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ABSTRACT
This article proposes a new test that is consistent, achieves correct
asymptotic size, and is locally most powerful under local misspecifica-
tion, and when any

√
n-estimator of the nuisance parameters is used.

Thenewtest canbe seenas anextensionof theBera andYoon (1993) pro-
cedure that deals with non maximum likelihood (ML) estimation, while
preserving its optimality properties. Similarly, the proposed test extends
Neyman’s (1959) C(α) test to handle locally misspecified alternatives. A
Monte Carlo study investigates the finite sample performance in terms
of size, power, and robustness to misspecification.

1. Introduction

A standard practice in applied econometrics is to start by estimating a small model and then
checking whether departures away from it are supported or not by the data. Rao’s (1948) score
(henceforth, RS) or Lagrangemultiplier tests are convenient since, unlike likelihood ratio and
Wald tests, they require estimation of only the restricted model under the null hypothesis.

The performance of RS tests depends on how the model is estimated and on whether the
alternative hypothesis is correctly specified. Consider a model consisting of a probability dis-
tribution characterized by three vectors of parameters: θ1, θ2, and θ3. Suppose that the primary
interest is to test H2

0 : θ2 = θ20 in a situation where θ1 can be easily estimated under the joint
null H23

0 : θ2 = θ20, θ3 = θ30. The properties of a test for H2
0 derived in such context depend

on (1) how θ1 is estimated and (2) whether H3
0 : θ3 = θ30 holds.

When θ1 is estimated bymaximum likelihood (ML) under the joint nullH23
0 , the RS test for

H2
0 is consistent, has correct asymptotic size, and is locallymost powerful when the alternative

model is correctly specified, i.e., when H3
0 holds and thus the only deviation away from the

joint null is due toH2
0 being false (see Rao and Poti, 1946; Rao, 1948; Cox and Hinkley, 1974;

Bera andBilias, 2001a). If any other
√
n-consistent estimator of θ1 underH23

0 is used,Neyman’s
(1959) C(α) test is asymptotically equivalent to the RS and hence inherits all its optimality
properties (see Smith, 1987; Bera and Bilias, 2001b).

When the alternative hypothesis is misspecified (H3
0 : θ3 �= θ30), both RS and C(α) tests

reject H2
0 spuriously, as shown by Davidson and MacKinnon (1987) and Saikkonen (1989).
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That is, they rejectH2
0 not because of being false but due to the fact thatH3

0 does not hold. For
example, Bera et al. (2001) find that the standard Breusch and Pagan (1979) test for random
effects in the error component model spuriously rejects its null under the presence of serial
correlation. Bera and Yoon (1993) (henceforth, BY) propose a modification of the RS test for
H2

0 that is still based on the ML estimation of θ1 under H23
0 , but unlike RS and C(α) tests, is

consistent, and has correct asymptotic size under local misspecification. The BY test can be
shown to be asymptotically equivalent to aC(α) test and hence it is also locallymost powerful.
The BY principle has been successfully implemented in many econometric “model search”
problems, for instance see Anselin et al. (1996), Godfrey and Veall (2000), Bera et al. (2001),
Baltagi and Li (2001), and Montes-Rojas (2010, 2011).

The use of an ML estimator (MLE) is an obvious restriction on the applicability of BY
tests. Bera et al. (2010) (henceforth, BMS) extended the BYprinciple to theGMM(generalized
methodofmoments) framework, proposing a test that is consistent andhas correct asymptotic
size for any initial GMM estimator and under locally misspecified alternatives.

In Box’s (1953) characterization, the C(α) and the BY tests possess the robustness of effi-
ciency property (see Welsh, 1996, pp. 242–243), in the sense that both, size and power, are
preserved with respect to the original RS test. On the contrary, the test suggested by BMS is
only validity robust, since it preserves consistency and correct asymptotic size but not neces-
sarily efficiency.

In this article we propose a new test that is still based on any
√
n-consistent estimator of θ1

and has the robustness of efficiency property under local misspecification. Consequently, the
proposed test improves upon three existing strategies by (a) allowing for non ML estimation
in the BY test, (b) allowing for locally misspecified alternatives in the C(α) procedure, and
(c) restoring asymptotic efficiency of BMS test. Intuitively, the new test is derived by applying
a double C(α)-style correction that deals simultaneously with the non ML estimation and
locally misspecified alternatives.

The practical relevance of the proposed tests relates to situations where simple estima-
tors for relevant parameters are readily available, as compared to fully MLEs. Linear panel
data error components models are one example of such scenario, where method-of-moments
estimators of the variance components are much simpler to compute than MLEs. For exam-
ple, Baltagi et al. (2001, 2002) consider a nested error components model yi jt = x′

i jtβ + ui jt
with ui jt = μi + νi j + εi jt . Normality of the error components is assumed to develop a testing
framework for the appropriate nested variance structure. An RS test for the presence of the
random effectμi (or νi j) being present requires the estimation of β and the variance of νi j (or
μi) and εi jt . Baltagi et al. (2001) suggest that, even though a fully MLE is available under nor-
mality, much simpler method-of-moments estimators of the nuisance parameters are very
good competitors. Moreover, tests for the presence of either μi or νi j are also constructed
as BY robust test for local misspecification of the random component in the level not being
tested (Baltagi et al., 2002). This is a clear example of a situation where the tests proposed in
this article can be very useful in practice, since they can be based on any consistent estimate,
bypassing the need of initialML estimation.We discuss a second example of least-squares and
quantile regression models in the context of our Monte Carlo study (in Section 4) where the
finite sample size and power of the tests are studied.

The rest of the article is organized as follows. In Section 2, we review the loss of efficiency
associated with non ML estimation of θ1, the C(α) approach (that preserves size and power
of RS tests) and a new intermediate “modified RS” test, that only restores size. We then show
in Section 3 that, as in the case of the RS test, though being able to accommodate non MLEs
of θ1, both strategies are negatively affected when the alternative hypothesis is misspecified.
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We thus introduce the new tests that are resistant to non MLEs and locally misspecified
alternatives. We complement our theoretical analysis with a Monte Carlo experiment in
Section 4, which investigates the small sample performance of the tests. Section 5 concludes.

2. Testing with nonMLEs

Consider the following parametric model for independent and identically distributed (iid)
random samples.

Assumption 1. Parametric model:
(i) Let {zi}ni=1 be a random sample of iid random vectors zi ∈ Z ⊂ �K .
(ii) Let the parametric family of models for the density of z be given by { f (.|θ ) : θ ∈ �}

where � ⊂ �p is a compact set that can be partitioned as � = �1 × �2 × �3, sub-
sets of �p1 , �p2 , and �p3 , p = p1 + p2 + p3, respectively, with typical element θ =
(θ ′

1, θ
′
2, θ

′
3)

′ and f (.|θ ) is a density function to the measure v(dz) for all θ ∈ �.
(iii) For some θ0 ∈ int(�), θ0 = argmaxθ∈�E[l(z, θ )] is unique, where E[·] =∫

Z · f (z, θ0)v(dz) and �(z, θ ) = ln f(z|θ ).
(iv) For each θ ∈ �, �(., θ ) is a Borel measureable function on Z , and for each z ∈ Z ,

�(z, .) is a continuous function on �.

Define �(θ ) = 1
n

∑n
i=1 �(zi, θ ) as the log-likelihood. Let d(z, θ ) = ∂ l(z, θ )/∂θ and

d(θ ) = ∂�(θ )/∂θ be the score vectors (we will use dj(z, θ ) and dj(θ ) to denote the
corresponding p j × 1 subvector ∂ l(θ )/∂θ j, with j = 1, 2, 3). Moreover, let J(z, θ ) =
−∂2l(z, θ )/∂θ∂θ ′ be a p× pmatrix of second partial derivatives, and

J(θ ) = −E
[
∂2l(z, θ )

∂θ∂θ ′

]
=

⎡
⎣ J11(θ ) J12(θ ) J13(θ )

J21(θ ) J22(θ ) J23(θ )

J31(θ ) J32(θ ) J33(θ )

⎤
⎦

denote the information matrix. For notational convenience we write J(θ0) = J, i.e., we omit
the dependence on θ when the functionals are evaluated at θ0.

Assumption 2. Scores and information matrix:
(i) �(z, .) is twice continuously differentiable on int(�).
(ii) All elements in �(z, θ ), d(z, θ ), d(z, θ )d(z, θ )′, J(z, θ ) are bounded in absolute value

by a function b(z) with E[b(z)] < ∞ for all θ ∈ �.
(iii) J is positive definite.

Assumptions 1 and 2 provide sufficient conditions for identification,
√
n-consistency, and

asymptotic normality of an MLE for iid random samples. These correspond to the assump-
tions of Theorems 13.1 and 13.2 in Wooldridge (2010) and Assumptions 1–9 for score func-
tions in Newey (1985).

Consider first the problem of testing H2
0 : θ2 = θ20 under the local alternative H2

A : θ2 =
θ20 + δ2/

√
n, 0 < δ2 < ∞, and whenH3

0 : θ3 = θ30 holds. In this case the alternative hypoth-
esis is said to be correctly specified, in the sense that H3

0 holds, i.e., the only departure away
from the joint null H23

0 : θ2 = θ20, θ3 = θ30 is due to θ2 being different from θ20. Under this
set up, the form of the optimal RS test statistic is given by

RS2·1(θ ) = n d2(θ )′ J−1
2·1 d2(θ ) (1)

where J2·1 = J2 − J21J−1
11 J12. Let θ̂ = (θ̂ ′

1, θ
′
20, θ

′
30)

′, where θ̂1 is the restricted MLE of θ1 under
the joint null H23

0 . A standard result is that under H2
A, and H3

0 , RS2·1(θ̂ )
d→ χ 2

p2 (λ2·1), as
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n → ∞, where the non centrality parameter is λ2·1 = δ′
2J2·1δ2. Thus under H2

0 , RS2·1(θ̂ ) has,
asymptotically, a central chi-squared distribution, ensuring its correct asymptotic size. Also,
as mentioned in Section 1, RS2·1(θ̂ ) is locally most powerful.

In certain contexts it might be difficult to obtain the MLE θ̂1, while a
√
n-consistent

estimator θ̃1 may be easily available. However, the use of a
√
n-consistent estimator other

than the MLE affects the asymptotic properties of the RS test. Assume that an M-estimator
θ̃ = (θ̃ ′

1, θ
′
20, θ

′
30)

′ is available, defined as θ̃1 = argminθ1∈�1

∑n
i=1 q(zi, θ1, θ2, θ3) for q(z, θ ) an

objective function of the random vector z. Assume that a general estimating function h1(θ ) =
1
n

∑n
i=1 h1(zi, θ ) exists, where h1(z, θ ) ≡ ∂q(z, θ )/∂θ1, and that θ̃1 is the unique zero of h1(.)

for all n and for all (θ2, θ3) ∈ (�2 × �3). For example, the restricted MLE corresponds to
h1(θ1, θ20, θ30) = d1(θ1, θ20, θ30), so in this case θ̃1 = θ̂1. DefineH1(θ ) = E[h1(z, θ )h1(z, θ )′]
and B1(θ ) = E[∂h1(z, θ )/∂θ1]. For notational convenience we omit the dependence on θ

when the functionals are evaluated at θ0. We consider the following assumptions:

Assumption 3. M-estimators:
(i) θ10 = argminθ1∈�1

E[q(z, θ1, θ20, θ30)] is unique and E[h1(z, θ1, θ20, θ30)] = 0 only if
θ1 = θ10.

(ii) For each θ ∈ �, (q(., θ ), h1(., θ )) are Borel measureable functions onZ , and for each
z ∈ Z , (q(z, .), h1(z, .)) are continuous functions on �.

(iii) q(z, θ ) is twice continuously differentiable on int(�).
(iv) All elements in q(z, θ ), h1(z, θ ), h1(z, θ )h1(z, θ )′, h1(z, θ )d(z, θ )′, ∂h1(z, θ )/∂θ are

bounded in absolute value by a function b(z) with E[b(z)] < ∞ for all θ ∈ �.
(v) B1 is positive definite.
(vi) Let w(z, θ ) = [h1(z, θ )′ d(z, θ )′]′, E[w(z, θ0)w(z, θ0)′] be positive definite.

Assumption 3, together with 1 and 2, guarantees identification,
√
n-consistency, and

asymptotic normality of θ̃1 under H23
0 , given by

√
n(θ̃1 − θ10)

d→ N(0p1,B
−1
1 H1B−1

1 ),
as n → ∞. See Wooldridge (2010, ch. 12) for a general discussion on M-estimators.
Assumptions 1–3 correspond to Assumptions 1–9 in Newey (1985), in which case θ̃1 is
defined as an Z-estimator based on the estimating function h1(z, θ ). Dependent random
vectors (i.e., time-series) can be addressed with the use of the statistical model of Newey
and West (1987). Moreover, the assumptions can be relaxed for non smooth log-likelihood
or q-objective functions (e.g., quantile regression models) following Newey and McFadden
(1994). For the sake of brevity, we do not discuss the standard regularity conditions for
consistency of estimators for J, B1, and H1, and we assume that all matrices that need to be
inverted in the construction of the statistics in this article are non singular.

RS2·1(θ̃ ) is no longer asymptotically chi-squared distributed, since it is based on an incor-
rect variance. The correct variance of d2(θ̃ ) isV2·1 = J2 − J21B−1

1 H1B−1
1 J12, which can be easily

derived as in Newey and McFadden (1994) using the delta method. Consider the following
modified RS test using the correct variance of the score function:

R̃S2·1(θ ) = n d2(θ )′ V−1
2·1 d2(θ ) (2)

The following result establishes the consistency and asymptotic validity of this test, where
θ is now replaced by a non MLE θ̃ .

Theorem 1. Consider Assumptions 1–3. When H3
0 is true and H2

A holds and n → ∞,

R̃S2·1(θ̃ )
d→ χ 2

p2 (λ̃2·1)

with λ̃2·1 = δ′
2V2·1δ2.
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Proof. In the Appendix. �

Though consistent andwith correct asymptotic size, R̃S2·1(θ̃ ) is less powerful thanRS2·1(θ̂ ).
Note that λ2·1 − λ̃2·1 = δ′

2(J2·1 −V2·1)δ2. The asymptotic efficiency of the MLE of θ1 implies
that J−1

1 − B−1
1 H1B−1

1 is negative semi-definite, thus J2·1 −V2·1 is positive semi-definite, and
hence λ2·1 − λ̃2·1 ≥ 0.

An optimal test for H2
0 when any

√
n-consistent estimator of θ1 under H23

0 is used can be
based on Neyman’s (1959)C(α) test statistic:

C2·1(θ ) = n d2·1(θ )′ J−1
2·1 d2·1(θ ) (3)

where d2·1(θ ) = d2(θ ) − J21J−1
11 d1(θ ) is known as the effective score. A well-known result is

thatC2·1(θ̃ ) is asymptotically equivalent to RS2·1(θ̂ ), and hence it has correct asymptotic size
and is also locallymost powerful. Intuitively, theC(α) test replaces the score of the test param-
eters θ2 by its projection on the orthogonal complement of the space spanned by the score
of the nuisance parameters θ1, evaluated at θ̃ . And it does so in such a way that replacing
the MLE θ̂ by θ̃ does not lead to any loss in asymptotic power. It is relevant to remark that
C2.1(θ̂ ) = RS2.1(θ̂ ), since d2.1(θ̂ ) = d2(θ̂ ) due to d1(θ̂ ) = 0.

3. Testing under local misspecification

Suppose thatH2
0 is true but the alternative hypothesis is locally misspecified, that is,H3

A : θ3 =
θ30 + δ3/

√
n, 0 < δ3 < ∞ holds. Davidson and MacKinnon (1987) and Saikkonen (1989)

show that in such case RS2·1(θ̂ )
d→ χ 2

p2 (λ2/3·1), where λ2/3·1 = δ′
3J32·1J

−1
2·1 J23·1δ3 with J23·1 =

J23 − J21J−1
11 J13 = J ′32·1. That is, even when H2

0 is true, RS2·1(θ̂ ) has a non central chi-squared
distribution due to θ3 �= θ30, and hence leading to spurious rejections of H2

0 due to misspeci-
fication and not to its falseness. Naturally this result affects Neyman’s C(α) test alike, since it
is asymptotically equivalent to RS2·1(θ̂ ).

Bera and Yoon (1993) proposed the following modified test:

RS∗
2·1(θ ) = n d∗

2 (θ )′ J−1
2(3)·1 d

∗
2 (θ ) (4)

where d∗
2 (θ ) = d2(θ ) − J23·1J−1

3·1d3(θ ) and J2(3)·1 = J2·1 − J23·1J−1
3·1 J32·1. Their key result is that

underH2
0 and whenH3

A holds, RS
∗
2·1(θ̂ )

d→ χ 2
p2 (0). That is, the BY test has asymptotic central

chi-squared distribution even when H3
0 is false (in a local sense); hence it does not lead to

spurious rejections induced by misspecification. It is relevant to remark that both RS∗
2·1(θ̂ )

and RS2·1(θ̂ ) are based on θ̂ , the MLE of θ under the joint null H23
0 , and hence the use of the

robustified test statistic shares all the computational advantages of the standard RS test. See
Bera et al. (2009) for a geometrical interpretation of these results.

A quick inspection of the expressions of the C(α) and the BY test statistics respectively,
in (3) and (4), suggests strong similarities between them, specially in terms of orthogonaliza-
tion, i.e., in calculating the effective score. The most interesting fact is that the structure of
orthogonalization is the same for replacing an MLE by a

√
n-consistent estimator of θ1, and

for taking account of local misspecification relating to the parameter θ3.
Regarding power, the asymptotic distribution of RS∗

2·1(θ̂ ) under H2
A is non central chi-

squared with non centrality parameter λ∗
2·1 = δ′

2J2(3)·1δ2. Note that when H2
A and H3

A are true,
λ∗
2·1 = λ2·13 + op(1/

√
n), where λ2·13 is the non centrality parameter of an RS test forH2

0 when
both (θ1, θ3) are estimated byMLE. Consequently, the BY test restores consistency and correct
asymptotic size under misspecified alternatives, with no power loss compared to the standard
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RS that estimates θ1 and θ3 by MLE. Similarly, note that (θ̂1, θ30) is trivially a
√
n-consistent

estimator of (θ1, θ3) under H2
0 and H3

A; hence RS
∗
2·1(θ̂ )

a= C2·13(θ̂ ), where C2·13(θ ) is defined
analogously as in (3).

Nevertheless, the BY test requires the use of the MLE for θ1. A simple modification that
can handle any

√
n-consistent estimator for θ1 based on h1(θ ) is as follows. Define Bj·1 =

J j − J j1B−1
1 H1B−1

1 J1 j, j = 2, 3, 23, 32, where the subindex 23 (similarly 32) is used to label
the redefined parameter θ23 = (θ ′

2, θ
′
3)

′. In order to account for the effect of H3
A consider the

adjusted score d̃∗
2·1(θ ) = d2(θ ) − B23·1B−1

3·1d3(θ ). Now, following BY, consider the adjusted RS
statistic:

R̃S∗
2·1(θ ) = n d̃∗

2·1(θ )′V−1
2(3)·1d̃

∗
2·1(θ ) (5)

whereV2(3)·1 = B2·1 − B23·1B−1
3·1B32·1 is the variance of d̃∗

2·1(θ ).
The next theorem establishes the properties of a locally size-robust “modified” BY test

under non MLE estimation of θ1.

Theorem 2. Consider Assumptions 1–3.
(i) When H2

0 is true, but H3
A holds, as n → ∞

R̃S2·1(θ̃ )
d→ χ 2

p2 (λ̃2/3·1)

with λ̃2/3·1 = δ′
3(J23 − J21B−1

1 H1B−1
1 J13)′V−1

2·1 (J23 − J21B−1
1 H1B−1

1 J13)δ3.
(ii) When H2

A and H3
A hold, as n → ∞

R̃S∗
2·1(θ̃ )

d→ χ 2
p2 (λ̃

∗
2·1)

where λ̃∗
2·1 = δ′

2V2(3)·1δ2.

Proof. In the Appendix. �

The main result of this article is that a fully modified size and power robust test can be
derived to accommodate nonMLEs andmisspecified alternatives. Define d∗

2·1(θ ) = d2·1(θ ) −
J23·1J−1

3·1d3·1(θ ) and

C∗
2·1(θ ) = n d∗

2·1(θ )′J−1
2(3)·1d

∗
2·1(θ ) (6)

where d3.1(θ ) = d3(θ ) − J31J−1
11 d1(θ ) analogously as d2.1(θ ) inC2.1(θ ) in (3). The asymptotic

properties of this new test are established in the following theorem.

Theorem 3. Consider Assumptions 1–3. When H2
A and H3

A hold and n → ∞

C∗
2·1(θ̃ )

d→ χ 2
p2 (λ

∗
2·1)

Proof. In the Appendix. �

The optimality of the new procedure is due to the fact the theorem implies that C∗
2·1(θ̃ ) is

asymptotically equivalent to RS∗
2·1(θ̂ ). This equivalence is analog to that between RS2·1(θ̂ ) and

C2·1(θ̃ ) in Section 2 when the alternative hypothesis is correctly specified. Consequently, this
new test has both the robustness of validity and efficiency properties when a non MLE of θ1
is used and when the alternative hypothesis is locally misspecified. Also note that C∗

2·1(θ̂ ) =
RS∗

2.1(θ̂ ). The improvement from RS∗
2·1(θ ) to C∗

2·1(θ ) is achieved by starting with d2·1(θ ) and
d3·1(θ ) instead of d2(θ ) and d3(θ ), respectively, to take account of the fact that for the non
MLE d1(θ̃ ) �= 0.We can also viewC∗

2·1(θ ) as a modification of our initial C(α) statisticC2·1(θ )
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in (3), by further orthogonalizing d2.1(θ ), now with respect to d3.1(θ ) to incorporate the fact
that d3(θ̃ ) �= 0. This duality goes back to our earlier observation that two orthogonalizations
for taking care of the

√
n-consistent estimation of θ1 (as in C(α)) and for allowing for the

possible local presence of θ3 (as in BY) are structurally the same.

4. Monte Carlo experiments

Wepresent the results of a simple but illustrative empirical exploration of the costs and benefits
of the alternative robustification strategies discussed earlier. Consider the following regression
model:

yi = θ1x1i + θ2x2i + θ3x3i + ui, i = 1, 2, . . . , n (7)

with

x1i = ai + e1i, x2i = ai + e2i, x3i = ai + e3i

and

ui, ai, e1i, e2i, e3i ∼ iid N(0, 1)

We use θ1 = 1, n = 100, and we consider 1000 replications. Results for other sample sizes
are very similar qualitatively, and are available from the authors. All tests are based on a nom-
inal size of 0.05.

Using the framework discussed in the previous sections, the joint nullH23
0 : θ2 = 0, θ3 = 0

corresponds to a simple regression model, i.e., yi = θ1x1i + ui. The restricted MLE, θ̂ =
(θ̂1, 0, 0), is the ordinary least-squares (OLS) estimator of θ1 that regresses y on x1. In order to
evaluate the performance of the tests under alternative consistent estimators, we have consid-
ered the 0.1 quantile regression estimator of θ1, θ̃ = (θ̃1, 0, 0). The error term u is generated
independently of x1, x2, and x3, and identically across all observations, which implies a sim-
ple location-shift model. Consequently, the quantile regression estimator for any quantile is
consistent for θ1. We use the 0.1 quantile in order to produce a consistent though inefficient
non MLE. Note that any quantile could have been selected, and that this particular estimator
will be asymptotically efficient if u follows an asymmetric Laplace distribution with location
parameter at the 0.1 quantile of its distribution. When the data are generated using the asym-
metric Laplace distribution, then a consistent but inefficient estimator is the OLS estimator.
The score functions and the tests implemented below would then be based on the influence
function of the quantile regression estimator at 0.1 quantile. The availability of a multitude of√
n-consistent estimators can be viewed as a drawback of theC(α) test. While all will lead to

asymptotic equivalent tests, their finite sample behavior could be quite different.
In this setup, the correlation between any pair of explanatory variables is 0.5; therefore,

a test for H2
0 : θ2 = 0 based on either θ̂ or θ̃ will be affected by misspecification in θ3 (i.e.,

θ3 �= 0). This is a simple omitted variable setup, where leaving x3 out of the model affects both
the estimate of θ1 and the test for θ2. A simple way to see this is to consider aWald test statistic
for H2

0 , which is based on the OLS estimate of θ2. This non robustness can also be seen from
the non singularity of the matrix J23·1.

The results that evaluate the performance of alternative tests, for different estimators and
values of θ2 and θ3, are presented in Table 1. For part (a) we generated data using the joint null
θ2 = θ3 = 0; for part (b) we considered θ2 > 0, θ3 = 0, and finally, part (c) is based on data
with θ2 = 0, θ3 > 0. The first four columns present tests for the single hypothesis H2

0 with-
out any correction for whether H3

0 is valid or not. RS2·1(θ̂ ) is constructed using the restricted
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Table . Monte Carlo simulations.

θ2 θ3 RS2·1(θ̂ ) RS2·1(θ̃ ) R̃S2·1(θ̃ ) C2·1(θ̃ ) RS∗
2·1(θ̂ ) RS∗

2·1(θ̃ ) R̃S
∗
2·1(θ̃ ) C∗

2·1(θ̃ )

(a) Size

. . . . . . . . . .

(b) Power in the θ2-direction

. . . . . . . . . .

. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

(c) Robustness to θ3-misspecification

. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

Notes: Tests for H2
0 : θ2 = 0. Robust tests consider potential local departures from H3

0 : θ3 = 0. Empirical rejection rates based
on a nominal size of .. Sample size= , number of replications= .

MLE; RS2·1(θ̃ ) and R̃S2·1(θ̃ ) use a non MLE; and C2·1(θ̃ ) is the C(α) test using a non MLE.
Note that C2·1(θ̂ ) = RS2·1(θ̂ ) by definition of MLE. The last four columns present tests for
the single hypothesis H2

0 but correcting for local departures from H3
0 . RS∗

2·1(θ̂ ) is the BY
test using the restricted MLE; RS∗

2·1(θ̃ ) and R̃S∗
2·1(θ̃ ) are the BY tests using a non MLE; and

C∗
2·1(θ̃ ) is our proposed fully robust test using a non MLE. All test statistics are based on the

score functions derived from the Gaussian log-likelihood. Therefore, each score is of the form
dj(θ ) = 1

n

∑n
i=1 x

′
jiui(θ ), j = 1, 2, 3, where ui(θ ) = yi − θ1x1i − θ2x2i − θ3x3i. Each element

in J jh, j, h = 1, 2, 3, is estimated by the outer product of gradients 1
n

∑n
i=1 dji(zi, θ )dhi(zi, θ )′

where dji(zi, θ ) = x′
jiui(θ ), j = 1, 2, 3, zi = (yi, x1i, x2i, x3i). Finally,B−1

1 H1B−1
1 is given by the

variance of the 0.1-quantile regression estimator.
When θ2 = θ3 = 0 holds (part (a)), as expected,RS2·1(θ̂ ), R̃S2·1(θ̃ ), andC2·1(θ̃ ) have correct

empirical size, while RS2·1(θ̃ ) has an empirical size that is more than twice of the nominal size
and much larger than that of its counterparts implemented with the correct variance. Similar
results are found for the BY statistics. That is, the size of RS∗

2·1(θ̃ ) is also quite high while that
of RS∗

2·1(θ̂ ), R̃S∗
2·1(θ̃ ), andC∗

2·1(θ̃ ) is approximately correct.
Under correctly specified alternatives (part (b)), the highest power is achieved by the

optimal RS test, RS2·1(θ̂ ), followed very closely by Neyman’s C2·1(θ̃ ). The tests robust
to misspecification of θ3, RS∗

2·1(θ̂ ) and C∗
2·1(θ̃ ), show less power than those of RS2·1(θ̂ )

and C2·1(θ̃ ), consistent with the fact that λ2·1 ≥ λ∗
2·1. This is the “robustification cost” for

unnecessarily using a modified test. Nevertheless, it is interesting to highlight that, in this
case, the power loss is minimal. A comparison ofRS∗

2·1(θ̂ ) andC∗
2·1(θ̃ ) shows that, as predicted
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by the theory, they have very similar power, suggesting that the power of the BY procedure
can be successfully restored through a properly modified test based on a consistent, non
MLE. Moreover, R̃S∗

2·1(θ̃ ) has less power thanC∗
2·1(θ̃ ).

Part (c) studies the effects of misspecification through θ3. As expected, all the non
robust versions, RS2·1(θ̂ ), RS2·1(θ̃ ), R̃S2·1(θ̃ ), and C2·1(θ̃ ), have unwanted rejection for H2

0 ,
as θ3 increases, which is compatible with λ2/3·1 > 0. Nevertheless, the robustified versions
(RS∗

2·1(θ̂ ), R̃S∗
2·1(θ̂ ), andC∗

2·1(θ̃ )) have rejection probabilities close to 0.05 or less. The empiri-
cal size of RS∗

2·1(θ̂ ) andC∗
2·1(θ̃ ) reduces gradually as θ3 increases, possibly due to the fact that

adjustments are designed only for local misspecifications, i.e., for θ3 values close to 0.We offer
some intuitive explanation. In our setup θ3 = δ3/

√
n. For n = 100, choosing θ3 between 0.1

and 1.0, δ3 is allowed to vary from 1.0 to 10.0. Let us consider the case of our suggested test
C∗
2·1(θ ) which takes account of the presence of θ3 by indirectly estimating it through d3(θ ),

evaluated at θ̃ . Since in ourMonte Carlo design the explanatory variables have positive corre-
lation (0.5), the components of the informationmatrix J(θ )will be positive. Thus the effective
score d∗

2·1(θ ) can be expected to be lower than d2·1(θ )which again can be expected to be lower
than the raw score d2(θ ). Thus for non local misspecification there could be some overcor-
rection for our Monte Carlo setup.

5. Final remarks

This article proposes a new test that is consistent, achieves correct asymptotic size, and is
locally most powerful under local misspecification, and when any

√
n-estimator of the nui-

sance parameters is used. The new test can be seen as an extension of the Bera and Yoon
(1993) procedure in order to deal with non ML estimation, while preserving its optimality
properties. Similarly, the procedure can be viewed as extending the standardC(α) test (that by
construction admits nonMLEs) to handle locally misspecified alternatives. In many practical
situations non ML strategies are favored to handle initial, restricted models, such as the case
of dynamic panels and spatial panel models, where GMM estimators are usually preferred.
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Appendix

Proof of Theorem 1. The asymptotic distribution follows from an application of Newey
(1985, Theorem 2.3). Note that Assumptions 1–3 correspond to assumptions 1–9 in
Newey (1985). Define the vector of functions w(z, θ ) = [h1(z, θ )′ d2(z, θ )′]′ and w(θ ) =
[h1(θ )′ d2(θ )′]′. Also define the matrices  = [ιp1 0p2 ] and � = [0p1 ιp2 ], where ι· is a vector
of 1s and 0· a vector of 0s. The estimating equations for θ1 can then be rewritten as

E [w(z, θ1, θ20, θ30)] = 0 only if θ1 = θ10

The specification test can be based on the testing equations

�E [w(z, θ10, θ2, θ30)] = 0 only if θ2 = θ20
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We follow the notation in Bera, Montes-Rojas, and Sosa-Escudero (2010). Let K =
E[∂w(z, θ )/∂θ1]θ=θ0 = [B′

1 − J ′21]′, where the equalityE[∂d2(z, θ )/∂θ1]θ=θ0 = −J21 follows
from the information matrix equality,

V = E
[
w(z, θ0) w(z, θ0)′] =

[
H1 V12

V21 J22

]
where V12 = E[h1(z, θ0)d2(z, θ0)′] = V ′

21, D = E[w(z, θ0)d2(z, θ0)′] = [V ′
12 J ′22]′, and P =

I − K(K)−1.
Then under H2

A,
√
n�w(θ̃ )

d−→ N(�PDδ2, �PVP′�′), as n → ∞, hence

n w(θ̃ )′�′(�PVP′�′)−1�w(θ̃ )
d−→ χ 2

p2 (λ̃2·1)

as n → ∞ with λ̃2·1 = (�PDδ2)
′(�PVP′�′)−1(�PDδ2).

After some matrix algebra, we obtain

�P = [J21 B−1
1 ιp2 ]

�PV = [J21B−1
1 H1 +V21 J21B−1

1 V12 + J22]
�PVP′� = J2 + J21B−1

1 V12 +V21B−1
1 J12 + J21B−1

1 H1B−1
1 J12

Thus, �PVP′�′ = V2·1. Moreover, �PD = J22 + J21B−1
1 V12. Then, λ̃2·1 = δ′

2(J22 +
J21B−1

1 V12)
′V−1

2·1 (J22 + J21B−1
1 V12)δ2. Finally note that by an application of the generalized infor-

mationmatrix equality (Newey andMcFadden, 1994, p. 2163)V12 = E[h1(z, θ0)d2(z, θ0)′] =
−E[∂h1(z, θ )/∂θ ′

2]θ=θ0 = −E[h1(z, θ0)h1(z, θ0)′]E[∂h1(z, θ )/θ1]−1
θ=θ0

E[d1(z, θ0)d2(z, θ0)′]=
−H1B−1

1 J12 = V ′
21. Thus, λ̃2·1 = δ′

2V2·1δ2. Finally, note that R̃S2·1(θ̃ ) = n w(θ̃ )′�′

(�PVP′�′)−1�w(θ̃ ). �
Proof of Theorem 2.

(i) The proofs follows from amodification of the proof of Theorem 1 where d2 is replaced
by d23 = [d′

2 d′
3]′. Consider a new partition of a three parameter space (θ1, θ2, θ3) into

(θ1, (θ2, θ3)). This is only notation to emphasize that the “block” (θ2, θ3) is taken
together. Thus 23 denotes this new redefined parameter θ23 = (θ ′

2, θ
′
3)

′. Define the
matrix

J =
[
J11 J1,23
J23,1 J23

]
and the vector of functions w(z, θ ) = [h1(z, θ )′ d23(z, θ )′]′ and w(θ ) =
[h1(θ )′ d23(θ )′]′. Also define the matrices  = [ιp1 0p2 0p3 ] and � = [0p1 ιp2 0p3 ].
Moreover, defineV1,23 = E[h1(z, θ0) d23(z, θ0)′] = V ′

23,1.
Following the notation in Bera et al. (2010), let K = E[∂w(z, θ )/∂θ1]θ=θ0 = [B1 −
J23,1]:

V = E
[
w(z, θ0)w(z, θ0)′] =

[
H1 V1,23

V23,1 J23,23

]

D = E[w(z, θ0) d23(z, θ0)′] = [V23,1 J23,23], and P = I − K(K)−1.
Then under H2

0 and H3
A,

√
n�w(θ̃ )

d−→ N(�PD[0p2δ3], �PVP′�′), as n → ∞,
hence

n w(θ̃ )′�′(�PVP′�′)−1�w(θ̃ )
d−→ χ 2

p2 (λ̃2/3·1)

as n → ∞ with λ̃2/3·1 = (�PDδ3)
′(�PVP′�′)−1(�PDδ3).
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After some algebra we obtain �PD = J23 + J21B−1
1 V13 and �PVP′�′ = V2·1. Thus,

λ̃2/3·1 = δ′
3(J23 + J21B−1

1 V13)
′V−1

2·1 (J23 + J21B−1
1 V13)δ3. Moreover, note that by an appli-

cation of the generalized information matrix equality (Newey and McFadden, 1994,
p. 2163) V13 = E[h1d′

3] = −E[∂h1/∂θ ′
3]θ=θ0 = −H1B−1

1 J13 = V ′
31. Finally, note that

R̃S2·1(θ̃ ) = w(θ̃ )′�′(�PVP′�′)−1�w(θ̃ ).
(ii) The result follows from part (i) and Bera et al. (2010, Theorem 3). We need to modify

the score function for θ2, d2, to account for the local misspecification in θ3. This is
done by considering the adjusted score for the score d2 in the function: w(z, θ ) =
[h1(z, θ )′ d̃∗

2·1(z, θ )′ d3(z, θ )′]′ where d̃∗
2·1(z, θ ) = d2(z, θ ) − B23·1B−1

3·1d3(z, θ ), and
w(θ ) = [h1(θ )′ d̃∗

2·1(θ )′ d3(θ )′]′ where d̃∗
2·1(θ ) = d2(θ ) − B23·1B−1

3·1d3(θ ). Define 

and � as in part (i) and obtain K,V , D, and P with the same procedure for the newly
defined w(z, θ ). Then under H2

0 and H3
A,

√
n�w(θ̃ )

d−→ N(0p2, �PVP′�′),
that is, it recovers the zero mean of the testing function. Finally, after some
algebra �PVP′�′ = V2(3)·1, where V2(3)·1 accounts for the variance of d̃∗

2·1(θ̃ ),
and is given by V2(3)·1 = B2·1 − B23·1B−1

3·1B32·1, and the chi-squared distribu-
tion follows. Under H2

A and H3
A,

√
n�w(θ̃ )

d−→ N(�PDδ2, �PVP′�′), as
n → ∞; hence, n w(θ̃ )′�′(�PVP′�′)−1�w(θ̃ )

d−→ χ 2
p2 (λ̃

∗
2·1), with λ̃∗

2·1 =
(�PDδ2)

′(�PVP′�′)−1(�PDδ2) = δ′
2V2(3)·1δ2. Finally, note that R̃S∗

2·1(θ̃ ) =
n w(θ̃ )′�′(�PVP′�′)−1�w(θ̃ ). �

Proof of Theorem 3.
Defined∗

2·1(z, θ ) = d2·1(z, θ ) − J23·1J−1
3·1d3·1(z, θ ),w(z, θ ) = [h1(z, θ )′d∗

2·1(z, θ )′d3(z, θ )′]′,
d∗
2·1(θ ) = d2·1(θ ) − J23·1J−1

3·1d3·1(θ ), w(θ ) = [h1(θ )′ d∗
2·1(θ )′ d3(θ )′]′. Define  and � as in

Theorem 2, part (i), and obtain K,V ,D, and P with the same procedure for the newly defined
w(θ ).

Then under H2
0 and H3

A,
√
n�w(θ̃ )

d−→ N(0p2, �PVP′�′), as n → ∞,
that is, it recovers the asymptotic zero mean of the testing function. Moreover
under H2

A and H3
A,

√
n�w(θ̃ )

d−→ N(�PDδ2, �PVP′�′), as n → ∞; hence, n w(θ̃ )′

�′(�PVP′�′)−1�w(θ̃ )
d−→ χ 2

p2 (λ
∗
2·1), as n → ∞ with λ∗

2·1 = (�PDδ2)
′(�PVP′�′)−1

(�PDδ2) = δ′
2J2(3)·1δ2, where J2(3)·1 accounts for the variance of d∗

2·1(θ̃ ), and is given by
J2(3)·1 = J2·1 − J23·1J−1

3·1 J32·1. Finally, note thatC∗
2·1(θ̃ ) = n w(θ̃ )′�′(�PVP′�′)−1�w(θ̃ ). �
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