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 We present here a hybrid algorithm for the Flexible Job-Shop Scheduling Problem (FJSSP). This 
problem involves the optimal use of resources in a flexible production environment in which 
each operation can be carried out by more than a single machine. Our algorithm allocates, in a 
first step, the machines to operations and in a second stage it sequences them by integrating a 
Multi-Objective Evolutionary Algorithm (MOEA) and a path-dependent search algorithm 
(Multi-Objective Simulated Annealing), which is enacted at the genetic phase of the procedure. 
The joint interaction of those two components yields a very efficient procedure for solving the 
FJSSP. An important step in the development of the algorithm was the selection of the right 
MOEA. Candidates were tested on problems of low, medium and high complexity. Further 
analyses showed the relevance of the search algorithm in the hybrid structure. Finally, 
comparisons with other algorithms in the literature indicate that the performance of our 
alternative is good.   
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1. Introduction 

The design of production plans involves decisions on the allocation of limited resources in order to optimize 
efficiency-related short-term objectives (Bihlmaier et al., 2009; Nowicki & Smutnicki, 2005; Armentano & 
Scrich, 2000). The framework of analysis of this kind of problems is the Job-Shop Scheduling Problem (JSSP) 
(Agnetis et al., 2001; Lin et al., 2011; Heckman & Beck, 2011; Nazarathy & Weiss, 2010), which assumes a 
class of jobs, consisting of ordered sequences of operations that have to be distributed over several machines. 
One of the goals is to minimize the makespan, i.e. the total processing time of the jobs (Heinonen & 
Pettersson, 2007; Chao-Hsien & Han-Chiang, 2009; Della Croce et al., 2014). Flexible JSSP (FJSSP) 
generalizes this problem. It assumes that operations can be performed on different machines. Thus, it involves 
the decision of the allocation of operations on machines, a NP-Hard problem (Ullman, 1975; Papadimitriou, 
1994). While most of the literature on this problem focuses on its single objective versions, some authors 
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state that several objectives have to be optimized as to achieve an efficient production process (Chinyao & 
Yuling, 2009). Based on the latter motivation we present here an algorithm for a multi-objective version of 
FJSSP. On the grounds of a preliminary analysis of the problem we decided to base our alternative on an 
evolutionary approach (Goldberg, 1989; Pezzella et al., 2008). One of the main advantages of this strategy is 
that evolutionary algorithms can be easily adapted to the problem at hand. They are quite efficient in handling 
single-objective problems, but their high rate of convergence hampers their usefulness on multi-objective 
versions. This is because their fast convergence leads to a loss of diversity, indicated by poorly distributed 
Pareto frontiers. A multi-objective algorithm based on an underlying evolutionary component should be, 
therefore, complemented by an efficient search procedure in order to diversify solutions with a few rounds of 
evaluation of the fitness functions. This is the approach we followed in this paper, providing a methodological 
ground for the design of such a hybrid algorithm, as introduced in Frutos et al. (2010) and Frutos and Tohmé 
(2015). We present here a Multi-Objective Evolutionary Algorithm (MOEA) (Coello et al., 2006) joined by 
a local search procedure (MOSA, Multi-Objective Simulated Annealing) to solve a FJSSP (Hansmann et al., 
2014; Tsai & Lin, 2003; Wu et al., 2004; Nidhiry & Saravanan, 2012). From now on, we will call this hybrid 
structure a Multi-Objective Hybrid Evolutionary Algorithm or MOHEA. The rest of the paper is organized 
as follows. Section 1.1 discusses some of the literature on the FJSSP while section 1.2 introduces the formal 
description of multiple-objective optimization problems. Section 2 presents our formal characterization of 
FJSSP while in section 3 the MOHEA for this framework is introduced. Results of running the algorithm are 
shown in section 4, and in section 5 we present the conclusions.  
1.1 Approaches to the FJSSP 

The FJSSP is particularly hard to solve. It has been analyzed for 1, 2 and 3 machines and some arbitrary number 
of jobs. Very few developments have been devoted to the case of 4 or more machines for at least 3 jobs, due to 
the combinatorial explosion of feasible sequences. A brief survey of the literature on the problem shows that, 
(Brandimarte, 1993) proposed a hierarchical approach, distinguishing the allocation from the sequencing sub-
problem, where the former is handled as a routing problem while the latter is seen as a Job-Shop one. 
(Mesghouni et al., 1997), instead, attacked the problem with genetic algorithms. On the other hand, (Kacem et 
al., 2002) proposed a localization approach to the control of the genetic algorithm, yielding good solutions and 
minimizing the makespan and the workload of the machines. Tay and Wibowo (2004) and Ho and Tay (2005) 
introduced dispatch rules to generate populations and a scheme structure under which each generation explores 
the search space. They also studied the representation of solutions in order to achieve a more efficient makespan. 
This approach was generalized in (Ho et al., 2007), in which the evolutionary algorithm is complemented by 
learning under schemes and composite dispatch rules. (Fattahi et al., 2007) proposed a hierarchical approach to 
the FJSSP in which the allocation sub-problem is solved by a Taboo Search treatment, while the sequencing 
one is handled by Simulated Annealing. This approach was tested on twenty instances of the FJSSP, although 
only the simplest ones got solved. (Zhang & Gen, 2005) presents a genetic algorithm working on multiple 
scenarios, in which each one corresponds to an operation and each feasible machine to a state. (Pezzella et al., 
2008), also used a genetic algorithm aided by Kacem’s et al. (2002) localization approach. This allows for 
intelligent mutations that reassign operations from heavy loaded to less loaded machines. (Yazdani et al., 2010) 
proposed the minimization of makespan by handling, in parallel, variable neighbourhoods while (Yang et al., 
2010) solved the FJSSP with an improved constraint satisfaction adaptive neural network. Recent approaches 
involve hybridizations with an artificial bee colony algorithm (Li et al., 2011) or a shuffled frog-leaping 
algorithm (Li et al., 2012). On the other hand, the local search procedure included has been defined on the 
critical path (Xiong et al., 2012) or performed hierarchically over the different objectives (Yuan & Xu, 2015). 
1.2 Multi-Objective Optimization: Basic Concepts 

Let us assume that several goals (objectives) have to be minimized. Thus, a vector * * * T
1 nx [x ,..., x ]

  of 
decision variables is required, satisfying q inequalities ig (x) 0,

  i 1,..., q  as well as p equations 

ih (x) 0,  i 1,..., p 
 , such that T

1 kf (x) [f (x),..., f (x)]
   

, a vector of k functions, each one corresponding to 
a goal, attains its minimum. The family of decision vectors satisfying the q inequalities and the p equations is 
denoted by   and each x  is a feasible alternative. A *x 

  is Pareto optimal if for any x  and 
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every i = 1,…,k, *
i if (x ) f (x)
  . This means that no x  can improve a goal without worsening others. We say 

that a vector T
1 nu [u ,..., u ]

  dominates another, T
1 nv [v ,..., v ]

  (denoted u v  ) if and only if i {1,..., k} 

, i i i iu v i {1,..., k}: u v     . The set of Pareto optima is * ' 'P {x    x ,  f (x ) f (x)}    
      and the 

associated Pareto frontier is * *FP {f (x), x P } 
   . The main goal of Multi-Objective Optimization is to find 

the corresponding *FP . A good approximation should yield a few feasible candidates; close enough to the 
frontier (Frutos & Tohmé, 2009). 

2. The flexible job-shop scheduling problem 

The FJSSP is defined in terms of m machines, m
k k 1M {M }  , and a class of n independent jobs, n

j j 1J {J }  . 

Each job Jj amounts to a set of sequenced operations, i h
j jk i 1S {O }  . Each of these must be processed by a 

machine in M. Operation i
jkO  in the sequence jS  requires to use machine kM  during an un-interrupted 

processing time i
jk  (assumed constant), with an operational cost i

jk . No machine can run two operations at 
the same time and all jobs and machines are available at time 0. The different operations allocated to kM  
constitute the set kE . Therefore m

k k 1E {E }   will involve the same operations as in n
j j 1J {J }   and each 

operation will be allocated only once. From the many possible objectives that can be pursued in this setting 
we choose the minimization of the total processing time, (makespan) Eq. (1), and the minimization of the 
total operational cost given by Eq. (2). 
 

j

j k k
1 max ij ijk Mi S
f : C   max(t )



   , (1) 

i i
2 jk jkj i k

f : x    , (2) 

where i
jkx = 1 if i

jk kO E  and 0 otherwise. On the other hand i
jkk

x 1 . Besides, 
i (i 1) (i 1) s s
jk jh jh pk pkt max (t ,  t ,  0)       for each pair i 1 s

jh pk kO ,O E   and all machines kM , hM  and 
sequences of operations iS , sS . As we will see the two objectives are in conflict, which makes this 
problem interesting. 

3. A multi-objective hybrid evolutionary algorithm  

Evolutionary algorithms imitate genetic processes, improving solutions by breeding new solutions up from 
older ones. The solutions are represented as a fixed number of chromosomes, composed by smaller units 
called genes. They codify the hereditary features of an individual (solution). In the case of sequencing 
problems the chromosomes indicate the programming of jobs. It is assumed that among all possible 
chromosomes one codifies the optimal sequence. To show how this works we will consider the case of 
instance MF01 analyzed in (Frutos et al., 2010), with three jobs and four machines (3×4). The first and second 
jobs require three operations each while the third one requires only two. This amounts to eight operations 
with processing times and operational costs shown in Table 1. Solutions have to be codified in terms of the 
characteristics of the problem, respecting its constraints. We will use two chromosomes for each solution. 
The first one determines the solution of the allocation sub-problem while the second the solution of the 
sequencing of operations sub-problem. The size of the allocation chromosomes is the number of total 
operations in the problem. The size of the sequencing chromosomes is the number of machines in M. In the 
allocation chromosome each gene is: 0→M1, 1→M2, 2→M3, 3→M4 (Third column, rows 3 to 10 in Table 
2). For the sequencing chromosome each gene is: 0→1│2│3,  1→1│3│2,  2→2│1│3,  3→2│3│1, 
4→3│1│2 and 5→3│2│1 (Third row, columns 4 to 7 in Table 2). This means that, in the first chromosome, 
gene 0 corresponds to an allocation to machine M1; if it is 1 to machine M2 and so on. In the second 
chromosome, if the gene is 0 the sequence of jobs is 1, 2 and 3; if it is 1 the sequence is 1, 3 y 2, and so on. 
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Table 1 
A Flexible Job-Shop Scheduling Problem 

MF01 / Problem 3 × 4 with 8 operations (flexible) 

jJ  
i
jkO  

1M  2M  3M  4M  

i
j1  

i
j1  

i
j2  

i
j2  

i
j3  

i
j3  

i
j4  

i
j4  

1J  

1
1kO  1 10 3 8 4 6 1 9 
2
1kO  3 4 8 2 2 10 1 12 
3
1kO  3 8 5 4 4 6 7 3 

2J  

1
2kO  4 7 1 16 1 14 4 6 
2
2kO  2 10 3 8 9 3 3 8 
3
2kO  9 3 1 15 2 10 2 13 

3J  

1
3kO  8 6 6 8 3 12 5 10 
2
3kO  4 11 5 8 8 6 1 18 

 
Table 2  
Allocation and Sequencing Chromosomes 

MF01 / Problem 3 × 4 with 8 operations (flexible) 

jJ  
i
jkO  kM  1M  2M  3M  4M  

Chr. 4 0 2 1 

1J  

1
1kO  0     
2
1kO  3     
3
1kO  2     

2J  

1
2kO  2     
2
2kO  0     
3
2kO  1     

3J  

1
3kO  2     
2
3kO  3     

Allocation Chromosome: 0-3-2-2-0-1-2-3 (Ref. 0→M1, 1→M2, 2→M3, 3→M4) 

Sequencing Chromosome: 4-0-2-1 (Ref. 0→1│2│3, 1→1│3│2, 2→2│1│3, 3→2│3│1, 4→3│1│2 and 5→3│2│1) 

 
A crucial role in the algorithm is played by the chromosome decoding procedure, since it is in charge of 
the interpretation and representation of the solutions of the FJSSP. This procedure is the most 
computationally costly in the algorithm. It runs by fetching the information in the genes and looking up 
in the times and costs table. After this, the objectives are evaluated on the resulting solution candidate 
(see Figure 1). The initial population is randomly generated: the allocation chromosome is obtained by 
assigning at random values between 0 and m-1 (between 0 and 3 in our example) to the genes. On the 
other hand, the sequencing chromosome is generated by the random assignation of values between 0 and 
n!-1 (between 0 and 5 in the example) to its genes. Then, the crossover and mutation genetic operators 
are applied over the candidates. Crossover exchanges segments of chromosomes between pairs of 
candidates, making the new candidates carry a mixture of the information of its ‘parents’. Mutation 
introduces random feasible changes in the chromosomes, as to yield new solution candidates and 
allowing the exploration of different areas of the search space. The crossover operator is applied on 
chromosomes of the same type, exchanging segments of the allocation chromosome and segments of the 
sequencing chromosome among candidates. In our algorithm we use uniform crossover, which exchanges 
the genes in the same position in the chromosomes of two candidates, breeding two new solution 
candidates. The version of the mutation operator used here swaps two genes in the same chromosome 
(Two-swap). On the allocation chromosome it operates on a 20 % of the genes, while on the sequencing 
chromosome it acts only over the 10 %. After a careful examination of local search algorithms we 
selected Simulated Annealing as our ‘improves’ operator. The main components of this algorithm are the 
way in which the neighborhood of solutions is generated and the probability function ( T)e  , in particular 
the value of δ. The general structure of our Multi-Objective Simulated Annealing is the same as in (Frutos 
et al., 2010). 
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MF01 / Problem 3 × 4 with 8 operations (flexible) 
             

Machine             
↓             
             

1M  J1 J2          
             

2M     J2         
             

3M  J2  J1 J3    
             

4M   J1        J3   
             
 Time → 

Fig. 1. Decoding of both chromosomes and evaluation of the resulting solution, f1: 10 and f2: 97 

The neighborhood is generated by taking both chromosomes in a candidate and altering at random the 
value of some genes (with the same percentages as the mutation operator). This induces a change of the 
machines on which operations are run and at the same time a change in their ordering. The determination 
of δ, somehow lacking in the multi-objective literature is as follows:  i i imax f (x’) f (x) f (x)     . 
(Yazdani et al., 2010) have shown that in appropriate settings this specification yields very good 
solutions. As for those settings, they are given by the following parameters: Ti (initial temperature), Tf 
(final temperature), the cooling function ( k 1 kT T   , where α is the rate of cooling and k the iteration 
step), and the number of iterations M ( kM 1 T    , where   is a control parameter). The hybrid 
structure was designed in the PISA (A Platform and Programming Language Independent Interface for 
Search Algorithms) environment (Frutos & Tohmé, 2009) (see Fig. 2). 

 

Fig. 2. Hybrid Structure in PISA 

4. Implementation and design of experiments  

Any instance of the FJSSP is specified by the number of jobs, the number of machines and the total number 
of operations to be performed. For our experiments we use the problems reported in (Frutos et al., 2010): 
MF01 (3 jobs × 4 machines with 8 operations), MF02 (4 × 5 with 12 operations), MF03 (10 × 7 with 29 
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operations), MF04 (10 × 10 with 30 operations) and MF05 (15 × 10 with 56 operations). We compared the 
global performance of the evolutionary stage by exchanging three selectors (see Fig. 2): Nondominated 
Sorting Genetic Algorithm II (NSGAII) (Deb et al., 2002) (with a O(g×N2) complexity, for a population of 
size 2N), Strength Pareto Evolutionary Algorithm II (SPEAII) (Zitzler et al., 2002) (its complexity is 
O((N+N’)2*log(N+N’)), where N is the size of the population and N’ the size of the file that stores the 
results) and Indicator-Based Evolutionary Algorithm (IBEA) (Zitzler & Künzli, 2004) (of O(N2) 
complexity). A preliminary analysis of the improvement process showed that it tended to become stable at 
the 200th generation. We chose then the limit of 250 generations, just to leave room for any later 
improvement. The parameters and characteristics of the computing equipment used during these 
experiments were as follows: size of the population: 200, type of cross-over: uniform; probability of cross-
over: 0.90, type of mutation: two-swap, probability of mutation: 0.01, type of local search: simulated 
annealing (Ti: 850, Tf: 0.01, α: 0.95, ω: 10), probability of local search: 0.01, CPU: 3.00 GHZ and RAM: 
1.00 GB. In the case of the IBEA selector we chose the additive epsilon index. We run each algorithm 30 
times and the undominated solutions were picked up. 

4.1 Selection of MOEA 
As a first instance, we compare the performance of the MOEAs using the following metrics: the multiplicative 
version of the Unary Epsilon Index (Ie), the Hypervolume Index (IH) and the R2 index (IR2). These indexes 
allow distinguishing differences among the approximations when the dominance rankings yield very similar 
results (Knowles et al., 2005). For the parameters of the indexes we kept the initial specifications of PISA. 
Unary indexes were obtained using normalized approximation sets (Zitzler & Künzli, 2004) and the reference 
class generated by PISA. A non-parametric test was run on the approximation sets in order to obtain valid 
conclusions on the quality of the optimization methods. In our analysis we used Fisher’ test (Knowles et al., 
2005) with a confidence level α = 0.05. Tables 3, 4 and 6 indicate that problems MF01, MF02 and MF04 
yield no significantly different results. Tables 5 and 7, instead, show significant differences in the results of 
MF03 and MF05 between IBEA and the other two algorithms, SPEAII and NSGAII. 
 
Table 3  
Ie, IH, and IR2 (MF01) for IBEA, NSGAII and SPEAII 

MF01 / Problem 3 × 4 with 8 operations (flexible) 
 Ie IH IR2 
 IBEA NSGAII SPEAII  IBEA NSGAII SPEAII  IBEA NSGAII SPEAII  

IBEA - 0,31466 0,27123 - 0,32095 0,27665 - 0,30207 0,26038 
NSGAII 0,68534 - 0,38665 0,67905 - 0,38193 0,69793 - 0,37438 
SPEAII 0,72877 0,61335 - 0,72335 0,61807 - 0,73962 0,62562 - 

 
Table 4  
Ie, IH, and IR2 (MF02) for IBEA, NSGAII and SPEAII 

MF02 / Problem 4 × 5 with 12 operations (flexible) 
 Ie IH IR2 
 IBEA NSGAII SPEAII  IBEA NSGAII SPEAII  IBEA NSGAII SPEAII  

IBEA - 0,25667 0,15743 - 0,26180 0,16058 - 0,24640 0,15113 
NSGAII 0,74333 - 0,47696 0,73820 - 0,48697 0,75360 - 0,48387 
SPEAII 0,84257 0,52304 - 0,83942 0,51303 - 0,84887 0,51613 - 

 
Table 5  
Ie, IH, and IR2 (MF03) for IBEA, NSGAII and SPEAII 

MF03 / Problem 10 × 7 with 29 operations (flexible) 
 Ie IH IR2 
 IBEA NSGAII SPEAII  IBEA NSGAII SPEAII  IBEA NSGAII SPEAII  

IBEA - 0,03175 0,01738 - 0,03239 0,01773 - 0,03048 0,01668 
NSGAII 0,96825 - 0,51132 0,96762 - 0,49577 0,96952 - 0,48233 
SPEAII 0,98262 0,48868 - 0,98227 0,50423 - 0,98332 0,51767 - 
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Table 6  
Ie, IH, and IR2 (MF04) for IBEA, NSGAII and SPEAII 

MF04 / Problem 10 × 10 with 30 operations (flexible) 
 Ie IH IR2 
 IBEA NSGAII SPEAII  IBEA NSGAII SPEAII  IBEA NSGAII SPEAII  

IBEA - 0,45378 0,42336 - 0,44017 0,41066 - 0,46739 0,43606 
NSGAII 0,54622 - 0,49118 0,55983 - 0,47939 0,53261 - 0,49118 
SPEAII 0,57664 0,50882 - 0,58934 0,52061 - 0,56394 0,50882 - 

 
Table 7  
Ie, IH, and IR2 (MF05) for IBEA, NSGAII and SPEAII 

MF05 / Problem 15 × 10 with 56 operations (flexible) 
 Ie

1 IH IR2
1 

 IBEA NSGAII SPEAII  IBEA NSGAII SPEAII  IBEA NSGAII SPEAII  
IBEA - 0,02654 0,04166 - 0,02574 0,04041 - 0,02734 0,04291 

NSGAII 0,97346 - 0,39616 0,97426 - 0,38691 0,97266 - 0,40776 
SPEAII 0,95834 0,60384 - 0,95959 0,61309 - 0,95709 0,59224 - 

Given these results, we have to note that an assessment based on a relatively small number of runs 
requires further analysis in order to ensure its robustness. We have to see that the results reported in the 
previous subsections are statistically significant. We proceed as follows. For each algorithm we take the 
final outcome on each problem. This is written as a vector. Then we take a component by component 
distance to the vector of solutions (of the same dimensionality). Then we postulate different hypotheses, 
one the null hypothesis (that the algorithms do not yield differences) and alternative ones, indicating 
differences among the algorithms. To see this, we start introducing a distance to the frontier variable, 
which is basically a variant of a taxicab metric. Let us remark that the results we present below are robust 
under changes in the underlying metric: the same analysis based on the Euclidean and the supremum 
metric yield analogous results. The distance of the frontier is obtained as the addition of the distances to 
their corresponding values in the frontier of the actually obtained values f1 and f2: 

   * *
x,i 1,i 1,i 2,i 2,id f f f f    , where x,id  is the distance yield by algorithm x on observation i. The values 

of i refer to the observations (i=1,…,n), 1,if  and 2,if  to values on the frontier and *
1,if , *

2,if  to the actual 
output of the algorithm on i. Notice that this distance (unlike the taxicab one) is negative. In case an 
algorithm does not reach a solution, we assign the maximal distance found for the other algorithms on 
that observation. Table 8 shows the P-values of differences in means test for the different algorithms. As 
indicated, the null hypothesis is the means are equal. All the results are significant, meaning, in particular, 
that the number of cases considered were enough to make the assessment. 
 

Table 8  
P-values in the difference of means test between IBEA, NSGAII and SPEAII. 

P-values (IBEA, NSGAII and SPEAII) 
Test Pr (|T| > |t|) Pr(T > t) Pr(T < t) 

IBEA=SPEAII 0.0000 0.0000 1.0000 
IBEA=NSGAII 0.0000 0.0000 1.0000 

SPEAII=NSGAII 0.4895 0.2448 0.7552 
H0 mean(diff) = 0 mean(diff) = 0 mean(diff) = 0 
H1 mean(diff) ≠ 0 mean(diff) > 0 mean(diff) < 0 

It can be seen that IBEA is more efficient (in the sense that the distance to the frontier is much shorter, 
indicated by Pr(T>t)). On the other hand, there are no significant differences between SPEAII and 
NSGAII. 
4.2 MOHEA vs. MOEA: Why Hybrid? 
 

Now we report the results of experiments comparing the MOEA (IBEA in our case) and the MOEA 
complemented with a search process (IBEA + Simulated Annealing). In Figures 3, 4, 5, 6 and 7 (Left) 
we show the Pareto frontiers for both algorithms. The MOEA yields an incomplete frontier, which, 
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moreover is sometimes dominated by the frontier obtained by the MOHEA. Furthermore, the latter 
exhibits a better distribution of solutions. In Figs. 3, 4, 5, 6 and Fig. 7 (Right) show the mean number of 
undominated solutions (S) found by the MOHEA and the MOEA, for different generation numbers (G). 
It can be seen that for the 250 generations run by the two algorithms, there exists a clear difference between 
them. Other experiments, not reported here, indicated that the MOEA reached the undominated solutions for 
these problems around generation 500. Putting this together with the number of evaluations in the search 
process we conclude that for similar results, the MOHEA on average required 35,2 % less evaluations than 
MOEA. 
 

  
Fig. 3. f1 vs. f2 (Left) and G vs. S (Right) for MOHEA ( ) and MOEA ( ) (MF01) 

 

  
Fig. 4. f1 vs. f2 (Left) and G vs. S (Right) for MOHEA ( ) and MOEA ( ) (MF02) 

  
Fig. 5. f1 vs. f2 (Left) and G vs. S (Right) for MOHEA ( ) and MOEA ( ) (MF03) 

  
Fig. 6. f1 vs. f2 (Left) and G vs. S (Right) for MOHEA ( ) and MOEA ( ) (MF04) 

25

50

75

0 20 40

 

f2 

f1 

 

S 

G 

0

5

10

15

20

0 50 100 150 200 250 300

   

 

f2 

f1 

25

100

175

10 45 80

 

S 

G 

0

5

10

15

20

25

30

0 50 100 150 200 250 300

   

 

f2 

f1 

20

220

420

0 70 140

 

S 

G 

0

5

10

15

20

25

0 50 100 150 200 250 300

   

 

f2 

f1 

0

150

300

5 35 65

 

S 

G 

0

5

10

15

20

25

30

0 50 100 150 200 250 300

   



M. Frutos et al. / International Journal of Industrial Engineering Computations 7 (2016) 
 

9  

 

  
Fig. 7. f1 vs. f2 (Left) and G vs. S (Right) for MOHEA ( ) and MOEA ( ) (MF05) 

 

4.3 Comparison of the MOHEA with HABC and MPICA 

We compared also the results under our MOHEA with those obtained by the Hybrid Artificial Bee 
Colony Algorithm (HABC) introduced by Li et al., (2011) and by the Multi-Population Interactive 
Coevolutionary Algorithm (MPICA) presented in (Xing et al., 2011). These two algorithms were 
implemented in C++. The parameters for them were taken from the publications in which they have been 
presented. They were also run 30 times each and the outcomes were evaluated according to the same 
metrics used in the choice of the selector. Fisher’s test was used again with a confidence level α = 0.05. 
Tables 9, 10 and 11 show no significant differences for MF01, MF02 and MF03 under the different 
algorithms and indexes. Tables 12 and 13 show significant differences in problems MF04 and MF05, 
between MOHEA and MPICA over HABC. 
 

Table 9  
Ie, IH, and IR2 (MF01) for HABC, MPICA and MOHEA 

MF01 / Problem 3 × 4 with 8 operations (flexible) 
 Ie IH IR2 
 MOHEA HABC MPICA MOHEA HABC MPICA MOHEA HABC MPICA 

MOHEA - 0,36593 0,41144 - 0,35495 0,39910 - 0,38423 0,43201 
HABC 0,63407 - 0,52850 0,64505 - 0,51265 0,61577 - 0,55493 
MPICA 0,58856 0,47150 - 0,60090 0,48736 - 0,56799 0,44508 - 

 
Table 10  
Ie, IH, and IR2 (MF02) for HABC, MPICA and MOHEA 

MF02 / Problem 4 × 5 with 12 operations (flexible) 
 Ie IH IR2 
 MOHEA HABC MPICA MOHEA HABC MPICA MOHEA HABC MPICA 

MOHEA - 0,18634 0,23476 - 0,17702 0,22302 - 0,19938 0,25119 
HABC 0,81366 - 0,51885 0,82298 - 0,49291 0,80062 - 0,55517 
MPICA 0,76524 0,48115 - 0,77698 0,50709 - 0,74881 0,44483 - 

 
Table 11 
Ie, IH, and IR2 (MF03) for HABC, MPICA and MOHEA 

MF03 / Problem 10 × 7 with 29 operations (flexible) 
 Ie IH IR2 
 MOHEA HABC MPICA MOHEA HABC MPICA MOHEA HABC MPICA 

MOHEA - 0,37590 0,43288 - 0,35335 0,40691 - 0,41349 0,47617 
HABC 0,62410 - 0,56399 0,64665 - 0,53015 0,58651 - 0,62039 
MPICA 0,56712 0,43601 - 0,59309 0,46985 - 0,52383 0,37961 - 

 

As in the previous section we run a robustness analysis, again by the same procedure. The results are 
reported in Table 14, which shows that MOHEA yields better results than MPICA and HABC. In turn, 
these last two algorithms do not exhibit significant differences. 
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Table 12  
Ie, IH, and IR2 (MF04) for HABC, MPICA and MOHEA 

MF04 / Problem 10 × 10 with 30 operations (flexible) 
 Ie IH IR2 
 MOHEA HABC MPICA MOHEA HABC MPICA MOHEA HABC MPICA 

MOHEA - 0,03178 0,60145 - 0,03019 0,57138 - 0,03448 0,65257 
HABC 0,96822 - 0,96711 0,96981 - 0,95260 0,96552 - 0,98162 
MPICA 0,39855 0,03289 - 0,42862 0,04740 - 0,34743 0,01838 - 

 
Table 13  
Ie, IH, and IR2 (MF05) for HABC, MPICA and MOHEA 

MF05 / Problem 15 × 10 with 56 operations (flexible) 
 Ie IH IR2 
 MOHEA HABC MPICA MOHEA HABC MPICA MOHEA HABC MPICA 

MOHEA - 0,02749 0,45332 - 0,02653 0,43745 - 0,02776 0,47825 
HABC 0,97251 - 0,97112 0,97347 - 0,95170 0,97224 - 0,97209 
MPICA 0,54668 0,02888 - 0,56255 0,04830 - 0,52175 0,02791 - 

 
Table 14  
P-values in the difference of means test between MOHEA, HABC and MPICA 

P-values (MOHEA, HABC and MPICA) 
Test Pr (|T| > |t|) Pr(T > t) Pr(T < t) 

MOHEA=MPICA 0.0001 0.0000 1.0000 
MOHEA=HABC 0.0000 0.0000 1.0000 
MPICA=HABC 0.9250 0.5375 0.4625 

H0 mean(diff) = 0 mean(diff) = 0 mean(diff) = 0 
H1 mean(diff) ≠ 0 mean(diff) > 0 mean(diff) < 0 

Finally, we also compare the mean running times of the three algorithms (see Table 15). We see that 
HABC runs faster that MOHEA and MPICA, but as seen above, its solutions are not as good as those of 
MOHEA. On the other hand MOHEA ran faster than MPICA in four out of five cases. 
 

Table 15 
Mean Running Time for MOHEA, HABC and MPICA 

Mean Running Time 
 MOHEA (in seconds) HABC (∆% MOHEA) MPICA (∆% MOHEA) 

MF01 84,28 -15,66 4,32 
MF02 146,91 -10,41 7,89 
MF03 165,98 -9,32 2,31 
MF04 302,20 -17,97 -5,20 
MF05 398,90 -20,75 10,78 

 

5. Conclusion  
We presented a Multi-Objective Hybrid Evolutionary Algorithm (MOHEA) for the Flexible Job-Shop 
Scheduling Problem (FJSSP). Our algorithm integrates two meta-heuristic procedures: a Multi-Objective 
Evolutionary Algorithm (MOEA) and a Multi-Objective Simulated Annealing (MOSA) algorithm. 
Individuals are coded in a way that facilitates the application of two basic genetic operators. Different 
MOEAs were tested for the first component of the MOHEA. IBEA showed to perform better than 
NSGAII and SPEAII. We also compared MOHEA with the Hybrid Artificial Bee Colony Algorithm 
(HABC) and the Multi-Population Interactive Coevolutionary Algorithm (MPICA). The running time 
performances of MOHEA and MPICA were better than that of HABC. Only in one case MPICA 
improved over MOHEA. We can conclude that our hybrid structure intended to provide solutions to the 
FJSSP obtains good solutions at a reasonable time. 
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