written in terms of a
small parameter ò as

 
t x
= =
= =

T t X x
t x

,
, .

2

The motivation for different time ordering when compared to
the spatial ordering comes from the fact that, if we let ò be the
ratio of scattering length scale to the transport length scale, then
from the spatial diffusion equation a simple dimensional
analysis shows that the ratio of scattering timescale to the
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transport timescale should be of the order of  2 (see, e.g.,
Frisch 1995).

The derivatives can then be written as




t

¶
¶

=
¶
¶

+
¶
¶

 =  + x

t T
,

.x X

2

Considering Equation (3) (Fokker–Plank equation), we seek
a solution forthe distribution function f with

 = + + +f f f f ..., 470 1 2 2 ( )( ) ( ) ( )

where each order of f can be expanded in terms of the spherical
harmonics q fY ,lm ( ) (Equation (5)), which satisfy

q f q f = - +^v Y l l Y, 1 , . 48lm lm
2 2 ( ) [ ( )] ( ) ( )

The expansion in Equation (47) is inserted into Equation (4).
With the help of Equations (5) and (48), we get separate
equations for each of the different orders of f.

The O 0( ) terms give

t
¶
¶

+  = x ^v
f

f D f . 49v

0
0 2 0· ( )

( )
( ) ( )

Now we introduce an operator á ñ··· , which is the spacetime
average over the fast variables. Since all variables will be
assumed to have finite variations in time and space, the
averaging operator gives a zero result when operating on any
quantity that may be written as a derivative with respect to fast
variables. This is also known as the solvability condition so that
we have a closed form of equations. Also, let á ñ =f Fq q( ) ( ).

Equation (49) averaged over the fast variables gives

 =^D F 0, 50v
2 0 ( )( )

which implies that F 0( ) is isotropic in v.
Averaged over the fast variables, the O 1( ) term is

 = ^v F D F . 51X v
0 2 1· ( )( ) ( )

Without loss of generality,we may pick the direction of the
gradient to be the z-direction. The left-hand side of
Equation (51) has a projection only onto the Y10 term of the
spherical harmonics. The right-hand side must also have a
projection onto the Y10 term. With the help of Equations (5) and
(48) in Equation (51), one finds

 = -  =
-

v vF
D

v
F F

v

D
F2

2
. 52X

v

v
X

0
2

1 1
2

0· · ( )( ) ( ) ( ) ( )

When averaged over the fast variables, the O 2( ) term gives

¶
¶

+  = ^v
F

T
F D F . 53X v

0
1 2 2· ( )

( )
( ) ( )

Substituting the relation between F 1( ) and F 0( ) from
Equation (52) into Equation (53),one gets

¶
¶

-   = ^
F

T

v

D
v v F D F

2
, 54

v
i j X X v

0 2
0 2 2

i j( ) ( )
( )

( ) ( )

where a repeated index indicates summation. To study the
diffusion of the bulk distribution, we consider the average over
all directions. From Equation (48), we see that the right-hand

side of Equation (54) averages to zero. Using

d=v v
v

3
, 55i j ijdirection averaged

2
[ ] ( )

we then obtain

¶
¶

= 
F

T

v

D
F

6
. 56

v
X

0 4
2 0 ( )

( )
( )

This is a diffusion equation in configuration space with
diffusion coefficient

k =
v

D6
.

v

4

Appendix B
Angular Deflection of a Magnetic Field Line Over an

Inertial Range of Turbulence

We examine the angular deflection of a field line over a
separation l from the perspective of turbulence theory. The
magnetic field vector and its associated field lines experience a
change of direction due to the turbulence. If weinitially start
with no transverse component, then the transverse component
at a separation l in the inertial range of turbulence can be
estimated approximately for an ensemble of field lines by
Kolmogorov’s law.
Let S lt

2 ( ) be the second-order transverse structure function
with separation l. Kolmogorov’s 2/3 law states that

d= = á - + ñ µx xS l b b b l l .t
l t t2
2 2 2 3( ) [ ( ) ( )]

If S lt
c2 ( ) is the second-order transverse structure function at a

separation of a correlation length lc, then one finds

⎛
⎝⎜

⎞
⎠⎟

d
d

=
b

b

l

l
.l

c c

2

2

2 3

Initially, there is no transverse component and if approxi-
mately 2/3 of the energy is present in the transverse component
at the correlation length, then

⎛
⎝⎜

⎞
⎠⎟d d»b b

l

l

2

3
,l

c

2 2
2 3

and

⎛
⎝⎜

⎞
⎠⎟

d
d

»
b

b

l

l
0.8 .l

c

1 3

∣ ∣

If θ is the angular deflection at the mean-free path of a
particle λ, then

⎛
⎝⎜

⎞
⎠⎟q

d
d

l
= »

b

b l
sin 0.8 .l

c

1 3

∣ ∣

For =R l 0.01L c , which is relevant for a low energy that is
numerically attainable, our numerical results give l = l0.1 c,
implying q » 200. At lower particle energy, the relevant
angular deflection is still smaller. We neglect this deflection in
the low-energy quasilinear theory presented in Section 5.

Appendix C
Non-relativistic Example

To provide a broader context, in Figure 3, we evaluate the
theory for the case of non-relativistic particles or moderately
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relativistic particles. For convenience, we adopt parameters that
closely resemble interplanetary space in our solar system,
except that here no mean magnetic field is included. For this
example, the particles are non-relativistic at low energies with

<R l 1L c , but become moderately relativistic at higher
energies. The correlation length is chosen to be =l 0.01 auc
and the root-mean-square magnetic field to be 5 nT (Burlaga
et al. 2013). Then RL=lc at 1.5 GeV. The theoretical mean-
free paths depend only on rigidity,and thetest particle
simulation is in close agreement whether the particles are
relativistic or non-relativistic.

It is well known that the interplanetary turbulent magnetic
field is represented by an anisotropic spectral model in which
the fluctuations are of the same order of magnitude as the
mean field. Numerous realistic studies have also been
performed and compared with observational results in the
past (e.g., Tautz & Shalchi 2013), so our study with isotropic
turbulence and no background field should be interpreted as
simply a test case.
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