
FCS experiments to quantify Ca2+ diffusion and its interaction with buffers
Lorena Sigaut, Cecilia Villarruel, and Silvina Ponce Dawson

Citation: The Journal of Chemical Physics 146, 104203 (2017); doi: 10.1063/1.4977586
View online: http://dx.doi.org/10.1063/1.4977586
View Table of Contents: http://aip.scitation.org/toc/jcp/146/10
Published by the American Institute of Physics

Articles you may be interested in
Time-resolved observation of interatomic excitation-energy transfer in argon dimers
The Journal of Chemical Physics 146, 104305104305 (2017); 10.1063/1.4978233

Near infrared overtone (vOH = 2 ← 0) spectroscopy of Ne–H2O clusters
The Journal of Chemical Physics 146, 104204104204 (2017); 10.1063/1.4977061

Characterization of the hydrogen-bond network of water around sucrose and trehalose: Microwave and
terahertz spectroscopic study
The Journal of Chemical Physics 146, 105102105102 (2017); 10.1063/1.4978232

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/20939943/x01/AIP-PT/JCP_ArticleDL_0117/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Sigaut%2C+Lorena
http://aip.scitation.org/author/Villarruel%2C+Cecilia
http://aip.scitation.org/author/Ponce+Dawson%2C+Silvina
/loi/jcp
http://dx.doi.org/10.1063/1.4977586
http://aip.scitation.org/toc/jcp/146/10
http://aip.scitation.org/publisher/
/doi/abs/10.1063/1.4978233
/doi/abs/10.1063/1.4977061
/doi/abs/10.1063/1.4978232
/doi/abs/10.1063/1.4978232


THE JOURNAL OF CHEMICAL PHYSICS 146, 104203 (2017)

FCS experiments to quantify Ca2+ diffusion and its interaction
with buffers

Lorena Sigaut, Cecilia Villarruel, and Silvina Ponce Dawson
Departamento de Fı́sica, FCEN-UBA, and IFIBA, CONICET, Ciudad Universitaria, Pabellón I,
1428 Buenos Aires, Argentina

(Received 16 September 2016; accepted 3 February 2017; published online 14 March 2017)

Ca2+ signals are ubiquitous. One of the key factors for their versatility is the variety of spatio-temporal
distributions that the cytosolic Ca2+ can display. In most cell types Ca2+ signals not only depend on
Ca2+ entry from the extracellular medium but also on Ca2+ release from internal stores, a process
which is in turn regulated by cytosolic Ca2+ itself. The rate at which Ca2+ is transported, the fraction
that is trapped by intracellular buffers, and with what kinetics are thus key features that affect the time
and spatial range of action of Ca2+ signals. The quantification of Ca2+ diffusion in intact cells is quite
challenging because the transport rates that can be inferred using optical techniques are intricately
related to the interaction of Ca2+ with the dye that is used for its observation and with the cellular
buffers. In this paper, we introduce an approach that uses Fluorescence Correlation Spectroscopy
(FCS) experiments performed at different conditions that in principle allows the quantification of
Ca2+ diffusion and of its reaction rates with unobservable (non-fluorescent) Ca2+ buffers. To this
end, we develop the necessary theory to interpret the experimental results and then apply it to FCS
experiments performed in a set of solutions containing Ca2+, a single wavelength Ca2+ dye, and a
non-fluorescent Ca2+ buffer. We show that a judicious choice of the experimental conditions and
an adequate interpretation of the fitting parameters can be combined to extract information on the
free diffusion coefficient of Ca2+ and of some of the properties of the unobservable buffer. We think
that this approach can be applied to other situations, particularly to experiments performed in intact
cells. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4977586]

I. INTRODUCTION

Ca2+ signals are ubiquitous. They are involved in muscle
movement, heart beat, neuronal communication, egg fertiliza-
tion, and cell death among other processes.1,2 The versatility
of intracellular Ca2+ signals relies on the variety of spatio-
temporal distributions that the cytosolic Ca2+ concentration
can display.3–6 Prolonged high elevations of free cytosolic
Ca2+ lead to cell death.7 Thus, cells keep basal cytosolic Ca2+

at very low levels. The signals are then constructed by means
of local and transient elevations of the concentration that can
eventually propagate throughout the cell.8 The timing and the
spatial range of the signals are thus key for the establishment
of the consequent end responses.9 The rate at which Ca2+ ions
diffuse in the cytosol is one of the main factors that determine
these two aspects of the signals. The diffusion coefficient of
Ca2+ was estimated in cytosolic extracts more than twenty
years ago using radioactive Ca2+.10 In spite of the impor-
tance of having reliable estimates of this coefficient obtained
in situ, to the best of our knowledge, there has not been a
direct estimation of Ca2+ diffusion in intact cells using other
techniques, such as Fluorescence Correlation Spectroscopy
(FCS). One of the problems associated with quantifying Ca2+

diffusion in intact cells is the presence of Ca2+ buffers.11

In fact the fastest way by which cells can reduce the free
cytosolic Ca2+ concentration is by means of buffers that bind
Ca2+ with diverse affinities and kinetics.12,13 Buffers not only
reduce the total free Ca2+ concentration, they also change its

dynamics and spatial range of variation.14,15 Thus, the net
transport of the ions is not purely diffusive. It is possible,
however, to describe this transport in terms of effective diffu-
sion coefficients that take into account both the free diffusion
rate of the ions and the way it is affected by Ca2+ buffer-
ing.16 Here by free diffusion we mean the net transport of
(dilute) solute particles that randomly change their direction
of movement when they collide with solvent molecules and, in
this way, perform a random walk.17,18 Effective diffusion, on
the other hand, involves both reacting and non-reacting col-
lisions. Thus, effective diffusion coefficients depend on the
concentration of the reactants and on their reaction rates.16

Contrary to free diffusion coefficients, effective ones are not
unique. In particular, there is one (which we call collective)
that describes the rate at which concentration inhomogeneities
spread out with time while there is another (which we call
the single molecule) which is the one that enters the pro-
portionality factor between the mean square displacement
of a single particle and time.16,19 When probing reaction-
diffusion systems, optical techniques such as FCS or Fluo-
rescence Recovery After Photobleaching (FRAP) most often
give information on effective diffusion coefficients20,21 unless
very small volumes are observed.22 In these cases, FRAP
prescribes the single molecule coefficient20 while FCS gives
both the collective and the single molecule ones.21 Having an
underlying biophysical model is thus most relevant to interpret
the meaning of the diffusion coefficients that are estimated
with optical experiments.19 Effective diffusion coefficients
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are weighted averages of the free coefficients of the interact-
ing species that depend on their concentrations and reaction
rates. Thus, it is necessary to estimate concentrations and
reaction rates in order to infer free from effective diffusion
coefficients.23

FCS was introduced in Ref. 24 where an application
to quantify the reaction rates of a bimolecular reaction
was presented. The technique was subsequently applied to
quantify diffusion and binding properties both in vitro and
in vivo.25–33 In FCS the fluorescence is collected from a rel-
atively small volume and the auto-correlation function (ACF)
of the fluorescence fluctuations about the fluorescence mean
is computed. Fitting the ACF with a model, concentrations
and transport and reaction rates can be estimated, depending
on the time scales that characterize the underlying dynam-
ics.22,34 Technical advances allowed the introduction of sev-
eral improvements.26,35–38 In particular, being able to scan
over the sample (as with a confocal microscope) or to sep-
arate the light coming from two chromophores allowed the
introduction of different variations of the technique (Image
Correlation Spectroscopy (ICS),39 Image Cross Correlation
Spectroscopy (ICCS), Raster image correlation spectroscopy
(RICS),40 Spatiotemporal Image Correlation Spectroscopy
(STICS)41 (dual color), Fluorescence Cross Correlation Spec-
troscopy (FCCS),42,43 etc.) in some of which the correlation
between the fluorescence coming from different spatial points
is computed. Versions of ICS also exist in which, instead of
scanning the sample, the data are acquired with a camera that
produces two-dimensional images. The use of two-photon and
of Total-Internal-Reflection-Fluorescence (TIRF) microscopy,
on the other hand, allowed the reduction of the observation
volume opening up new application possibilities.37 This was
further improved by the use of nanoparticles that enhance
locally the illumination intensity,44 of photoactivatable dyes
which allowed the quantification of the dynamics of transcrip-
tion,45,46 and of faster detection capabilities that increased the
throughput of the technique.47,48 An important part of the
method lies in the fitting of the ACF with a model function
and in the subsequent use of the fitting parameters to quantify
relevant biophysical quantities. The quantification of diffu-
sion coefficients from correlation times requires an a priori
calibration of the illuminated volume which is usually done
using a probe whose free diffusion coefficient is previously
known. Although these a priori estimates may be available
for diffusion in aqueous solutions, knowing their values in the
interior of cells is not that common. To what extent a calibra-
tion performed in solution can be applied to the analysis of FCS
experiments done in other settings such as cells is somewhat
debatable. In particular, the illuminated volumes may differ
depending on the mismatch between the refractive indices of
the sample and of the medium that the light transverses before
reaching it.49 The effect of this mismatch on the (erroneous)
quantification of diffusion coefficients from FCS experiments
has been studied50,51 so that, in principle, it could be corrected.
There is also the option of using dual-focus FCS52 where the
fluorescence coming from two focal (overlapping) regions is
collected. The distance between the two regions can be known
quite accurately and provides the length scale with which the
diffusion coefficients can be derived from the correlation times.

The application of the method, however, requires additional
equipment that is not always available. Besides these calibra-
tion problems, another important aspect of the experiments is
the way in which the fitting parameters are interpreted. To this
end, having a biophysical model of the underlying dynam-
ics is unavoidable. Counting with such a model was key to
reconcile the apparently disparate estimates of the diffusion
coefficient of the protein, bicoid, in Drosophila melanogaster
embryos.19

As we have mentioned, in FCS and in all of its vari-
ants the auto-(or cross)correlation function of the fluorescence
fluctuations is computed. These correlation functions are char-
acterized by two main quantities: correlation times and the
weight with which each correlation time enters the ACF. When
there is a single freely diffusing fluorescent species, the ACF
is characterized by only one correlation time: the free diffu-
sion time across the observation volume. The total weight, on
the other hand, is inversely proportional to the mean number
of particles in the observation volume. When the fluorescent
particles diffuse and react, the ACF is characterized by var-
ious correlation times. Depending on the characteristics of
the system and on the observation volume size it is possible
that each correlation time be determined by only a free dif-
fusion or reaction time.22 Most often this is not the case, so
that each correlation time depends on several of the param-
eters that characterize the various processes that underlie the
dynamics of the system (see, e.g., Refs. 21, 30, and 31). In the
case of Ca2+ and its dyes, this turns out to be an advantage.
Namely, Ca2+ distributions are observed indirectly by using
fluorophores that change their optical properties when bound
to Ca2+. In particular, single wavelength Ca2+ dyes,53 as the
ones we use in the present paper, increase their fluorescence
intensity when bound to Ca2+. Thus, FCS experiments per-
formed in systems that use these fluorophores actually collect
the light coming from the Ca2+-bound dye molecules (and, to a
less extent, from Ca2+-free dye molecules as well). Given that
dye molecules are much more massive than Ca2+, it is reason-
able to assume that their free diffusion coefficient is the same
regardless of whether they are actually free or bound to Ca2+.
Thus, if the observation volume were small enough, most likely
dye molecules would transverse it without binding/unbinding
to/from Ca2+ so that the correlation time would only depend
on the free diffusion coefficient of the dye molecules (which is
the same in their free and Ca2+-bound forms). No information
on the transport of Ca2+ ions would then be contained in the
ACF. If the volume is larger so that several binding/unbinding
Ca2+-dye reactions occurred, the correlation times would be
more complicated than before but would also depend on the
free diffusion coefficient of Ca2+, on the Ca2+ and dye concen-
trations, and on the rates of their reaction. We have recently
used this property to show that it is in fact possible to estimate
the Ca2+ free diffusion coefficient from sets of FCS experi-
ments performed with Ca2+ and varying concentrations of a
single wavelength dye.23 In the present paper, we go a step
further. In particular, we study the ACF that can be obtained
from FCS experiments performed in systems with Ca2+, a
Ca2+ dye, and an (invisible) Ca2+ buffer that competes with
the dye for Ca2+. The aim is to determine in which circum-
stances it is possible to quantify the diffusion rates of Ca2+
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and of the non-fluorescent buffer from the analysis of the Ca2+-
bound dye fluorescence fluctuations in such a case. In order
to advance in this regard, we first study theoretically the vari-
ous time scales that characterize this reaction-diffusion system
and relate them with those that are encountered in the system
with Ca2+ and the Ca2+ dye or with the other (non-fluorescent)
buffer. We then obtain the Auto-Correlation Function (ACF)
of the Ca2+-bound dye fluorescence fluctuations for such a
system. We subsequently present the results of a series of FCS
experiments performed in aqueous solutions containing the
dye Fluo-4 dextran, the Ca2+ buffer EGTA, and different con-
centrations of Ca2+. The analysis of the experiments shows that
information on the concentration, Ca2+ dissociation constant,
and diffusion coefficient of the non-fluorescent buffer (EGTA)
can in fact be obtained. In doing so, we also derive the Ca2+

and dye free diffusion coefficients and the on- and off-rates
of their interaction. As stated in Ref. 54, there is more infor-
mation in most optical experiments than usually exploited and
despite the limitations imposed by physics55 there is still room
for the development of novel analyses of FCS experiments to
quantify various biological processes.56 In particular, thanks
to these developments, FCS “is emerging as a valid alter-
native” to quantify single-molecule dynamics in living cells
without the need of actually observing individual molecules.57

Our approach may be viewed as a contribution in this direc-
tion. Given that cells contain various different endogenous
buffers, this study provides ideas on how to advance towards
the quantification in situ of the transport and buffering prop-
erties of Ca2+ in cells. In view of the recent results58 on the
effective diffusion rate of IP3, a co-agonist of Ca2+ for the
activation of the receptors that are most often involved in
intracellular Ca2+ signals, the need to obtain such an esti-
mate is ever more necessary.59 We briefly discuss later how
the approach introduced in this paper could be applied in intact
cells.

II. THEORY: REACTION-DIFFUSION SYSTEM
WITH Ca2+, A Ca2+-DYE, AND ONE TYPE
OF Ca2+-BUFFER

We consider a system with Ca2+, a single-wavelength
Ca2+-dye (Fluo-4), and another buffer. This is the simplest
model that can mimic what occurs in real cells where there
are actually several endogenous buffers that could trap Ca2+.
Thus, any experiment in which Ca2+-diffusion is studied in
intact cells will have to deal with the competition between
the dye and the endogenous buffers. This system models the
situation presented in this paper of FCS experiments per-
formed in solutions containing Ca2+ (Ca), Fluo-4 (F4), and
EGTA (E). We assume that Ca2+, the dye, F4, and the buffer
or chelator, E, interact according to the following reaction
schemes:

Ca + F4
koff F4

�
konF4

CaF4, (1)

Ca + E
koff E

�
konE

CaE, (2)

where CaF4 and CaE denote the Ca2+-bound dye and chelator,
respectively, and kon and koff are the on- and off-rates. We

assume that Ca2+ diffuses with the free coefficient, DCa, that the
dye both free and Ca2+-bound diffuses with the free coefficient,
DF4, and that the free and Ca2+-bound buffers diffuse with the
free coefficient, DE. Thus, the evolution equations that describe
the dynamics of this system are given by

∂[Ca]
∂t

= DCa∇
2[Ca] − konF4[Ca] [F4] + koff F4[CaF4]

− konE[Ca] [E] + koff E[CaE], (3)

∂[F4]
∂t
= DF4∇

2[F4] − konF4[Ca] [F4] + koff F4[CaF4],

(4)

∂[CaF4]
∂t

= DF4∇
2[CaF4] + konF4[Ca] [F4] − koff F4[CaF4],

(5)

∂[E]
∂t
= DE∇

2[E] − konE[Ca] [E] + koff E[CaE], (6)

∂[CaE]
∂t

= DE∇
2[CaE] + konE[Ca] [E] − koff E[CaE], (7)

where we have used mass action kinetics to describe the
reactions.

A. Linear equations and effective diffusion coefficients

The computation of the Auto-Correlation Function (ACF)
of the fluorescence fluctuations as done in Refs. 21, 22, 34,
and 60 involves starting with the approximation to the master
equation given by Eqs. (3)–(7) and then linearizing these equa-
tions around the equilibrium solution, Caeq, F4eq, CaF4eq, Eeq,
CaEeq that satisfies

Caeq F4eq = KdF4CaF 4eq, Caeq Eeq = KdE CaEeq, (8)

where KdF4 ≡ koff F4/konF4 and KdE ≡ koff E/konE are the disso-
ciation constants of the reactions (1) and (2), respectively. In
order to find the solutions of the linear system, we transform
the equations to Fourier space.

The dynamics is then described by 5 branches of eigenval-
ues that depend on the wavenumber, q, the variable conjugate
to the position, r, in Fourier space. Two of the branches
correspond to the free diffusion of Fluo-4 and of EGTA,
respectively, and are given by

λ1 = −DF4q2, (9)

λ2 = −DEq2, (10)

where q = |q|. In order to interpret the meaning of the
other three eigenvalues, we proceed as in Refs. 16 and 21
and expand their expressions up to order q2. This expansion
describes correctly the asymptotic approach to equilibrium and
is valid earlier on if reactions occur on a faster time scale
than diffusion21,22 (in the fast reaction limit). In this way we
obtain

λ3 = −Def 1q2, (11)

λ4 = −νef 2 − Def 2q2, (12)

λ5 = −νef 3 − Def 3q2, (13)
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where Def 1, Def 2, and Def 3 are effective diffusion coefficients.
Def 1 has a simple analytic expression

Def 1 =
DCa + xF DF4 + xEDE

1 + xF + xE
, (14)

where xF = F42
eq/(KdF4F4tot) and xE = E2

eq/(KdEEtot) with
F4tot and Etot the total concentrations of the dye and chelator,
respectively. Eq. (14) coincides with the expression derived
in the rapid buffering approximation when there is more than
one Ca2+ buffer.61,62 It is also the natural extension of the
collective diffusion coefficient introduced in Ref. 16 for the
case with more than one buffer. The analytic expressions of
Def 2, Def 3, νef 2, and νef 3 are very long (see the Appendix).
It is worth noticing that Def 2 and Def 3, differently from Def 1,
depend on the ratio kE = koff E/koff F4. It is also important to
point out that the various coefficients satisfy the following
relations:

Def 1 + Def 2 + Def 3 = DCa + DF4 + DE, (15)

νef 2 + νef 3 = νF4 + νE, (16)

where νF4 = koff F4(F4eq/KdF4 + F4tot/F4eq) and νE = koff E

(Eeq/KdE + Etot/Eeq) are related to the inverse reaction time
scales of Ca2+ and F4 (in the absence of EGTA) and of Ca2+ and
EGTA (in the absence of F4), respectively. Namely, if we set
νE = 0= xE in Eqs. 11–16, the resulting λ1, λ3, and λ4 are the
three eigenvalues that rule the dynamics of the linear problem
in a system with Ca2+ and the dye, F4.23 As shown in Sec.
II B, fluctuations in the Ca2+-bound dye concentration decay
with time scales that depend on all these effective diffusion

coefficients and reaction rates. Part of the work presented in
this paper is aimed at extracting DCa, DE, and other E properties
from these “mixed” characteristic times.

In order to illustrate how the various diffusion coeffi-
cients vary with the concentrations, we show in Figs. 1(a)–1(c)
the ratios (with respect to DCa) of the coefficients defined in
Eqs. 11–13 as functions of the total Ca2+ concentration, Catot .
The figures were made using similar reaction parameters to
those that we expect a priori (see Table II) for the reactions
of Ca2+ with Fluo-4 and EGTA. Regarding the free diffusion
coefficients of the dye and the chelator, previous estimates
indicate that EGTA diffuses faster than Fluo-4. Although the
dissociation constants are known, reliable values of the indi-
vidual on and off rates are not usually available. For this reason
in Figs. 1(a)–1(c) we also explore in which way the different
coefficients vary when the off-rates ratio, kE, is changed. We
can observe that for all the conditions presented in Fig. 1,
Def 1 → DCa as Catot is increased while Def 2 and Def 3 either
approach DF4 or DE depending on KE. We also show in the
figure the ratio with respect to DCa of the two effective dif-
fusion coefficients that are obtained in a system with Ca2+

and only one buffer, B, (either B = F4 or B = E) which are
given by

DCa–B
ef 1 =

DCa + xBDB

1 + xB
, (17)

DCa–B
ef 2 =

xBDCa + DB

1 + xB
, (18)

with xB = B2
eq/(KdBBtot).

FIG. 1. Ratios, with respect to the free diffusion coefficient of Ca2+, of the three effective diffusion coefficients, Def 1 (solid line), Def 2 (dotted line), and Def 3

(dashed line), of the system formed by Ca2+, Fluo-4, and EGTA as functions of the total Ca2+ concentration. Plots of the two effective diffusion coefficients
of the system with Ca2+ and Fluo-4, DCa–F4

ef 1 (black circle) and DCa–F4
ef 2 (black triangle) and of the system with Ca2+ and EGTA, DCa–E

ef 1 (open circle) and DCa–E
ef 2

(open triangle). The corresponding ratios of the free diffusion coefficients are indicated with horizontal lines (thin solid curve). All plots were done with
DCa = 760 µm2/s, DF4 = 85 µm2/s, F4tot = 676 nM, Etot = 9.66 mM, Kd F4 = 2600 nM, and Kd E = 150 nM. In (a)–(c) we used DE = 405 µm2/s, koff E = 1
s�1 and kE = 0.001, koff F4 = 1000 s�1 (a); kE = 0.01, koff F4 = 100 s�1 (b); kE = 0.1, koff F4 = 10 s�1 (c). In (d) we used koff F4 = 300 s�1, koff E = 0.75 s�1, and
DE = 0 µm2/s. We expect the latter choice to be closer to the situation we may encounter in an FCS experiment in intact cells.
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The possibility of describing the coefficients for the case
with two buffers, in terms of those obtained for the case with
only one, also depends on the relative concentrations. In par-
ticular, if the total concentrations of chelator and Ca2+ are
in excess with respect to the indicator, F4 (the situation that
we expect to encounter in the interior of a cell where small
amounts of dye are added), it is

xF ≡
F42

eq

KdF4F4tot
� xE ≡

E2
eq

KdEEtot
, (19)

from which we obtain

Def 1 ≈
DCa + xEDE

1 + xE
= DCa–E

ef 1 , if x F� xE. (20)

This can be seen in all the cases presented in Fig. 1,
where Def 1 = DCa–E

ef 1 for all the Ca2+ concentrations probed.
Whether the other effective coefficients can be approxi-
mated by those obtained in the systems with only one
buffer also depends on the ratio of unbinding rates,
kE = koff E/koff F4. If kE >KdE/KdF4 as in Fig. 1(c), it is
Def 2 = DCa–E

ef 2 and Def 3 = DF4 for all the probed values of Catot .

If kE <KdE/KdF4 as in Figs. 1(a) and 1(b), it is Def 3 ≈DCa–E
ef 2

and Def 2 ≈DF4 for large enough Catot > (Catot > 9.6 mM
in our case). Under the latter condition, the behavior of
Def 3 can be derived from the expressions of the effective
coefficients of the systems with Ca2+ and the buffer, E.
This can readily be deduced taking into account Eq. (20)
and the equality Def 1 + Def 2 + Def 3 = DCa + DF4 + DE that
always holds. Thus, if Def 2 ≈DF4 we can conclude that
Def 3 ≈DCa + DE −Def 1. Inserting this equality into Eq. (20),
we obtain

Def 3 ≈
xEDCa + DE

1 + xE
= DCa–E

ef 2 , if x F� xE. (21)

This is interesting because, if the ACF of the fluorescence
fluctuations depends on the time scale associated with Def 3

(something we deduce in Subsection II B), it means that it is
possible to determine the properties of non-fluorescent Ca2+

traps from FCS experiments using small amounts of Ca2+ dye.
This opens up the possibility of applying the strategy pre-
sented here to analyze Ca2+ transport and buffering in cells.
With this application in mind, we show in what follows exper-
imental results that use this property of the autocorrelation
times. Fig. 1(d) serves to illustrate what we expect to find
in these experiments and in those that may be performed in
intact cells. The effective diffusion coefficients displayed in
it were obtained using the parameters that we think describe
the experiments of the current paper (listed in Table II) with
the exception of DE that we set equal to 0. In spite of this
difference, the curves for DE = 0 or DE as in Table II are
qualitatively similar. Thus, we expect the various effective
diffusion coefficients that characterize the system explored
experimentally to have a clearly distinct behavior as Catot

is varied and to be easily identifiable with those of the Ca2+

and one buffer cases for certain ranges of Catot . We decided
to illustrate the DE = 0 case in Fig. 1(d) because we expect
it to be closer to the situation that may be encountered in
intact cells with E representing an immobile endogenous
buffer. Based on this figure, we then discuss how to derive

the properties of endogenous Ca2+ buffers in intact cells using
FCS.

B. Theoretical derivation of the auto-correlation
function

The autocorrelation function (ACF) of the fluorescence
fluctuations is defined and computed as

G(τ) ≡
〈δF(t)δF(t + τ)〉

〈F(t)〉2
, (22)

where δF(t) = F(t)−〈F〉 is the deviation of the fluorescence, F,
from its mean, 〈F〉, which is approximated by the time average.
For the problem at hand, we assume that only the Ca2+-bound
dye molecules are fluorescent. The dye molecules are fluo-
rescent also in their Ca2+-free form but with an intensity that
is ∼40 times smaller than that when bound to Ca2+. As we
discuss later, for our experimental conditions we estimate that
the error that we introduce by neglecting the contribution of
the free dye molecules to the ACF is less than 1%. Under this
approximation, the fluorescence collected by the microscope
at time t is

F(t) = ∆t
∫

d3~rI(~r)Q[CaF4](~r, t), (23)

where ∆t is the sampling time, Q is the product of the absorp-
tion cross section by the fluorescence quantum yield and the

efficiency of the fluorophore, and I(~r) = exp(− 2(x2+y2)
42

r
− 2z2

42
z

)

takes into account the form of the illumination/detection pro-
file of the microscope with 4 = 4z/4r the ratio of its widths
in the axial, 4z, and perpendicular directions, 4r , respectively.
Eq. (23) implies that G(τ) depends on the fluctuations in the
number of Ca2+-bound dye molecules in the observation vol-
ume, Vef = π3/242

r4z. Assuming that the fluctuations are
correctly described by the solutions of the linear version of
Eqs. (3)–(7) as done in Ref. 60, it is possible to write G(τ) as
an integral over the wavenumber, q, introduced previously that
depends on the various branches of eigenvalues of the linear
problem. Expanding these expressions up to order q2 as done
before with the eigenvalues and following the same steps as
described in Ref. 21, we obtain

G(τ) =
GoF4(

1 + τ
τDF4

) √
1 + τ

42τDF4

+
Goef 1(

1 + τ
τDef 1

) √
1 + τ

42τDef 1

+

+
Goef 2 e−νef 2 τ(

1 + τ
τDef 2

) √
1 + τ

42τDef 2

+
Goef 3 e−νef 3 τ(

1 + τ
τDef 3

) √
1 + τ

42τDef 3

,

(24)

where τDefi =
42

r
4Defi

with Defi and νefi the parameters that charac-
terize the eigenvalue branches given by Eqs. 11–13. Thus, the
ACF is the sum of 4 components: two of them purely diffusive
and the other two with exponential factors as well. As in the
case of a single buffer, the first term in Eq. (24) corresponds
to the free diffusion coefficient of the dye.23 This term is exact
and its weight is given by

GoF4 =
1

Vef F4tot
. (25)
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We do not have closed analytic expressions for the weights of
the other components each of which is characterized by one
of the effective diffusion coefficients, Def 1, Def 2, and Def 3,
described before. It is possible to show, however, that the sum
of all the weights is inversely proportional to the concentration
of fluorescent particles

Gotot =
1

Vef CaF4eq
. (26)

This relationship follows from the fact that Gotot = G(τ = 0)
is the ratio between the variance, var(NCaF4), and the square
of the mean, 〈NCaF4〉

2, of the number of fluorescence particles,
NCaF4, in the observation volume. Following,60 all compu-
tations are done assuming that NCaF4 obeys Poisson statis-
tics so that G(0) = 1/〈NCaF4〉. This property also allows us to
estimate the error we make by not considering the fluo-
rescence coming from the Ca2+-free dye molecules, NF4.
Namely, assuming that the total number of dye molecules
in the observation volume, NT , is Poisson distributed and
that, given a value of NT , NCaF4 and NF4 are binomial34

with 〈NCaF4〉/〈NT 〉 = CaF4eq/F4tot = 1−〈NF4〉/〈NT 〉, the ratio
between the variance and the mean square fluorescence
is (〈NCaF4〉 + q2〈N F4〉)/(〈NCaF4〉 + q〈NF4〉)2, where q is the
ratio of the molecular brightness of the free over that of
the Ca2+-bound dye molecules (q ∼ 1/40). If we consider
the solution in Table I for which the fraction of Ca2+-
free dye molecules is the largest (CaF4eq ∼ 500 nM, F4eq

∼ 176 nM), the correct total weight would be ∼0.992/〈NCaF4〉

instead of 1/〈NCaF4〉 as in Eq. (26). Thus, we expect the
ACF that does not include the free dye molecules fluores-
cence to differ by less than 1% with respect to the one that
does.

These theoretical results show that even if only the fluores-
cence coming from the Ca2+-bound dye molecules is collected
and that these molecules diffuse with the same coefficient
regardless of whether they are free or bound to Ca2+, the
fact that binding/unbinding reactions between F4 and Ca2+

occur within the observation volume makes the correspond-
ing ACF depend on the free diffusion coefficients of Ca2+

and E, on their reaction rates, and their concentrations. The
aim of the current paper is to analyze under what circum-
stances some of these biophysical parameters can be derived

TABLE I. Total Ca2+ concentrations used in the FCS experiments. All solu-
tions also contained 676 nM F4tot , 9.66 mM EGTAtot , 100 mM KCl, 30 mM
MOPS and were done at pH 7.2.

Solution Catot (mM)

A01 9.37
A02 9.42
A03 9.47
A04 9.52
A05 9.57
A06 9.61
A07 9.66
A08 9.69
A09 9.90
A10 10.63

from the fitting parameters of the ACF. Taking into account
that the effective coefficients depend on the concentrations
and diffusion coefficients of Ca2+, dye, and buffer, by per-
forming experiments for different concentrations it should
be possible to identify the coefficients derived from the fit-
tings with those of the theory. Then, combining the estimates
obtained under the different conditions, it should be possi-
ble to quantify the free diffusion coefficient of Ca2+ and its
buffer. Moving from theory to practice is not straightforward.
To what extent is it possible to quantify all these correlation
time scales of the ACF in a real experiment? To what extent
the fast reaction approximation provides a good description
of what can be measured experimentally? In order to answer
these questions we present in what follows the results of
FCS experiments performed in solutions together with their
analyses within the framework of the theory stated in this
section.

III. EXPERIMENTS IN SOLUTION

In this section, we present the results of FCS experiments
performed in solutions containing Ca2+, the dye, Fluo-4 dex-
tran low affinity, and the Ca2+ chelator, EGTA. Fluo-4 is a
single-wavelength Ca2+ dye that increases its fluorescence
about 40 times63 when bound to Ca2+. We list in Table I
the set of concentrations for which we performed the exper-
iments. We can observe that they all share the same con-
centrations of Fluo-4 and EGTA while the Ca2+ concentra-
tion is varied. All the experiments were performed using an
Olympus FluoView 1000 confocal microscope as explained in
the Appendix.

A. Fitting parameters and effective
diffusion coefficients

We performed the experiments and fitted the results as
explained in the Appendix. Briefly, each (accepted) fluores-
cence experimental record was divided into∼1021 sub-records
of∼213 data-points that were subsequently doubled with zeros.
The ACFs of each of these sub-records were computed and
then averaged. We show in Fig. 2(a) the example of an average
ACF (solid curve) with its corresponding fit (dashed curve).
Each of these average ACFs were fitted with a two-component
model of the form

G(τ) =
1∑

i=0

Goi(
1 + τ

τDi

) √
1 + τ

42τDi

, (27)

from which the estimated diffusion coefficients, Di, were com-
puted as Di = 42

r /(4τDi). The experiments were repeated
several times using the same solution in the list of Table I
and the mean and standard error of the mean of the corre-
sponding estimated weights and diffusion coefficients were
then computed for each solution. The diffusion coefficients,
D0 and D1, obtained in this way are shown as functions of
the total Ca2+ concentration in Fig. 2(b) and the correspond-
ing weights, Go0 and Go1, are shown in Fig. 2(c). We also
show in Fig. 2(b) the effective coefficients, Def 1, Def 2, and
Def 3, and in Fig. 2(c) the weight, GoF4, that we expect to
obtain for a system with the concentrations in Table I and the
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FIG. 2. Experimental ACFs and parameters derived from their fitting. (a) Prototypical example of an (average) ACF obtained in an experiment performed on
the solution A03 in Table I (solid curve) and corresponding fit obtained using Eq. (27) (dashed curve). The difference between the two curves is shown in the
inset. ((b) and (c)) Parameters derived from the fitting (symbols) and theoretical expected values (curves) as functions of the total Ca2+ concentration, Catot , used
to make the solutions: (b) fitted, D0 (squares) and D1 (circles), and effective, Def 1 (solid line), Def 2 (dotted line), and Def 3 (dashed line), diffusion coefficients
(the effective coefficients were computed as explained in the Appendix using the parameter values in Tables I and II); (c) fitted, Go0 (squares) and Go1 (circles),
and expected, GoF4 (solid line), weights. The latter was computed using Eq. (25), the effective volume derived from the calibration, V ef = 0.59 µm3, and the
concentrations in Table I.

parameters in Table II. For the computation of Def 1, Def 2, and
Def 3, we followed the steps described in the Appendix. These
curves differ from those displayed in Fig. 1(d) only in the dif-
fusion coefficient of the buffer, E, which is DE = 0 in Fig.
1(d) and DE = 405µm2/s in Fig. 2. That is why Def 3 goes to
zero for large Catot in Fig. 1(d) while it approaches DE >DF4

in Fig. 2.
We observe in Fig. 2(b) that the smallest diffusion coef-

ficient that we derive from the fits of the experimental ACFs,
D0, remains approximately constant for all the total Ca2+ con-
centrations probed. As illustrated in Fig. 2(c), the weight,
Go0, of this component also remains approximately constant.
Therefore, we identify D0 with the free diffusion coefficient
of Fluo-4 dextran low affinity, DF4. The average value over
all Ca2+ concentrations that we obtain from the fits is D0= (60
± 7) µm2/s, which is compatible with the coefficient obtained
from the analysis of solutions of Ca2+ and Fluo-4 dextran ((63
± 6) µm2/s).23 Comparing the other coefficient derived from
the fittings, D1, with the expected values, Def 1, Def 2, and Def 3,
we see that D1 ≈ Def 1 for the experiments with Catot < 9.5 mM
while it is D1 ≈ Def 3 for larger concentrations. We also observe
that D1 remains approximately constant for the three solutions
with the smallest values of Catot that we analyzed. Based on
the theoretical analysis of Sec. II, we know that the effective
coefficients do not change significantly with the reactant

TABLE II. Expected values of the various parameters that characterize the
system under study.

Diffusion coefficients and reaction rates

DCa 760 µm2/s64

DF4 85 µm2/s65

Kd F4 2600 nMa

koff F4 300 s�166

DE 405 µm2/sb

Kd E 150 nMa

koff E 0.75 s�166

aInvitrogen-molecular probes.
bValue expected for a 380 Da molecule such as EGTA, considering that a 332 Da one
diffuses with D ∼ 425 µm2/s in aqueous solution.67

concentrations whenever they approach the free diffusion
coefficient of some of the reactants. In particular, for Catot

< 9.5 mM, the expected value of Def 1 is approximately equal
to the free diffusion coefficient EGTA (DE = 405 µm2/s).
Therefore, we assume that D1 ≈ DE in the experiments with the
smallest Catot that we probed. We rule out that D1 is approach-
ing DF4 because the associated weight, Go1, varies with Catot .
We also rule out that it be approaching DCa because D1

increases with Catot and DCa is an upper bound for all the free
diffusion coefficients of the problem at hand. In this way, the
value we estimate for the free diffusion coefficient of EGTA is
DE = (450 ± 8) µm2/s.

To give further support to our interpretation of D0 and
D1 we show, in Fig. 2(b), the associated weights, Go0 and
Go1, derived from the fittings (symbols) and the theoretical
weight, GoF4 = 0.0025 µm−3 nM−1 (line) calculated using
Eq. (25) with the effective volume derived from the calibration,
V ef = 0.59 µm3 and the concentrations in Table I. We observe in
Fig. 2(b) that Go0 (the weight we associate with DF4) remains
approximately constant for all Catot . Its average value over
all concentrations is 〈Go0〉 = (0.0021 ± 0.0006) µm−3 nM−1.
This gives further support to our identification of D0 with
DF4 given that the theoretical weight of the DF4 component
(GoF4 in Eq. (24)) only depends on the dye concentration
(see Eq. (25)) which is the same for all the solutions probed.
Inserting the effective volume obtained from the calibration,
V ef = 0.59 µm3, and the average, 〈Go0〉, derived from the fit-
tings in Eq. (25) we obtain the estimate F4tot = (807± 231) nM.
Taking into account the uncertainties in the final concentrations
with which the experiments are performed (see discussion in
what follows) and the fact that we are able to fit the ACFs
with only two components, this value could be quite different
from the theoretical one. It compares reasonably well, how-
ever, with the total concentration employed in the construction
of the solutions, Ftot = 676 nM.

B. Self-consistency tests

We now perform a set of self-consistency tests of our
identification between fitting and biophysical parameters. As
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FIG. 3. Ca2+-bound dye concentration, CaF4eq, estimated using Eq. (26) with
the experimental Gotot and V ef = 0.59 µm3 as a function of the theoretically
expected CaF4eq. The latter was computed assuming a system in equilibrium
with Ca2+, EGTA, and Fluo-4 using the parameters in Tables I and II. The
linear fit of the data points (solid curve) and the identity function (dashed
curve) is also shown.

described in Sec. III A, we can estimate the total Fluo-4
concentration, F4tot , from the fitting parameter, Go0, and
Eq. (25). There is a good agreement between the F4tot esti-
mated from the model and the F4tot concentration employed
in the construction of the solution.

Ca2+ bound Fluo-4 can be estimated from Eq. (26) setting
Gotot = Go0 + Go1. We show in Fig. 3 the CaF4eq estimated
in this way as a function of the theoretical CaF4eq com-
puted using the concentrations in Table I and the dissociation
constants Kd E and Kd F4 provided by the vendor (Table II).
Comparing the linear fit of the experimental points with the
identity function (shown in Fig. 3 with solid and dashed curves,
respectively), it can be observed that the Ca2+-bound dye con-
centrations derived from the experiments are about one third
of the expected ones. We encountered a similar problem when
we probed a system with Ca2+ and a single wavelength dye23

and arrived at the conclusion that it could be due to the partial
adsorption of reactants in the coverslip. This then means that
the actual concentrations in the experiments could be different
from those used to prepare the solutions. It is worth notic-
ing that this problem does not affect the effective coefficients
since they depend on ratios of the concentrations and the dis-
sociation constant that are not so sensitive to the individual

concentration values (at least, within the range explored in our
experiments).23

We now test whether our identification between the fitted
coefficient, D1, and the effective diffusion coefficient, Def 3,
for Catot > 9.5 mM is correct. In particular, we analyze if the
values that we obtain for Def 3 from this identification vary
with the concentrations as prescribed by the theory. To this
end we recall that, in the experiments, both the buffer, EGTA,
and Ca2+ are in excess with respect to Fluo-4. Thus, we can
assume that the relations Eqs. (20) and (21) that are illustrated
in Fig. 1(a) hold in this case. This figure was made using the
parameter values that we think characterize the experiments
described in this section. Comparing Figs. 1(a) and 2(a) we
see that D1 is D1 ≈ Def 3 for concentration values for which
we expect that Def 3 ≈ DCa–E

ef 2 . Therefore, we expect Def 3 to
depend on the concentrations as prescribed by Eq. (18) with
B = E. With this in mind we plotted in Fig. 4(a) the values, D1,
obtained for Catot > 9.5 mM (the ones that we identify with
Def 3) as a function of the ratio, E2

eq/Etot , that we computed
theoretically using the data in Tables I and II. Fitting the data
points of this figure with the function

f (x) = (α + βx)/(1 + γx) (28)

and identifying α = DE, β = DCa/KdE and γ = 1/KdE,
in principle, we could derive estimates of the free diffusion
coefficients of EGTA and Ca2+ and the dissociation constant
of their reaction that can be compared with their expected
values. Eq. (28) fits reasonably well the experimental data
(solid curve in Fig. 4(a)), obtaining α = (429 ± 80) µm2/s,
β = (5.06 ± 5.05) µm2 s−1 nM�1, and γ = (0.0065 ± 0.0069)
nM�1. This leads to DE = (429 ± 80) µm2/s which compares
very well with the expected value (∼405 µm2/s). The uncer-
tainties in the values of β and γ, however, are too large to
derive a meaningful estimate of Kd E from γ and, therefore,
of DCa combining β and γ. In spite of these large uncertain-
ties, the mean value γ = 0.0065 nM�1 gives KdE ∼ 153 nM
which is almost equal to the value prescribed by the ven-
dor (KdE ∼ 150 nM). If we use β = 5 µm2 s−1 nM�1 and
KdE = 153 nM we obtain DCa = 765 µm2/s which is also very
close to the free diffusion coefficient of Ca2+ in aqueous
solutions.

FIG. 4. Effective diffusion coefficients, Def 3, obtained under the assumption that they are given by the fitted values, D1, derived from the experiments with
Catot > 9.5 mM. (a) Def 3 as functions of E2

eq/Etot . We fit the displayed data points (circles) with a curve of the form Eq. (28) (solid line). (b) Def 3 as functions

of Caeq, the data (squares) were fitted with a curve of the form Eq. (29) (solid line). The ratios, E2
eq/Etot , and the values of Caeq were computed theoretically

assuming a system in equilibrium with Ca2+, EGTA, and Fluo-4 using the parameters in Tables I and II.
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Thus, in spite of the large uncertainties with which β and
γ can be derived by fitting the data, the figure provides an indi-
cation that the ratio Def 3/Dca depends on E2

eq/Etot as expected
based on our theory and assumptions. This gives further sup-
port to our interpretation of the information that is carried by
the fitted coefficient, D1.

We must recall that, according to Eq. (24), the component
of the ACF associated with Def 3 also has an exponentially
decaying term, exp(−ν3τ), that we could not derive from the
fitting. This could be due to the fact that exp(−ν3τ) ≈ 1 for
τ ∼ τef 3 = 42

r /(4Def 3). In fact the expected values of
exp(−ν3τef 3) are larger than 0.99 for all solutions with the
exception of the one labelled A10 for which it is 0.81. The
expected value, ν3, for this last solution is ∼5 ms�1 while it is
within 0.38–1.25 ms�1 for the others. The expected values of
τef 3, on the other hand, lie within the range 0.015–0.044 ms.

C. Estimation of the Ca2+ free diffusion coefficient
and the buffering parameters

One of the main goals of the present paper is to test
whether FCS experiments performed with single-wavelength
Ca2+ dyes can be used to derive the parameters that charac-
terize the Ca2+ traps that compete with the dye even though
they are non-fluorescent. With this in mind, we now analyze
the experiments as if we did not have any a priori information
on the trap (EGTA in our experiments) in order to test if what
we can deduce from such a “blind” analysis agrees with what
we know. We assume that only the total Fluo-4 concentration
is known. We first focus on D1. As already mentioned in con-
nection with Fig. 2, we have associated the decreasing values
of D1 with Def 3 ≈DCa–E

ef 2 given by Eq. (18) with B = E. We

rewrite this equation in terms of Ca2+ as

DCa–E
ef 2 =

KdEEtotDCa + (Caeq + KdE)2D E

KdEEtot + (Caeq + KdE)2
. (29)

Given that Etot is the same for all the experiments, Eq. (29)
implies that, if the number of different solutions probed is
large enough, knowing the free concentration, Caeq, for each
solution and using D1≈DCa–E

ef 2 , the values, Kd E, DE, Etot , and
DCa could, in principle, be inferred. In order to estimate the
free Ca2+ concentration for each solution, we can proceed as
follows: use the weights, Gotot and GoF4, to compute CaF4eq

= 1/(V ef Gotot) and F4tot = 1/(V ef GoF4) and, from them, deter-
mine F4eq = F4tot � CaF4eq. Using the dissociation constant,
Kd F4, provided by the vendor we can then estimate the free
Ca2+ concentration in each solution as

Caeq =
KdF4CaF4eq

F4eq
= KdF4

GoF4

(Gotot − GoF4)
. (30)

This computation, however, makes extensive use of the
weights which we argued could have been inferred with rel-
atively large uncertainties in the example at hand. In order
to ponder whether we can proceed as described, as a first
step we plot the fitted coefficients, D1, that correspond to the
solutions A4-A8 and A10 (which we identify with DCa–E

ef 2 , D1

= 692 µm2/s, 750 µm2/s, 785 µm2/s, 622 µm2/s, 467 µm2/s,
and 454 µm2/s) as functions of the free theoretical Ca2+ con-
centration (i.e., the one that is derived from the concentrations

used to make the solutions). This is shown with squares in
Fig. 4(b). We then fit them using a simplified version of
Eq. (29) in which we replaced (Caeq + Kd E)2 by (Caeq)2

(the very large difference between Caeq and Kd E makes it
impossible to extract a reliable value of Kd E separately),

DCa–E
ef 2 =

KdEEtotDCa + Ca2
eqD E

KdEEtot + Ca2
eq

. (31)

The result of the fitting is shown in Fig. 4(b) with a solid
curve. From the fit we obtain DCa = (772 ± 98) µm2/s and
KdE Etot = (1550 ± 1747) µM2. The diffusion coefficient is
within the expected value and the value derived otherwise in
this paper. In the case of KdE Etot , we observe that although
the fitted mean, 1550 µM2, is relatively close to the theoretical
value,∼1500 µM2, the uncertainty with which it is determined
is extremely large. These preliminary computations indicate
that the diffusion coefficients, D1 and D2, that are derived by
fitting the ACF change with the various concentrations as pre-
dicted by the theory. However, even if it is possible to derive
from them reliable values of the free diffusion coefficients, the
concentrations or dissociation constants that can be inferred
usually carry huge uncertainties. We now analyze what hap-
pens if we work “blindly” as described previously, i.e., if we
compute the free Ca2+ concentration for each solution using
Eq. (30). When trying to do so, the problem we face for the
experimental conditions that we probe in this paper is that, by
construction, the fraction F4tot /CaF4eq is very close to unity (it
varies between 1.008 and 1.53). Given Eqs. (25) and (26), this
implies that the difference Gotot /GoF4 �1 varies between 0.008
and 0.53. Thus, any error in the estimates of Gotot or GoF4 is
greatly amplified by the use of Eq. (30) leading to poor esti-
mates of Ca2+. In fact, if we use Eq. (30) we obtain, for the
various solutions, the concentration values, Caeq = 260 nM,
457 nM, 403 nM, 440 nM, 1507 nM, 6258 nM, which are
between 18 and 150 times smaller than those that can be com-
puted using the construction conditions. In spite of this huge
discrepancy in the concentration values, we did insert them
“blindly” in Eq. (31) together with the estimate, DE ≈ D1,
derived from the data points of Fig. 2 in the region where D1

does not vary significantly (DE = (450 ± 8) µm2/s) and the
six values of D1 that we identify with DCa–E

ef 2 as before. Fit-
ting Eq. (29) with this information, we obtained DCa = (774
± 157) µm2/s and KdE Etot = (0.42 ± 0.82) µM2. In this case,
the estimated value of KdE Etot is much smaller than expected
because of the poor Caeq estimates but the inferred free dif-
fusion coefficient of Ca2+, strikingly, is still very close to the
known one.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have presented the results of FCS exper-
iments performed in a medium with Ca2+, a single wavelength
Ca2+ dye (Fluo-4), and a Ca2+ trap (EGTA) together with the
theory to analyze them and derive quantitative information
on diffusion coefficients and Ca2+ trapping parameters. We
first analyzed the diffusive time scales that characterize the
dynamics of a system with these three species (Eqs. (3)–(7)).
Although their expressions are quite complicated, under cer-
tain conditions they can be approximated by the effective
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coefficients of the systems with Ca2+ and one of the other
two species (see Fig. 1). These approximated expressions were
particularly useful for the analysis of the experiments. After
having studied the time scales that characterize the reaction-
diffusion system, we derived an analytic expression of the
Auto-Correlation Function (ACF) of the fluorescence fluctua-
tions under the assumption that the reaction time scale was fast
enough.22 The resulting ACF, Eq. (24), had 4 components, one
of them exact and associated with the free diffusion coefficient
of the dye. The other three were characterized by the effective
coefficients of the three species reaction-diffusion system. Two
of the latter had exponentially decaying terms as well. We then
presented the results of a set of experiments performed in solu-
tions containing the same total EGTA and dye concentrations
but different total Ca2+ concentrations as listed in Table I. The
dye used was Fluo-4 low affinity. Even though the theory pre-
dicts that the ACF has 4 components and six time scales, it is
not always possible to derive reliable values of so many fitting
parameters. For this reason, we tried several expressions with
1, 2, or 3 components and with and without exponential factors.
Based on a χ2 comparison of the difference between the fit-
ted and the experimental ACF, we concluded that the fits with
two purely diffusive components were the best. Comparing
the two weights, Go0 and Go1, and diffusion coefficients, D0

and D1, derived from the fitting of each set of experiments in
Table I, we observed that D0 and Go0 remained constant for all
sets (see Fig. 2). We then identified D0 with the free diffusion
coefficient of the dye, DF4. Averaging over all experiments and
computing the standard deviation, we obtained DF4 = (60 ± 7)
µm2/s. This value is similar to the coefficient obtained from
the analysis of solutions of Ca2+ and Fluo-4 dextran, DF4 = (63
± 6) µm2/s.23 Comparing the behavior of the other coefficient
derived from the fittings, D1, with that of the effective coef-
ficients prescribed by the theory computed with the expected
concentration and free coefficient values (Fig. 2) allowed us
to infer how it depended on the biophysical parameters of the
system. Identifying D1 with the effective coefficient Def 1 and
considering that for low Ca2+ concentrations, Def 1 ∼ DE ,
for the smallest Ca2+ concentrations probed, we could esti-
mate the free diffusion coefficient of EGTA. We obtained DE

= (450 ± 8) µm2/s which is close to the value we can expect
(D ∼ 405 µm2/s) for a 380 Da molecule such as EGTA,
considering that a 332 Da one diffuses at D ∼ 425 µm2/s
in solution.67

Using information on the weights, we could estimate the
concentrations of free and Ca2+-bound dye for each solution.
The average value of F4tot gave (807 ± 231) nM, which is
consistent with the total concentration employed in the con-
struction of the solutions, Ftot = 676 nM. The values of CaF4eq

differed by a factor of 3 with respect to those that corresponded
to the concentrations that we used to construct the solutions
(see Fig. 3). Using the estimated values of F4eq and CaF4eq

and the dissociation constant, Kd F4, provided by the vendor,
we could, in principle, derive the concentration of free Ca2+

for each solution using Eq. (30). The conditions of the experi-
mental solutions, however, were such that the denominator in
Eq. (30) was very small which led to large uncertainties in the
estimated concentrations. In any case, inserting these concen-
trations (that were quite different from the expected ones) into

Eq. (31) gave a correct estimate of the free diffusion coeffi-
cient of Ca2+, DCa = (774 ± 157) µm2/s. The obtained mean
value of KdE Etot , however, was very poor and with a large
uncertainty. We do not expect to encounter such a problem
when applying the approach introduced here to experiments
performed in intact cells under basal conditions. Namely, in
such a case free Ca2+ is of the order of 100 nM so that the
difference CaFeq/F4tot � 1 can be safely bounded away from
1 thus preventing the denominator in Eq. (30) from becom-
ing too small. Furthermore, the adsorption of the reactants by
the coverslip that might be affecting the experiments in solu-
tion would not be present in that either. We also analyzed the
dependence with the theoretical free Ca2+ concentrations of
the values, D1, that we identified with DCa−E

ef 2 . The data points
shown in Fig. 2(b) could be fitted with Eq. (31). We used
this simplified version of Eq. (29) because Caeq � KdE for
the conditions of the experiments and it was impossible to
obtain a reliable estimate of Kd E separately. We expect this
situation to be different in intact cells as well. Namely, in
the cytosol we expect the dissociation constant of endogenous
Ca2+ buffers to be larger or comparable to the basal cytosolic
concentration, Caeq ∼ 100 nM. Thus, in principle it should be
possible to estimate both Kd E and Kd E Etot . In the experiments
analyzed here, the values derived from this fitting yielded
DCa = (772 ± 98) µm2/s and Kd E Etot = (1550 ± 1747) µM2.
The Ca2+ free diffusion coefficient was again within its
expected value with a reasonable uncertainty. Although the
mean of Kd E Etot improved with respect to the one estimated
using the values, Caeq, derived from the experiments, its uncer-
tainty was still too large. We thus conclude that there are two
separate problems affecting the estimates that can be obtained
from the non-fluorescent Ca2+ buffer concentration and its dis-
sociation constant using only the FCS experiment data. On the
one hand, obtaining reliable estimates of the weights of the
FCS requires that very long experiments be performed.34 Then,
there is the additional problem that arises if the individual
weights are very different between themselves. For the solu-
tions probed in the present paper, the weight of the term that
corresponded to the free diffusion of the dye was very small
compared to the total weight in many cases. That introduces an
additional source of variability because any uncertainty in the
larger weight translates into a large error in the smaller one.
This situation can be improved by choosing adequate dye con-
centrations depending on the system to be probed. But beyond
the errors of the individual weights, fitting functions like the
one in Eq. (29) requires to have enough experimental data
points in a particular region of free Ca2+ concentrations so that
its fitting parameters can be inferred with a reasonable uncer-
tainty. In any case, even with large uncertainties, what we have
observed in our experiments in solution is that the derived mean
value of KdE Etot was fairly close to the expected ones if we
used the theoretical free Ca2+ concentration values. This shows
that the analysis of FCS experiments performed under vari-
ous conditions using single wavelength Ca2+ dyes can provide
information on the properties of the non-fluorescent buffers
with which Ca2+ interacts (in this case, EGTA), buffers that
compete with the dye for the ions. This opens the possibil-
ity of applying a similar approach to study Ca2+ diffusion and
Ca2+ buffering in intact cells. In such a case, several buffers are
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competing for Ca2+. Thus, the problem is much more compli-
cated than the experiments that we have done and analyzed in
this paper. We expect however that a similar analysis would
provide information on some sort of “effective buffer,” partic-
ularly, on the cell buffering capacity. It would also allow us to
quantify the free diffusion coefficient of Ca2+ in the cytosol,
a parameter that was estimated over 20 years ago in cytoso-
lic extracts10 but not in intact cells. The actual meaning of
the “free diffusion coefficients” that could be derived from
such FCS experiments should be interpreted within the con-
text that displacement in cells is spatially restricted.68 The free
transport rates that could be inferred would then be limited by
the time resolution with which the data are acquired so that
they would not necessarily correspond to the rates that rule
diffusion at the shortest possible length scales.69–71 In order
to replicate in intact cells the type of approach that we have
presented in this paper, we would need to perform FCS exper-
iments under different conditions. Given the restrictions on
the low concentrations of dye that should be used, almost the
only choice that we are left with is to change the basal Ca2+

concentration. Preliminary tests performed in Xenopus laevis
oocytes using caged Ca2+ that is continuously photoreleased
to keep a constant concentration show that this is an option.
We thus expect to be able to present soon the results on the
quantification of Ca2+ diffusion and buffering in these cells
following the approach introduced in this paper.
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APPENDIX: MATERIALS AND METHODS
1. Theory: Computation of effective diffusion
coefficients for a system with Ca2+, dye,
and chelator

As explained in the main body of the paper, the lineariza-
tion of the reaction-diffusion system, Eqs. (3)–(7), around
the equilibrium solution is characterized by 5 branches of
eigenvalues, one of them associated with the free diffusion
coefficient of the dye, Fluo-4 and another to that of EGTA.
The third eigenvalue, when expanded up to O(q2), in the
wavenumber, q, corresponds to the effective diffusion coeffi-
cient, Def 1, given by Eq. (14). The expansion of the remaining
two eigenvalues up to O(q2) also has a diffusive component
with coefficients, Def 2 and Def 3, as shown in Eqs. (12)–(13).
Using algebraic manipulation software it is possible to obtain
analytic expressions for Def 2 and Def 3. We did not include
them in the main body of the paper because they are too long.
Here we describe briefly the steps that yield all the effective
coefficients. In Fourier space, the branches of eigenvalues of
the matrix that rules the dynamics of the linear version of
Eqs. (3)–(7) are

λ1 = −DF q2, (A1)

λ2 = −DEq2, (A2)

λ3 = −
Σ

3
+

2−1/3

3

(
m +

√
m2 + 4(−Σ2 + 3u)3

)1/3

−
1
3

21/3(−Σ2 + 3u)(
m +

√
m2 + 4(−Σ2 + 3u)3

)1/3
, (A3)

λ4 = −
Σ

3
−

1
6

(1 − i
√

3)2−1/3
(
m +

√
m2 + 4(−Σ2 + 3u)3

)1/3

+
1
6

(1 + i
√

3)21/3(−Σ2 + 3u)(
m +

√
m2 + 4(−Σ2 + 3u)3

)1/3
, (A4)

λ5 = λ̄4, (A5)

where i is the imaginary unit and

Σ = a + aE + 1 + c + cE + kE + q2 (1 + D F4 + DE),

u = q4(D E + DF4 + DEDF4) + q2[(D F4 + 1)(cE + kE)

+ (DE + 1)(1 + c) + (DF4 + DE)(a + aE)]

+ a(cE + kE) + (1 + c)(aE + cE + kE),

m = a1 + b1q2 + c1q4 + d1q6,

a1 = −2 (1 + a + c)3 − 2 k E(1 + a + cE)3 + 3 k E(1 + aE + cE)

× (1 + a + c)2 + 3 k2
E(1 + a + c)(1 + a E + cE)2

− 9 a a E kE [(1 + a + c) + kE(1 + aE + cE)],

where a = F4tot
KdF4

, aE =
Eeq

KdE
kE, c =

Caeq

KdF4
, and cE =

Caeq

KE
kE. In

spite of the complex notation, it can be shown that the eigenval-
ues are real functions of q2. We do not include the expressions
of b1, c1, and d1 because they do not enter the effective coeffi-
cients. Expanding the eigenvalues, λ3, λ4, and λ5 up to O(q2)
and using the identification introduced in Eqs. (11)–(13) we
arrive at Eq. (14) for Def 1. In order to compute numerically
the values, νef 2 and νef 3, we set q2 = 0 in the expansions of
λ4 and λ5. In order to determine Def 2 and Def 3 numerically,
we calculate the differences, λ4 − νef 2 and λ5 − νef 3, using the
expansions of the eigenvalues up to O(q2) and then set q = 1.

2. Experiments: Data acquisition

The FCS experiments were done depositing on a cover-
slip a 30 µl drop of the chosen solution. The fluorescence
records were obtained in a FV1000 spectral confocal micro-
scope using a 60× oil immersion objective (UPlasSapo), NA
1.35, a 115 µm pinhole size, illuminating the sample with the
488 nm line of an argon laser and collecting the emitted light
in the 500–600 nm range. The fluorescence was collected from
a single point located at approximately 20 µm from the cover-
slip at a 50 kHz acquisition rate during ∼160 s. We performed
series of experiments at various laser powers to determine the
optimal power range that prevented photobleaching and yet
provided good correlations (data not shown).
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3. Computation of the experimental ACF

The ACF was computed after having verified that the fluo-
rescence fluctuated about a steady value during the time course
of the experiment. Records that presented abrupt changes were
discarded. The fluorescence time series was divided into N seg-
ments of length, FTL, each of which was doubled by adding
FTL zeros in order to avoid aliasing. A discrete Fourier trans-
form was applied to each segment and the ACF was then
computed using the Wiener-Khinchin theorem. The N ACFs
were then averaged. FTL sets a limit on the longest correla-
tion time that can be derived from the ACF. Thus, for these
experiments we used FTL = 213 which gave N = 1021, 164 ms
segments. The longest correlation time that we could identify
was 1 ms. The first 1-2 points of the ACF were discarded in
order to avoid the effects of after-pulsing.

4. Fitting the experimental ACF

The averaged ACFs were fitted using functions of the
general form

G(τ) =
m∑

i=0

Goi
e−νiτ(

1 + τ
τDi

) √
1 + τ

42τDi

(A6)

with different numbers of components with either νi as a fit-
ting parameter or with νi = 0. The best fits were obtained using
m = 2 and ν0= ν1=0. The analysis presented in Sec. III involves
analyzing how to establish the way in which the fitted param-
eters of the experiments are related to those of the theoretical
ACF (Eq. (24)). For the fittings we used the function nlinfit
that comes with Matlab.72 In order to apply this method, it
is necessary to give an initial guess of the fitting parameters.
We tried several initial guesses and discarded those that gave
diffusion coefficients, D, and weights, Go, that were outside
these ranges: 10 µm2/s < D < 2500 µm2/s and 0 < Go < 10.
When the optimization algorithm gave more than one set of
fitting parameters, we chose the one that gave the smallest χ2

given by

χ2 =
1

Np − N3

Np∑
i

(Gtheo(τi) − Gexp(τi))2

Gtheo(τi)
(A7)

with Np the total number of data points of the experimental
ACF, Gexp, Nv the number of variables of the model Gtheo

the ACF computed with the fitting model. In order to go
from the diffusive correlation times to the diffusion coeffi-
cients, we calibrated the confocal volume using a solution
containing 50 nM of fluorescein whose diffusion coefficient
was assumed to be 425 µm2/s.67,73 The resulting values
of the lateral width, 4r , varied between 262 and 291 nm
with 4 = 4z/4

r = 5 and the estimated effective volume was
V ef = (0.59 ± 0.1) µm3. Had we used 300 µm2/s for the
diffusion coefficient of fluorescein as done in Ref. 32 we
would have obtained V ef = 0.35µm3 and diffusion coeffi-
cients that differed by a factor∼0.7 from those presented in the
paper.

5. Parameter estimation and error propagation

Parameters obtained by fitting the experimental ACF, dif-
fusion coefficients, D, and weights, Go, were expressed as the

mean ± standard error of the mean (SEM). Other results were
expressed as the value ± the uncertainty obtained from the
error propagation.
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