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Abstract
Förster resonant energy transfermeasured byfluorescence lifetime imagingmicroscopy (FRET-
FLIM) is themethod of choice formonitoring the spatio-temporal dynamics of protein interactions in
living cells. To obtain an accurate estimate of themolecular fraction of interacting proteins requires a
large number of photons, which usually precludes the observation of a fast process, particularly with
time correlated single photon counting (TCSPC) based FLIM. In this work, we propose a novel
method named pawFLIM (phasor analysis via wavelets) that allows the denoising of FLIMdatasets by
adaptively and selectively adjusting the desired compromise between spatial andmolecular resolution.
Themethod operates by applying aweighted translational-invariantHaar-wavelet transform
denoising algorithm to phasor images. This results in significantly less bias andmean square error
than other existingmethods.We also present a new lifetime estimator (named normal lifetime)with a
smallermean squared error and overall bias as compared to frequency domain phase andmodulation
lifetimes. Overall, we present an approach that will enable the observation of the dynamics of
biological processes at themolecular level with better temporal and spatial resolution.

1. Introduction

Through vision, light has always been the preferred
phenomenon to learn from nature. Telescopes and
microscopes expanded the limit of our senses, allow-
ing us to discover the immensity of the Universe and
the micro-cosmos that lies in every cell. Since such
developments, using light to interrogate and manip-
ulate the world has been a cornerstone of modern
technology, from medical imaging to data storage,
from optical communications to harnessing the
energy of the Sun. At the core of all these examples is
our understanding of the interaction between light
andmatter.

Fluorescencemicroscopy, empowered by the devel-
opment of the confocal microscope (Minsky 1961,
Conchello and Lichtman 2005) and the retooling
of fluorescent proteins (Shimomura et al 1962,
Tsien 1998), revolutionized cell biology as it allowed us
to observe the localization and dynamics of proteins in
living cells (Amos andWhite 2003). For example, in the

study ofmitosis we have come a long way from the out-
standing work of the German biologist W Flemming,
who used handmade drawings in the XIXth century
(Paweletz 2001), to the recent super-resolution movies
revealing membrane dynamics during the process
(Aguet et al 2016).

But fluorescence is more than just an excellent way
to achieve contrast in microscopy. Molecules are sen-
sitive to their environment, a feature (not a bug)which
can be exploited as a reporter. Fluorescence lifetime, a
measure of the time a molecule spends in the excited
state before returning to the ground state by emitting
a photon, is a particularly good readout of the
environment, as was first demonstrated by Enrique
Gaviola. While working in Berlin during the 1920ʼs
(Bernaola 2001), the Argentinean physicist accurately
measured for the first time the fluorescence lifetimeof
fluorescein and rhodamine in solution, both in the
nanosecond range. He also demonstrated that it was
affected by temperature, solvent and viscosity
(Gaviola 1926). He achieved this remarkable
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observation by building a phase fluorometer (we also
owe him this word)with a sub-nanosecond resolution
usingKerr cells (Gaviola and Pringsheim 1927).

Since the pioneering work by Gaviola, it has been
found that fluorescence lifetime is affected by several
additional factors. Among these is the presence of
other molecules in close vicinity due to a dipole–
dipole interaction known as Förster resonant energy
transfer (FRET) (Förster 1948). FRET has been of
major importance in understanding how function
emerges from protein networks. Indeed, biological
function arises from the interaction of nanometer-
sized molecules which operate in a context dependent
manner (Barabasi and Oltvai 2004, Grecco et al 2011).
Finding those interactions requires co-localizing pro-
teins in a volume which is seven orders of magnitude
smaller than the resolvable volume in standard fluor-
escence microscopy (Jares-Erijman and Jovin 2003,
Grecco and Bastiaens 2008,Margineanu et al 2016). As
an analogy, it is like assessing whether two people are
holding hands in a hotel which occupies an area of
100 m by 100 m and is 100 stories tall. FRET allows us
to assess interaction without providing any informa-
tion aboutwhich room they are in.

Methods for measuring lifetime are generally divi-
ded into time domain and frequency domain techni-
ques (Lakowicz 2006). In the former, a pulsed
excitation is used and the emission is collected in a
time resolved manner (figure 1(a)). In the latter, a
sinusoidal excitation combined with a phase sensitive
detection of the emission is used (figure 1(b)). Fluores-
cence lifetime imaging microscopy (FLIM) allows us
to obtain spatially resolved maps of decay rates in
fluorescent samples by combining such techniques
with awide-field or confocalmicroscopy.

FRET measured by FLIM (FRET-FLIM) is the
technique of choice for quantifying the interaction
dynamics of proteins in living systems (Wouters et al
2001). However, accurate quantification of the frac-
tion of interacting proteins requires a compromise.

The number of photons per image is limited either by
the acquisition device, the brightness of the sample or
by the photostability of the fluorophore. In certain
cases, the photon count can be increased by integrat-
ing over a longer time or in a larger space but conse-
quently yields a lower temporal or spatial resolution.
The same is true for any other FLIM based quantifica-
tion, such as the fluorescence lifetime of an envir-
onmentally sensitive probe or an intramolecular
activity FRET sensor.

Until recently, little attention had been given to
applying image analysis techniques that take advan-
tage of the spatial correlations present in FLIM data-
sets. Most work has been focused on accurately
extracting the apparent fluorescence lifetimes from
decay curves (i.e. single-pixel analysis). One of the first
approaches to benefit from spatial information was
global analysis, which assumes that some parameters
are spatially fixed (usually lifetimes) and simulta-
neously fits every pixel with that restriction (Beechem
et al 1983, Knutson et al 1983, Verveer et al 2000, Bar-
ber et al 2005). However, image analysis techniques
allow us to adaptively exploit local spatial information.
They are not only valuable for improving intensity
images, but can also assist in the lifetime analysis of
FLIM images (Buranachai et al 2008, Spring and
Clegg 2009, Chang andMycek 2009, Lin 2012, Roudot
et al 2013).

In this work, we propose a novel method named
pawFLIM (phasor analysis via wavelets of FLIM) that
allows the denoising of FLIM datasets by adaptively
adjusting the desired compromise between spatial and
molecular resolution. After presenting the theory and
previous work on this topic, we show through numer-
ical simulations that pawFLIM outperforms existing
methods, resulting in a reduced bias and mean square
error. As it operates at the phasor space, it also
improves the determination global lifetimes, relative
intensities and molecular fractions. It is applicable to
both time- and frequency-domain data and not

Figure 1.Depiction of time and frequency domain FLIM techniques. (a) In the time domain, the sample is illuminatedwith a train of
pulses with periodT. Each pulse (red) excites thefluorophore and its emission (green) ismeasured as a function of time. The detected
emission is the convolution of thefluorescence emission (in this case, an exponential decay with parameter τ) (blue) and the pulse (in
this case, aGaussian distributionwith parameters t0 and st ). (b) In the frequency domain, the sample is sinusoidally excited (red), and
the emission (green)measuredwith a phase sensitive detection scheme. The parameters of the exponential decay can be obtained from
the phase shift ( fD ) and the demodulation between excitation and fluorescence emission (M Mf e).DCe andDCf correspond to the
average intensities of the excitation and fluorescence emission, respectively.
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limited to binary systems as it can improve the estima-
tion of average lifetimes in any complex mixture. We
demonstrate the performance on a real image by
applying pawFLIM to a FRET-FLIM experimental
dataset.

2. Theory

2.1. Fluorescence lifetime
Fluorescence emission can be modeled as a first order
kinetic process (Pelet et al 2004). The solution is
usually described as a continuous intensity decay, but a
single molecule emits one photon at a time. From a
probabilistic point of view, the photon emission time
from a fluorophore excited at t=0 follows an
exponential distribution of parameter τ, whose prob-
ability density function (PDF) is:


t t

t
=

<
-

⎧
⎨⎪
⎩⎪

( ∣ ) ( ) ( )D t
t

t
t

0 if 0
exp

if 0
1

where τ corresponds to thefluorophore’s lifetime.
Originally, FLIM was demonstrated for single life-

time estimates. However, a mixture of different mole-
cules or molecular species in different biochemical
states may be present in each pixel. In such cases, its
decay kinetics are not accurately described by a single
exponential. Therefore, a single lifetime estimation is
only a semiquantitative estimate and, instead, the life-
times and populations of each species should be
resolved (Verveer et al 2000).

If several fluorophores are considered, the weigh-
ted sum of its individual PDF for the photon emission
time yields the overall PDF:

åt
t

t= -( ∣ ) ( ) ( )D t p
p

t, exp 2i i
i
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i

where å =p 1i i . This results in a mixture distribu-
tion, where pi is the probability that the emitted
photon comes from the fluorophore with lifetime ti

(figure 2(a)). That is, ifN photons are detected,Npi are
expected to come from fluorophore i.

It is important to differentiate between pi, the pho-
ton fraction, and mi, the molecular fraction
(figure 2(b)). The photon emission of each molecular
species is proportional to its detected brightness, an
expression to encompass from fluorophore properties
such as quantum yield to experimental setup condi-
tions such as detector response. To obtain the mole-
cular fraction, each photon fraction has to be divided
by its corresponding detected brightness, and then the
sum renormalized to one (Verveer et al 2000).

In most FRET-FLIM experiments only the donor
emission is observed. Therefore any change in bright-
ness is due to a reduction of its quantum yield when a
complex with an acceptor is formed. Assuming that
only two states are present in the sample, just the ratio
between their respective quantum yields is needed to
transform from photon (p) to molecular (m) fraction.
For FRET, this is equivalent to the lifetime ratio
(Lakowicz 2006) and therefore:

=
+ t

t
- ( )( )m

1

1
3

p

p

1D

FRET

where we have defined =m mFRET and = -m m1D .
It’s important to note that, since this is a nonlinear
relationship (figure 2(c)), it is not equivalent to average
in p orm.

Figure 2. Fromphotons tomolecules in FRET-FLIM. (a)Monoexponential decays (normalized to t = 0) of long (green) and short
(red) lifetimes; the unnormalized long decay curve is also shown (dashed green). In a FRET-FLIMexperiment with two distinct
lifetime populations, these correspond to populations of donor alone and donor in complexwith acceptor. A biexponentialmixture of
them (violet) results whenmolecules in both states are found in the same pixel. (b) From the biexponential decay, the fraction of
photons (p)detected fromdonor in complex can be derived. Since FRETquenches the donor emission (green arrows), themolecular
fraction (m)will differ from p. As an example, for these threemolecules =p 1 5 but the fraction of donor in complexmolecules is
larger ( =m 1 3). (c)Photon tomolecular fraction conversion, for different lifetime ratios (color coded). Although values outside 0–1
(limited by dashed black lines) are unphysical (red-shaded region), they can’t be omitted in the analysis as this will introduce a bias in
most statistical estimators. For <p 0, this functional relation has an asymptotic value (vertical colored dashed lines corresponding to
the different lifetime ratios).
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2.2. Phasor approach: analyzing FLIMdatasets in
the complex plane
The phasor approach consists of analyzing the data in
the frequency domain (Clayton et al 2004, Digman
et al 2008, Grecco et al 2009). A phasor R is defined as
the Fourier transform of the normalized decay, which
for a single exponential decay, (1), is:

ò wt
= =

-
w

-¥

¥
( ) ( )R D t te d

1

1 i
. 4ti

This value moves counterclockwise in the complex
plane, along a semicircle, as wt increases (figure 3(a),
yellow line).

From a given phasor R located on the semicircle,
the corresponding lifetime can be obtained. Never-
theless, a measured phasor is usually located off the
semicircle due to noise. Therefore it is important to
choose an appropriate estimator. For historical rea-
sons, the most common estimators are the modula-
tion and phase lifetimes, respectively obtained from
the modulus and phase of (4). We propose an alter-
native estimator, the normal lifetime, which consists
of projecting the measured phasor to the closest point
on the semicircle and then obtaining τ from (4).

These lifetime estimators can be geometrically
interpreted. In the case of the modulation lifetime,

each measured modulation gets assigned to a lifetime
or, equivalently, a phasor in the semicircle. But there
are several possible phasors which share the same
modulation. All phasors lying in a circle around the
origin share the same modulus and, hence, get
assigned the same lifetime. Therefore, this lifetime can
be thought of as projecting a measured phasor to the
monoexponential semicircle along a circle centered in
the origin (figure 3(b), red line). Analogously, the
phase modulation can be thought of as projecting
along a line from the origin, since these are the points
that share the same phase (figure 3(b), green line). Our
new estimator assigns the closest point in the semi-
circle, which is a normal projection, hence its name
(figure 3(b), blue line).

As can be seen from this geometrical representa-
tion (figure 3(d)), circumferences corresponding to
short lifetimes are crammed together, as are phase
lines corresponding to long lifetimes. Therefore, a
small error in the phasor gets translated to a large error
in lifetime. Instead, the normal estimator is more
evenly distributed.

For biexponential decays, the phasor moves along
a line joining the monoexponential phasors R1 and R2

(figure 3(a), green line):

Figure 3. FLIM analysis using the phasor approach. (a)Aphasor corresponding to amonoexponential decaymoves counterclockwise
along the semicircle as wt increases (yellow). For biexponential decays, it lies along a line joining themonoexponential phasors
(green).We define p=0 at the red extreme, corresponding to the long lifetime.Due to the IRF, itmoves towards (blue) or rotates
around (violet) the origin, where the parameters correspond to aGaussian IRF of center t0 andwidth st . To demonstrate the effect of
noise on each line, the phasor distribution is shown above in four boxes labeledwith the same color. The colored ellipses represent the
60% confidence area. Notice that, compared to the phasor distribution in the semicircle (red dashed line), the others are skewed. (b)
Geometrical interpretation of lifetime estimators for a phasor (yellow) to which noise has been added (black). Red and green
correspond to historically usedmodulation and phase lifetimes, respectively. Blue corresponds to newly introduced normal lifetime
(see text). (c)The photon fraction p is estimated from the distance of the scalar projection (blue) of a phasor (yellow) towhich noise
has been added (black) over the biexponential line to the long lifetime phasor, normalized by the length of the biexponential line. Also
shown is the perpendicular distance to the line, p̂ , a usefulmeasure for global analysis. (d)Contour curves of single lifetime
estimators, chosen to be logarithmically spaced to consider the relative error in lifetime.
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= + -( ) ( )R p R p R1 . 51 2

If these are known, we can solve (5) for p. However,
in the presence of noise, a phasorRwon’t necessarily lie
on this segment. The usual estimator is the normalized
scalar projection to the biexponential line, which is
equivalent to a least squares minimization (Grecco et al
2009). A noisy phasor is projected perpendicularly to
the biexponential line and, then, p is estimated as the
distance between that point and R2, normalized by the
length of the segment defined by R1 and R2 (figure 3(c),
and supplementary information 1 and 2 available
online at stacks.iop.org/MAF/5/024016/mmedia).

2.3. Effect of the instrument response function (IRF)
In the previous sections we presented the results for a
delta-like pulse illuminating the sample at t=0 and
with electronics with an infinite bandwith. However,
since the excitation pulse is broad, not all molecules
are excited simultaneously but rather at a random time
within the pulse width. The detector introduces an
additional random time offset for each photon (see
supplementary information 3). Both effects, which
offset the emission time, can be grouped in a single
variable described by a distribution called the instru-
ment response function (IRF).

Therefore, the expected fluorescence F can be
expressed as a convolution of the fluorescence decayD
with the instrument response function IRF:

ò
t t= *

= -
-¥

¥
( ∣ ) ( ∣ ) ( ∣ )

( ) ( ∣ ) ( )

F t T D t t T

D u t u T u

, IRF

IRF d 6

where T is the excitation period. To exemplify the
effect of the IRF on the phasor we will consider a
Gaussian function centered at t0 and of st width.

s
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As the Fourier transform of a convolution is the
product of the transforms:
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where the only remaining harmonics are multiples of
the fundamental frequency w = p

T0
2 of the train of

excitation pulses. For the first harmonic, convolving
with amonoexponential decay, we have:
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In the phasor plot, the center parameter t0 pro-
duces a rotation around the origin, while the width
parameter st produces a contraction towards the ori-
gin (figure 3(a), violet and blue curves, respectively).
To estimate the distribution corresponding to the

unconvolved decay D, the IRF has to be measured (or
inferred). Deconvolving in the time domain is dividing
in the frequency domain, which is an ill-conditioned
problem as higher harmonics tend to be dominated by
noise. However, in most FLIM experiments there is a
separation of temporal scales between the fluorescence
decay (long) and the IRF (short). Therefore, an accurate
analysis of the data can be achieved using only the lower
harmonics of the data as they containmost of the infor-
mation (Grecco et al 2009). In particular, as has been
shown in global analysis, only the first harmonic is
necessary to resolve a bi-exponential decay in a hetero-
geneous population (Verveer andBastiaens 2003).

2.4. Average and covariancematrix of phasor
distributions
The equations presented in the previous sections
describe the behaviour of the noise-free value, but
phasor distributions do not move rigidly (figure 3(a),
red ellipse versus ellipses in blue, green and yellow
boxes). To analyze further the effect of noise and the
IRF, it is convenient to describe the phasor distribu-
tion rather than the noise-free phasor value.

In TCSPC, each detected photon is assigned to a
histogram bin at time tk of width Dt , with probability

ò t=
+D

( ∣ )p F t tdk t

t t

k

k
. IfN photons have been detec-

ted, the number of photons Xk in channel k is a multi-
nomial random variable. Then, the corresponding
phasor can be calculated as:
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where n is the number of harmonics considered. A
straightforward calculation applying the properties of
the expectation [ ]E . and covariance [ ]Cov . , . opera-
tors gives:
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For a high number of bins (or equivalently small bin
width Dt ), equation (11) becomes (4), and the phasor
estimator is unbiased. Instead, if the bin width is not
negligible, a correction has to be considered (Fereidouni
et al 2011).

Since a phasor is a complex value, it can be con-
sidered as a two-dimensional vector. Its associated
covariance matrix can be used as a measure for the
shape of the corresponding distribution.
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As mentioned before, to correct (deconvolve) for
the effect of the IRF it is necessary to divide by the
corresponding harmonic = f∣ ∣R R en

IRF
n
IRF i n

IRF
. This

propagates to the covariance matrix as a division by
∣ ∣Rn

IRF 2 and a (matrix) rotation by f- n
IRF .

As a measure of the similarity of the unconvolved
distribution with the deconvolved one, we calculate the
difference in the trace of their covariances. Applying
properties of the variance and expectation value we
arrive at:
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where R RIRF and =RY 0 correspond to the deconvolved
and unconvolved distribution. It is evident that the
traces, and therefore the covariance matrices, are
different if ¹∣ ∣R 1IRF

2 . This indicates that when the
IRF is not a delta-like function, it introduces not only a
rotation and shift of the phasor distribution but also
changes its shape. This can also be seen in simulations
(supplementary figure 4). Therefore, dividing the
measured phasor distribution by the IRF coefficient
will rotate and shift (more correctly, contract) the
distribution to the unconvolved location in the phasor
plot, resizing but not reshaping to the uncon-
volved form.

2.5. FLIMworkflow
In full-field homodyne FD-FLIM, a high-frequency
repetitive voltage signal modulates the gain of the
image intensifier at the same frequency as the excita-
tion light modulation. A stack of FLIM intensity
images is acquired by phase shifting themodulation of
the detector gain with respect to themodulation of the
excitation light. Every phase image is integrated on a
CCD camera for a time to acquire sufficient signal-to-
noise ratio (Spring andClegg 2009).

The analysis of FLIM images proceeds from this
stack of phase-delayed images from which a phasor
image can be obtained. Time-gated and TCSPC detec-
tion generate a completely different type of dataset but
can also be transformed to a phasor image (figure 4).
From such a phasor image, either a fluorescence life-
time image can be directly calculated or, for binary sys-
tems, we can apply global analysis to arrive at the
parameter of interest, themolecular fractionm.

With the exception of global analysis, the previous
sections have been concerned with single pixel estima-
tors. Global analysis does use multiple pixel informa-
tion but in an uncorrelated manner, i.e. no
information about pixel location is used. As pointed
out in the introduction, we developed a denoising
algorithm applied in the phasor image that exploits
spatial correlations to improve estimations locally.
Nevertheless, image analysis techniques could be
applied to several instances along the FLIM analysis

workflow: intensity, phasor, and lifetime or photon/
molecular fraction images. However, a procedure that
utilizes local averages will perform differently in each
of these spaces.

While we have previously shown that the phasor
estimator is unbiased, lifetime estimators are non-
linear functions of it and, therefore, biased. Hence, to
estimate an average lifetime it is better to take averages
upstream in phasor space than directly in lifetime
space.

Analogously, the molecular fraction will also be
biased since it is a nonlinear function of the photon
fraction p (equation (3)), which in turn is unbiased,
being a linear function of the phasor. Hence, it is pre-
ferable to average in p and then transform tom rather
than take averages in m directly. Additionally, due to
noise, both positive and negative values can be found
for p when ~p 0true . Negatives must be kept as the
average would be positively biased otherwise. But m
diverges, and therefore its average, as p approaches

t t- <-( )1 0DFRET
1 (in FRET-FLIM). Again, this is

not a problem if averaging in p rather thanm.
Finally, while averaging either in phasor or photon

fraction space leads to the same result, the information
to decide whether to average or not is different. In pha-
sor space we have two components (real and imagin-
ary parts) and we can leverage correlations between
them, while the photon fraction is only one comp-
onent, which is akin to discarding the imaginary part
after a suitable transformation (see supplementary
information 1).

Moreover, as the phasor image is upstream of any
subsequent calculation it can benefit the analysis inde-
pendently of the sample (single fluorophores, non-
binary systems, binary systems). For instance,
averaging in phasor space impacts the determination
of global lifetimes through global analysis, which, in
turn, impacts the determination of the photon frac-
tion. As any dataset can be converted to a phasor
image, any posterior analysis will benefit from a
denoising applied in this instance, independently of
the acquisitionmethod (FD-FLIM, TD-FLIM).

2.6. Usingwavelets for image denoising
There are diverse image analysis techniques to denoise
an image. Among the simpler ones are linear filtering
techniques, which are specified by their transfer
function, as is a Gaussian filter. Others choose an
appropriate representation where information is con-
centrated in few coefficients, i.e. it is sparse. Assuming
the small coefficients correspond to noise, they are
discarded and an inverse transform applied to recover
an estimation of the original image. This procedure is
called thresholding or shrinkage. These techniques are
classified within nonlinear filtering methods, which
can vastly outperform optimal linear procedures
(Mallat 1999).

One of the most used representations is the fre-
quency (or Fourier) basis. As the signal is represented
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as a sum of sinusoidals, this basis is most adequate for
periodic signals. When local features or sharp dis-
continuities are present, a considerable number of
coefficients are necessary to accurately reconstruct the
signal since they are determined globally. Several
space-frequency representations, such as the wavelet
transform, were developed to overcome this problem.
Wavelets are useful to describe signals with local fea-
tures due to their space-frequency localization. They
provide a good spatial resolution for high frequency
events, and a good frequency resolution while sacrifi-
cing spatial resolution for low frequency events.

From a statistical point of view, wavelet threshold-
ing is related to hypothesis testing (Abramovich and
Benjamini 1996). It can be shown that for normal ran-
dom variables, their wavelet coefficients are also nor-
mal random variables. A p-value can be calculated for
each coefficient and discarded according to a preset
significance level (SL). On a wavelet basis, this proce-
dure implements an adaptive smoothing (figure 5(a)),

which averages the data with a kernel that depends on
the underlying signal (Mallat 1999).

2.7. FLIManalysis usingwavelets
The original Spring and Clegg’s algorithm uses a TI-
Haar wavelet transform thresholding algorithm over
the intensity images to improve lifetime estimations.
Yet it only uses the spatial information of each
intensity image separately, without considering tem-
poral (or phase) information. One way to integrate
such information is to fit a sinusoidal function to the
intensity stack in each pixel and from there recover
images for the modulation and phase. In other words,
obtain a phasor image. Then, the algorithm should
compare if two pixels are close in phasor space. This is
the idea behind pawFLIM.

We implemented a weighted translational-invar-
iant Haar-wavelet transform denoising algorithm
applied over the phasor images. The algorithm uses
wavelets to adaptively average phasors. We modified

Figure 4.Phasor-approach FLIM analysis workflow. Independently of the experimentalmethod, a phasor can be calculated for each
spatial pixel from its intensity series, yielding a phasor image. Then, either an apparent lifetime can be estimated directly for each pixel
or, after global analysis, a photon fraction. In turn, the photon fraction can be converted tomolecular fraction normalizing by the
quantum yield of each species (or lifetimes, in the case of FRET). A cell-shapedmaskwas placed over simulated data for illustrative
purposes.

Figure 5. Spatial averaging at the phasor images. (a)Wecan adaptively trade spatial resolution for accuracy by averaging similar pixels.
Note that image denoisingmethods such as wavelet thresholdingmay average non-locally (see supplementaryfigure 5). (b)A
statistical test on the phasor similarity is performed to decide whether two adjacent pixels should be averaged. The desired statistical
significance is a parameter that can be chosen to adjust the trade off between spatial andmolecular resolution. For example, for a given
significance level, the left casewill be averaged but not the right one.
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the usual Haar approximation a and detail d coeffi-
cients as aweighted average and a difference.

S S S S= + +
= -

- - - - -⎧⎨⎩
( ) ( ) ( )a x x

d x x
141

1
2

1
1

1
1 2

1
2

1 2

1

where x1 and x2 are two neighboring complex values,
S1 and S2 their corresponding covariance matrices.
Unlike previous denoising at the phasor level
(Lin 2012), our algorithm explicitly considers the
uncertainty of each phasor. To decide if two phasors
should be averaged we use the distance between them
in relation to their error as determined by the
covariancematrix (figure 5(b)).

To resolve whether to keep the detail coefficient, a
c2 is calculated:

c S S= + -( ) ( )( ) d d 15T
1 22

2 1

and the coefficient is thresholded according to a
desired significance level. These equations are valid for
one-dimensional complex data, but can be easily
expanded for two-dimensional complex data. See
supplementary information 4 for a complete descrip-
tion of the algorithm and the adaptation of Haar
wavelets toweighted complex data.

3. Simulations

3.1. Lifetime estimators: single-pixel analysis
To compare lifetime estimators, we performed a
Monte Carlo simulation of time correlated single
photon counting (TCSPC) datasets and quantified the
bias and mean squared error (MSE). In the general
case, considering background and IRF, the simulation
procedure is the following: for each detected photon, a
value is drawn from a Bernoulli distribution with
parameter pbg deciding whether this photon comes
from background noise or signal. Background
photons are then drawn from a uniform distribution.
Signal photons are drawn as following: a value X is
drawn from an exponential distribution and another
value Y is drawn from the IRF distribution, and the
sum X+Y, corresponding to the photon arrival time,
is placed in a histogram. This process is repeated until

N values fill the histogram. Finally, a phasor is
calculated from this histogram and, in turn, each
lifetime estimator is obtained from this phasor value.
This process is iterated, obtaining a distribution for
each estimator, from which bias and MSE are
evaluated.

The distributions for each lifetime estimator were
bell shaped, approaching a normal distribution as an
increasing number of photons were considered.
Therefore we calculated the bias (deviation of the
mean from the true value) and mean squared error
(MSE), both relative to the true lifetime to describe the
distribution (figure 6). For optimized systems in
which wt p2 10 (in this case t < 2.5 ns) the
improvement of the normal estimator is subtle as
compared to the usual phase estimator. But when a
larger lifetime range is considered, the normal lifetime
estimator has an overall better performance (less bias
and andMSE). This provides a practical way to extend
the operation range without changing the equipment
or the sample.

3.2. Lifetime estimators for spatially heterogeneous
images
Having demonstrated that the normal estimator
improves monoexponential lifetime determination in
a single-pixel basis, we then moved to measure the
performance of pawFLIM denoising on a spatially
heterogeneous image. Using in each pixel the same
procedure as in the previous section, we now simu-
lated an image in which the lifetime changes between
four different values (from 1 to 3 ns). The intensity for
each pixel was sampled from a normal distribution
with a mean of 400 and standard deviation of 40
photons, yielding a spatially unstructured intensity
image (figure 7(a)).

A direct calculation of the undenoised image
shows that the phasor distributions spread over the
semicircle making it impossible to resolve among the
underlying 4 distributions (figure 7(b)). The image
reconstruction presents four clearly distinct bands
(like in the template image) but with a rather large var-
iance in each of them. Application of the Clegg

Figure 6.Performance of lifetime estimators. Bias andmean squared error (MSE) relative to the lifetime. Data from aMonteCarlo
simulation of TCSPC for 200 detected photons, a frequency of 40 MHz, and 1024 bins, 1million iterations, negligible error bars. Red,
green and blue curves correspond to themodulation, phase and normal lifetime, respectively. Light and dark colors correspond to
simulations without andwith background.
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algorithm significantly improves the result, reducing
the variance in each band. Additionally, four small
peaks start to appear in the distribution. The denoising
is less effective than in the original work presented by
Clegg (Spring and Clegg 2009). The reason is that
Clegg only works well when DC levels are uniform
across the image but it fails when there is a consider-
able variation. For instance, while two neighboring
pixels may correspond to the same lifetime, their
intensities could be very different due to distinct DC
levels (i.e. total photons collected). Hence, those two
pixels will not be averaged in intensity.

To make a fairer comparison with pawFLIM, we
have included the results from our own variation of
Clegg (naming the method CleggN), which solves this
issue by including a normalization step. In practice, we
expect different DC levels, either by photon counting
fluctuations or different absolute fluorophore con-
centrations. Note that normalizing is a way of integrat-
ing temporal information, since we divide by the total
number of photons collected. The image reconstruc-
tion using CleggN already displays a much smoother
image in each band correlated with four clear peak in
the phasor plot. However, a bias towards the outside of
the semicircle is clearly visible. pawFLIM corrects this
bias as well as narrowing down the distribution (i.e.
reducing theMSE).

The comparison is more clearly visible if we calcu-
late the average and variance along the columns of the
lifetime image. pawFLIM results in a much smaller
bias and MSE as compared to other methods
(figure 7(c)).

3.3. Photon andmolecular fractions estimators
For binary systems consisting of twomonoexponential
decays, as is typical of properly designed FRET-FLIM
experiments, the photon and molecular fractions are
the readout of choice instead of the fluorescence
lifetime. Such determination is a two step process. In
the first, the monoexponential lifetimes corresp-
onding to both states are estimated (R1 and R2) and

later the fractions are derived. Obtaining R1 and R2 is
rather straightforward when a sample with spatially
separated populations of each kind can be constructed.
Even when the photon count is very low, applying the
methods described in the previous sections can be
used to accurately determineR1 andR2.

When such a sample is not available, using multi-
plemeasurements with distinct photon fraction values
can be used. Using global analysis, R1 and R2 can be
derived from the intersection of a linear fit to the pha-
sors with the monoexponential semicircle (Clayton
et al 2004). It has been shown that there is a require-
ment of a sufficient variation in p to estimate the global
lifetimes (Verveer and Bastiaens 2003), which is more
evident in the phasor plot representation.

However, a variation in p is not always enough to
obtain an accurate determination of R1 and R2. Phasor
distributions corresponding to a single p fraction
aren’t circular, but rather elongated along a direction
which doesn’t necessarily coincide with the biexpo-
nential line direction. In particular, for low number of
photons, distributions corresponding to different p
coalesce and the linear fit is dominated by the indivi-
dual direction of each of them (supplementary figure
2). Therefore, we have introduced the normalized
perpendicular distance to the biexponential line, p̂ ,
which is a measure of interest in the determination of
R1 and R2, or equivalently the global lifetimes t1 and t2

(see supplementary information 2).
We evaluated the performance of the different

algorithms for an image composed of a step followed
by a gradient and a sinusoidal in the p fraction
(figure 8). The number of photons in each pixel was
drawn from a Poisson distribution (mean value 50).
While barely any structure is appreciable without
denoising, it can be seen that the three algorithms
recover a distribution of p similar to the true one. The
second row, which displays an average in the vertical
direction, shows that both Clegg and CleggN have a
greater bias than pawFLIM, which explains both the
observed pink areas in Clegg and CleggN as well as the

Figure 7.Performance of the differentmethods for intensity inhomogeneous simulated FD-FLIMdata. (a) Lifetime and intensity
images used as templates for the simulation, towhich Poissonian noise is added. (b)Phasor plot and image reconstruction for each of
the considered processingmethods, with a significance level of 0.01. (c)Bias (line) andMSE (band) as a function of the horizontal
coordinate of the image. pawFLIMoutperforms all othermethods in any case. Below is shown a zoom, to appreciate the differences
betweenCleggN and pawFLIM.
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greater absence of black spots which signal <p 0 (left
area, which was simulated as p = 0). Also, pawFLIM
shows a greater contrast in the sinusoidal section of the
p distribution. In terms of the standard deviation,
there are no great differences for this level of averaging
(i.e. p-value threshold).

In this comparison, global analysis was not per-
formed but the true lifetimes were used. While the
enhancement of the phasor distribution (from circular
to elongated along the biexponential line) would
increase the accuracy in the linear fit (supplementary
figure 3), the absence of bias in the perpendicular
direction is also crucial in the determination of the
global lifetimes.

In row 4, the behaviour of the phasor distribution
in the phasor plot is shown. As can be easily seen, both
Clegg and CleggN present a bias in the direction
perpendicular to the biexponential line, while paw-
FLIM keeps the distribution around it. Analogously to
row 2, in row 5 an average in the vertical direction of
the perpendicular distance to the biexponential line is
shown. It can be seen that pawFLIM also has a smaller
bias in this direction.

3.4. Impact of the chosen significance level
While in a single pixel error analysis every parameter
could be swept through all values of interest, there is
no systematic way to analyze every possible image.
Indeed, different spatial distributions, both for photon
fraction and number of photons, would have to be
considered. Therefore the performance comparison

was computed for a few representative different N
distributions (horizontal and vertical gradient and
random, all subjected to Poisson noise) and gradient p
fraction (figure 9).

The algorithm is controlled by a single parameter
to decide when two phasors are to be averaged: the sig-
nificance level (SL) of the test (also shown in terms of
the standard deviation of a normal variable for com-
parison). The behaviour of the different algorithms
was measured by the following statistics: c2, for the
phasor R, the fraction p and the direction perpend-
icular to p, p̂ ; and bias in both parallel and perpend-
icular directions to p.

pawFLIM outperforms Clegg in every c ( )p2 mea-
sure. It is also superior to CleggN except in a small
region of significance values. Notice that Clegg, being
unnormalized, depends on the photon count distribu-
tion and therefore the relative gradient orientation
(p versus N) plays a major role (figure 9, red squares
versus circles in c2).

Using the true R1 and R2, the phasors corresp-
onding to the donor only and donor in complex life-
time, pawFLIM has a lower p bias than Clegg and
CleggN for all significance levels (figure 9). Addition-
ally, pawFLIM also outperforms Clegg and CleggN for
the p̂ bias. As has been described previously, p̂ has a
strong influence in the determination of R2 and R1.
This in turn affects the estimation of p as it is calcu-
lated as the fractional distance of the line connecting
R2 and R1. Therefore, using pawFLIM improves the
estimation of the global lifetimes (See supplementary

Figure 8.Performance of differentmethods for simulated single-frequency FD-FLIMdata. Row 1: photon fraction image. Row 2:
mean value (green line) and standard deviation (green band) in the vertical spatial direction, contrastedwith the true value (black line).
Row 3: difference from the true value. Row 4: phasor plot distribution, where the red line corresponds to the true biexponential
lifetimes. Row 5: analogous to row 2, but showing the perpendicular distance to the biexponential line. (Datawas simulated for a
192×192 image, with lifetimes of t = 11 and t = 32 ns, a frequency of f=40 MHz,N=50 photons per pixel, and a significance
level of 0.01.)
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information 2) and local photon fraction (both
directly and indirectly). Overall, this provides a better
estimation of the localmolecular fractionm.

4. Application to experimental data

To demonstrate pawFLIM on experimental FRET-
FLIM datasets, we image the phosphorylation of
epidermal growth factor receptor (EGFR) after 30
minutes of epidermal growth factor (EGF) stimula-
tion, as has been previously described (Grecco et al
2010). Briefly, we transfected MCF-7 cells with a
plasmid encoding for EGFR fused to mCitrine (a
yellow fluorescent protein). We stimulated the cells
with EGF and fixed them after 30 min. As a FRET
acceptor we used Cy3.5 conjugated to a generic anti-
phosphotyrosine antibody (PY72).

To evaluate the performance of pawFLIM for dif-
ferent average numbers of photons per pixel (N), we
truncated the TCSPC data series to different lengths.
When the average intensity is high, bothmethods pro-
duce similar results (figure 10(a)). However, as the
number of photons is reduced, the undenoised image
quickly loses the spatial structure while pawFLIM
remainsmostly intact.

To quantify such a difference, we used as ground-
truth the undenoised image with a maximum number
of photons (N= 2404.56). For each pixel, the variance
corresponding to the given phasor can be estimated as
described in the previous sections. Comparing the
ground-truth and reconstructed image, we calculated
the normalized difference as the pixel-wise difference
divided by the standard deviation. The mean bias can
be defined as the normalized difference averaged over
the whole image. In a similar way, the mean c2 can be

Figure 9. Statistics of the different denoisingmethods as a function of the significance level SL, for a photon fraction p gradient and
different total photonsN distributions. The improvement factor in c2 is against no applied denoising, while the relative bias is

calculated as å s

-
i

f fi i

fi

,0 , where fi,0 and s fi are the true value and standard deviation, respectively. The lines and bands correspond to

themean value and a standard deviation of 1000 iterations. The image sizewas 64×64, and the global lifetimeswere 1 and 3 ns, with a
frequency of 40 MHz.

Figure 10.Application to experimental data. Quantification of the spatial distribution of EGFRphosphorylation after 30 min EGF
stimulus. (a)Comparison of pawFLIM to an undenoised image for different average numbers of photons per pixel (N). (b)Using the
undenoised imagewithmaximumnumber of photons as ground-truth, themean bias and c2 is shown as a function ofN for
undenoised and pawFLIMprocessed datasets. Imagewidth: 80 mm.
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obtained by using the squared normalized difference
instead.We calculated these estimators as a function of
the mean photon number. It is clear from the plot that
pawFLIM does not significantly affect the bias but
yields a smaller mean c2 than the undenoised image
(figure 10(b)). As an example, with as little as 30 pho-
tons on average per pixel, pawFLIM outperforms the
results obtained with undenoised images by a factor of
four. Even if 10 timesmore photons are considered, the
undenoised image does not improve significantly. This
means that image acquisition can be obtained 10 times
fasterwithout sacrificingmolecular resolution.

5.Discussion

In this work we have demonstrated theoretically, with
simulation and experimental data, a novel FLIM
analysis method (named pawFLIM) that allows us to
optimise the balance between molecular and spatial
resolution. Such improvement is achieved by aver-
aging neighbouring pixels with similar phasor values
and thereby enhancing locally the signal to noise ratio.
It outperforms other existingmethods, particularly for
images with very low numbers of photons per pixel.
This results in a typically seven-fold reduction in bias
and a typical five-fold improvement in uncertainty.
Thismeans that five times fewer photons are necessary
with pawFLIM, thereby allowing for faster acquisition
without sacrificing quality.

Our method combines a series of important fea-
tures. First, averaging is not performed with a constant
window size but rather by using an adaptive wavelet
transform. This allows us to preserve high frequency
features of the images such as edges. In other words,
areas with similar values will be averaged with a coar-
ser grain than others which are inhomogeneous. Sec-
ond, averaging is done in the complex plane
representation of the FLIM datasets (i.e. the phasor
image). This allows us to properly compare neigh-
bouring pixels in a way that is unbiased by the number
of photons performing better than methods operating
on intensity- or lifetime-images (Buranachai et al
2008, Chang andMycek 2009, Spring andClegg 2009).
Unlike previous methods (Lin 2012), pawFLIM does
not average phasors directly but rather appropriately
weights the phasor values using the corresponding
uncertainty when testing for similarity. The sig-
nificance level of the test is a parameter of the method,
allowing us to conserve spatial features of interest. It is
important to notice that the performance of the
method is highly dependent on the image itself. The
topography of intensity and the fraction of interacting
molecules defines the improvement provided by the
method.

Within this work we have also presented a new
estimator for the lifetime (named normal lifetime)
which has a smaller MSE and bias than the usual, his-
torically based, phase andmodulation lifetimes.

Overall, this method enables us to reduce the
required number of photons per pixel in FRET-FLIM
datasets. In turn, movies quantifying the dynamics of
protein interaction could be obtained with better tem-
poral or spatial resolution.
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