

* Corresponding author.
E-mail: mfrutos@uns.edu.ar (M. Frutos)

© 2016 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.ijiec.2016.4.002

International Journal of Industrial Engineering Computations 7 (2016) ***–***

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

An alternative hybrid evolutionary technique focused on allocating machines and
sequencing operations

Mariano Frutosa*, Fernando Tohméb, Fernando Delbiancob and Fabio Miguelc

aDepartment of Engineering, Universidad Nacional del Sur and IIESS-CONICET. Av. Alem 1253, Bahía Blanca, Argentina
bDepartment of Economics, Universidad Nacional del Sur and CONICET. 12 de Octubre 1198, Bahía Blanca, Argentina
cSede Alto Valle y Valle Medio, Universidad Nacional de Río Negro. Mitre 305, Villa Regina, Argentina
C H R O N I C L E A B S T R A C T

Article history:
Received November 4 2015
Received in Revised Format
April 6 2016
Accepted April 7 2016
Available online
April 7 2016

 We present here a hybrid algorithm for the Flexible Job-Shop Scheduling Problem (FJSSP). This
problem involves the optimal use of resources in a flexible production environment in which
each operation can be carried out by more than a single machine. Our algorithm allocates, in a
first step, the machines to operations and in a second stage it sequences them by integrating a
Multi-Objective Evolutionary Algorithm (MOEA) and a path-dependent search algorithm
(Multi-Objective Simulated Annealing), which is enacted at the genetic phase of the procedure.
The joint interaction of those two components yields a very efficient procedure for solving the
FJSSP. An important step in the development of the algorithm was the selection of the right
MOEA. Candidates were tested on problems of low, medium and high complexity. Further
analyses showed the relevance of the search algorithm in the hybrid structure. Finally,
comparisons with other algorithms in the literature indicate that the performance of our
alternative is good.

© 2016 Growing Science Ltd. All rights reserved

Keywords:
Flexible job-shop scheduling
problem
Optimization
Multi-objective hybrid
Evolutionary algorithm
Production

1. Introduction

The design of production plans involves decisions on the allocation of limited resources in order to optimize
efficiency-related short-term objectives (Bihlmaier et al., 2009; Nowicki & Smutnicki, 2005; Armentano &
Scrich, 2000). The framework of analysis of this kind of problems is the Job-Shop Scheduling Problem (JSSP)
(Agnetis et al., 2001; Lin et al., 2011; Heckman & Beck, 2011; Nazarathy & Weiss, 2010), which assumes a
class of jobs, consisting of ordered sequences of operations that have to be distributed over several machines.
One of the goals is to minimize the makespan, i.e. the total processing time of the jobs (Heinonen &
Pettersson, 2007; Chao-Hsien & Han-Chiang, 2009; Della Croce et al., 2014). Flexible JSSP (FJSSP)
generalizes this problem. It assumes that operations can be performed on different machines. Thus, it involves
the decision of the allocation of operations on machines, a NP-Hard problem (Ullman, 1975; Papadimitriou,
1994). While most of the literature on this problem focuses on its single objective versions, some authors

2

state that several objectives have to be optimized as to achieve an efficient production process (Chinyao &
Yuling, 2009). Based on the latter motivation we present here an algorithm for a multi-objective version of
FJSSP. On the grounds of a preliminary analysis of the problem we decided to base our alternative on an
evolutionary approach (Goldberg, 1989; Pezzella et al., 2008). One of the main advantages of this strategy is
that evolutionary algorithms can be easily adapted to the problem at hand. They are quite efficient in handling
single-objective problems, but their high rate of convergence hampers their usefulness on multi-objective
versions. This is because their fast convergence leads to a loss of diversity, indicated by poorly distributed
Pareto frontiers. A multi-objective algorithm based on an underlying evolutionary component should be,
therefore, complemented by an efficient search procedure in order to diversify solutions with a few rounds of
evaluation of the fitness functions. This is the approach we followed in this paper, providing a methodological
ground for the design of such a hybrid algorithm, as introduced in Frutos et al. (2010) and Frutos and Tohmé
(2015). We present here a Multi-Objective Evolutionary Algorithm (MOEA) (Coello et al., 2006) joined by
a local search procedure (MOSA, Multi-Objective Simulated Annealing) to solve a FJSSP (Hansmann et al.,
2014; Tsai & Lin, 2003; Wu et al., 2004; Nidhiry & Saravanan, 2012). From now on, we will call this hybrid
structure a Multi-Objective Hybrid Evolutionary Algorithm or MOHEA. The rest of the paper is organized
as follows. Section 1.1 discusses some of the literature on the FJSSP while section 1.2 introduces the formal
description of multiple-objective optimization problems. Section 2 presents our formal characterization of
FJSSP while in section 3 the MOHEA for this framework is introduced. Results of running the algorithm are
shown in section 4, and in section 5 we present the conclusions.
1.1 Approaches to the FJSSP

The FJSSP is particularly hard to solve. It has been analyzed for 1, 2 and 3 machines and some arbitrary number
of jobs. Very few developments have been devoted to the case of 4 or more machines for at least 3 jobs, due to
the combinatorial explosion of feasible sequences. A brief survey of the literature on the problem shows that,
(Brandimarte, 1993) proposed a hierarchical approach, distinguishing the allocation from the sequencing sub-
problem, where the former is handled as a routing problem while the latter is seen as a Job-Shop one.
(Mesghouni et al., 1997), instead, attacked the problem with genetic algorithms. On the other hand, (Kacem et
al., 2002) proposed a localization approach to the control of the genetic algorithm, yielding good solutions and
minimizing the makespan and the workload of the machines. Tay and Wibowo (2004) and Ho and Tay (2005)
introduced dispatch rules to generate populations and a scheme structure under which each generation explores
the search space. They also studied the representation of solutions in order to achieve a more efficient makespan.
This approach was generalized in (Ho et al., 2007), in which the evolutionary algorithm is complemented by
learning under schemes and composite dispatch rules. (Fattahi et al., 2007) proposed a hierarchical approach to
the FJSSP in which the allocation sub-problem is solved by a Taboo Search treatment, while the sequencing
one is handled by Simulated Annealing. This approach was tested on twenty instances of the FJSSP, although
only the simplest ones got solved. (Zhang & Gen, 2005) presents a genetic algorithm working on multiple
scenarios, in which each one corresponds to an operation and each feasible machine to a state. (Pezzella et al.,
2008), also used a genetic algorithm aided by Kacem’s et al. (2002) localization approach. This allows for
intelligent mutations that reassign operations from heavy loaded to less loaded machines. (Yazdani et al., 2010)
proposed the minimization of makespan by handling, in parallel, variable neighbourhoods while (Yang et al.,
2010) solved the FJSSP with an improved constraint satisfaction adaptive neural network. Recent approaches
involve hybridizations with an artificial bee colony algorithm (Li et al., 2011) or a shuffled frog-leaping
algorithm (Li et al., 2012). On the other hand, the local search procedure included has been defined on the
critical path (Xiong et al., 2012) or performed hierarchically over the different objectives (Yuan & Xu, 2015).
1.2 Multi-Objective Optimization: Basic Concepts

Let us assume that several goals (objectives) have to be minimized. Thus, a vector * * * T
1 nx [x ,..., x]

 of
decision variables is required, satisfying q inequalities ig (x) 0,

 i 1,..., q as well as p equations

ih (x) 0, i 1,..., p
 , such that T

1 kf (x) [f (x),..., f (x)]

, a vector of k functions, each one corresponding to
a goal, attains its minimum. The family of decision vectors satisfying the q inequalities and the p equations is
denoted by and each x is a feasible alternative. A *x

 is Pareto optimal if for any x and

M. Frutos et al. / International Journal of Industrial Engineering Computations 7 (2016)

3

every i = 1,…,k, *
i if (x) f (x)
 . This means that no x can improve a goal without worsening others. We say

that a vector T
1 nu [u ,..., u]

 dominates another, T
1 nv [v ,..., v]

 (denoted u v) if and only if i {1,..., k}

, i i i iu v i {1,..., k}: u v . The set of Pareto optima is * ' 'P {x x , f (x) f (x)}
 and the

associated Pareto frontier is * *FP {f (x), x P }
 . The main goal of Multi-Objective Optimization is to find

the corresponding *FP . A good approximation should yield a few feasible candidates; close enough to the
frontier (Frutos & Tohmé, 2009).

2. The flexible job-shop scheduling problem

The FJSSP is defined in terms of m machines, m
k k 1M {M } , and a class of n independent jobs, n

j j 1J {J } .

Each job Jj amounts to a set of sequenced operations, i h
j jk i 1S {O } . Each of these must be processed by a

machine in M. Operation i
jkO in the sequence jS requires to use machine kM during an un-interrupted

processing time i
jk (assumed constant), with an operational cost i

jk . No machine can run two operations at
the same time and all jobs and machines are available at time 0. The different operations allocated to kM
constitute the set kE . Therefore m

k k 1E {E } will involve the same operations as in n
j j 1J {J } and each

operation will be allocated only once. From the many possible objectives that can be pursued in this setting
we choose the minimization of the total processing time, (makespan) Eq. (1), and the minimization of the
total operational cost given by Eq. (2).

j

j k k
1 max ij ijk Mi S
f : C max(t)

 , (1)

i i
2 jk jkj i k

f : x , (2)

where i
jkx = 1 if i

jk kO E and 0 otherwise. On the other hand i
jkk

x 1 . Besides,
i (i 1) (i 1) s s
jk jh jh pk pkt max (t , t , 0) for each pair i 1 s

jh pk kO ,O E and all machines kM , hM and
sequences of operations iS , sS . As we will see the two objectives are in conflict, which makes this
problem interesting.

3. A multi-objective hybrid evolutionary algorithm

Evolutionary algorithms imitate genetic processes, improving solutions by breeding new solutions up from
older ones. The solutions are represented as a fixed number of chromosomes, composed by smaller units
called genes. They codify the hereditary features of an individual (solution). In the case of sequencing
problems the chromosomes indicate the programming of jobs. It is assumed that among all possible
chromosomes one codifies the optimal sequence. To show how this works we will consider the case of
instance MF01 analyzed in (Frutos et al., 2010), with three jobs and four machines (3×4). The first and second
jobs require three operations each while the third one requires only two. This amounts to eight operations
with processing times and operational costs shown in Table 1. Solutions have to be codified in terms of the
characteristics of the problem, respecting its constraints. We will use two chromosomes for each solution.
The first one determines the solution of the allocation sub-problem while the second the solution of the
sequencing of operations sub-problem. The size of the allocation chromosomes is the number of total
operations in the problem. The size of the sequencing chromosomes is the number of machines in M. In the
allocation chromosome each gene is: 0→M1, 1→M2, 2→M3, 3→M4 (Third column, rows 3 to 10 in Table
2). For the sequencing chromosome each gene is: 0→1│2│3, 1→1│3│2, 2→2│1│3, 3→2│3│1,
4→3│1│2 and 5→3│2│1 (Third row, columns 4 to 7 in Table 2). This means that, in the first chromosome,
gene 0 corresponds to an allocation to machine M1; if it is 1 to machine M2 and so on. In the second
chromosome, if the gene is 0 the sequence of jobs is 1, 2 and 3; if it is 1 the sequence is 1, 3 y 2, and so on.

4

Table 1
A Flexible Job-Shop Scheduling Problem

MF01 / Problem 3 × 4 with 8 operations (flexible)

jJ
i
jkO

1M 2M 3M 4M

i
j1

i
j1

i
j2

i
j2

i
j3

i
j3

i
j4

i
j4

1J

1
1kO 1 10 3 8 4 6 1 9
2
1kO 3 4 8 2 2 10 1 12
3
1kO 3 8 5 4 4 6 7 3

2J

1
2kO 4 7 1 16 1 14 4 6
2
2kO 2 10 3 8 9 3 3 8
3
2kO 9 3 1 15 2 10 2 13

3J

1
3kO 8 6 6 8 3 12 5 10
2
3kO 4 11 5 8 8 6 1 18

Table 2
Allocation and Sequencing Chromosomes

MF01 / Problem 3 × 4 with 8 operations (flexible)

jJ
i
jkO kM 1M 2M 3M 4M

Chr. 4 0 2 1

1J

1
1kO 0
2
1kO 3
3
1kO 2

2J

1
2kO 2
2
2kO 0
3
2kO 1

3J

1
3kO 2
2
3kO 3

Allocation Chromosome: 0-3-2-2-0-1-2-3 (Ref. 0→M1, 1→M2, 2→M3, 3→M4)

Sequencing Chromosome: 4-0-2-1 (Ref. 0→1│2│3, 1→1│3│2, 2→2│1│3, 3→2│3│1, 4→3│1│2 and 5→3│2│1)

A crucial role in the algorithm is played by the chromosome decoding procedure, since it is in charge of
the interpretation and representation of the solutions of the FJSSP. This procedure is the most
computationally costly in the algorithm. It runs by fetching the information in the genes and looking up
in the times and costs table. After this, the objectives are evaluated on the resulting solution candidate
(see Figure 1). The initial population is randomly generated: the allocation chromosome is obtained by
assigning at random values between 0 and m-1 (between 0 and 3 in our example) to the genes. On the
other hand, the sequencing chromosome is generated by the random assignation of values between 0 and
n!-1 (between 0 and 5 in the example) to its genes. Then, the crossover and mutation genetic operators
are applied over the candidates. Crossover exchanges segments of chromosomes between pairs of
candidates, making the new candidates carry a mixture of the information of its ‘parents’. Mutation
introduces random feasible changes in the chromosomes, as to yield new solution candidates and
allowing the exploration of different areas of the search space. The crossover operator is applied on
chromosomes of the same type, exchanging segments of the allocation chromosome and segments of the
sequencing chromosome among candidates. In our algorithm we use uniform crossover, which exchanges
the genes in the same position in the chromosomes of two candidates, breeding two new solution
candidates. The version of the mutation operator used here swaps two genes in the same chromosome
(Two-swap). On the allocation chromosome it operates on a 20 % of the genes, while on the sequencing
chromosome it acts only over the 10 %. After a careful examination of local search algorithms we
selected Simulated Annealing as our ‘improves’ operator. The main components of this algorithm are the
way in which the neighborhood of solutions is generated and the probability function (T)e , in particular
the value of δ. The general structure of our Multi-Objective Simulated Annealing is the same as in (Frutos
et al., 2010).

M. Frutos et al. / International Journal of Industrial Engineering Computations 7 (2016)

5

MF01 / Problem 3 × 4 with 8 operations (flexible)

Machine
↓

1M J1 J2

2M J2

3M J2 J1 J3

4M J1 J3

 Time →

Fig. 1. Decoding of both chromosomes and evaluation of the resulting solution, f1: 10 and f2: 97

The neighborhood is generated by taking both chromosomes in a candidate and altering at random the
value of some genes (with the same percentages as the mutation operator). This induces a change of the
machines on which operations are run and at the same time a change in their ordering. The determination
of δ, somehow lacking in the multi-objective literature is as follows: i i imax f (x’) f (x) f (x) .
(Yazdani et al., 2010) have shown that in appropriate settings this specification yields very good
solutions. As for those settings, they are given by the following parameters: Ti (initial temperature), Tf
(final temperature), the cooling function (k 1 kT T , where α is the rate of cooling and k the iteration
step), and the number of iterations M (kM 1 T , where is a control parameter). The hybrid
structure was designed in the PISA (A Platform and Programming Language Independent Interface for
Search Algorithms) environment (Frutos & Tohmé, 2009) (see Fig. 2).

Fig. 2. Hybrid Structure in PISA

4. Implementation and design of experiments

Any instance of the FJSSP is specified by the number of jobs, the number of machines and the total number
of operations to be performed. For our experiments we use the problems reported in (Frutos et al., 2010):
MF01 (3 jobs × 4 machines with 8 operations), MF02 (4 × 5 with 12 operations), MF03 (10 × 7 with 29

M
ul

ti-
O

bj
ec

tiv
e

H
yb

ri
d

E
vo

lu
tio

na
ry

 A
lg

or
ith

m

VARIATOR SELECTOR

 M1→ J1 J3 J2 M3→ J3 J2 J1

M2→ J2 J1 J3 M4→ J1 J3 J2

 M1→ J2 J1 J3

M4→ J1 J3 J2

M3→ J3 J1 J2

M2→ J2 J1 J3

 M1→ J2 J1 J3

M2→ J1 J2 J3 M4→ J1 J2 J3

M3→ J1 J2 J3 M3→ J1 J3 J2 M1→ J3 J2 J1

M2→ J3 J2 J1 M4→ J2 J1 J3

NSGA / NSGAII / SPEA / SPEAII

 Text File
Scheduling

(Fitness)

Individual
(Decoding)

Search
(Improves Operator)

PROBLEM SPECIFIC DATA
(Flexible Job-Shop Scheduling Problem)

 Text File

NSGAII / SPEAII / IBEA

6

operations), MF04 (10 × 10 with 30 operations) and MF05 (15 × 10 with 56 operations). We compared the
global performance of the evolutionary stage by exchanging three selectors (see Fig. 2): Nondominated
Sorting Genetic Algorithm II (NSGAII) (Deb et al., 2002) (with a O(g×N2) complexity, for a population of
size 2N), Strength Pareto Evolutionary Algorithm II (SPEAII) (Zitzler et al., 2002) (its complexity is
O((N+N’)2*log(N+N’)), where N is the size of the population and N’ the size of the file that stores the
results) and Indicator-Based Evolutionary Algorithm (IBEA) (Zitzler & Künzli, 2004) (of O(N2)
complexity). A preliminary analysis of the improvement process showed that it tended to become stable at
the 200th generation. We chose then the limit of 250 generations, just to leave room for any later
improvement. The parameters and characteristics of the computing equipment used during these
experiments were as follows: size of the population: 200, type of cross-over: uniform; probability of cross-
over: 0.90, type of mutation: two-swap, probability of mutation: 0.01, type of local search: simulated
annealing (Ti: 850, Tf: 0.01, α: 0.95, ω: 10), probability of local search: 0.01, CPU: 3.00 GHZ and RAM:
1.00 GB. In the case of the IBEA selector we chose the additive epsilon index. We run each algorithm 30
times and the undominated solutions were picked up.

4.1 Selection of MOEA
As a first instance, we compare the performance of the MOEAs using the following metrics: the multiplicative
version of the Unary Epsilon Index (Ie), the Hypervolume Index (IH) and the R2 index (IR2). These indexes
allow distinguishing differences among the approximations when the dominance rankings yield very similar
results (Knowles et al., 2005). For the parameters of the indexes we kept the initial specifications of PISA.
Unary indexes were obtained using normalized approximation sets (Zitzler & Künzli, 2004) and the reference
class generated by PISA. A non-parametric test was run on the approximation sets in order to obtain valid
conclusions on the quality of the optimization methods. In our analysis we used Fisher’ test (Knowles et al.,
2005) with a confidence level α = 0.05. Tables 3, 4 and 6 indicate that problems MF01, MF02 and MF04
yield no significantly different results. Tables 5 and 7, instead, show significant differences in the results of
MF03 and MF05 between IBEA and the other two algorithms, SPEAII and NSGAII.

Table 3
Ie, IH, and IR2 (MF01) for IBEA, NSGAII and SPEAII

MF01 / Problem 3 × 4 with 8 operations (flexible)
 Ie IH IR2
 IBEA NSGAII SPEAII IBEA NSGAII SPEAII IBEA NSGAII SPEAII

IBEA - 0,31466 0,27123 - 0,32095 0,27665 - 0,30207 0,26038
NSGAII 0,68534 - 0,38665 0,67905 - 0,38193 0,69793 - 0,37438
SPEAII 0,72877 0,61335 - 0,72335 0,61807 - 0,73962 0,62562 -

Table 4
Ie, IH, and IR2 (MF02) for IBEA, NSGAII and SPEAII

MF02 / Problem 4 × 5 with 12 operations (flexible)
 Ie IH IR2
 IBEA NSGAII SPEAII IBEA NSGAII SPEAII IBEA NSGAII SPEAII

IBEA - 0,25667 0,15743 - 0,26180 0,16058 - 0,24640 0,15113
NSGAII 0,74333 - 0,47696 0,73820 - 0,48697 0,75360 - 0,48387
SPEAII 0,84257 0,52304 - 0,83942 0,51303 - 0,84887 0,51613 -

Table 5
Ie, IH, and IR2 (MF03) for IBEA, NSGAII and SPEAII

MF03 / Problem 10 × 7 with 29 operations (flexible)
 Ie IH IR2
 IBEA NSGAII SPEAII IBEA NSGAII SPEAII IBEA NSGAII SPEAII

IBEA - 0,03175 0,01738 - 0,03239 0,01773 - 0,03048 0,01668
NSGAII 0,96825 - 0,51132 0,96762 - 0,49577 0,96952 - 0,48233
SPEAII 0,98262 0,48868 - 0,98227 0,50423 - 0,98332 0,51767 -

M. Frutos et al. / International Journal of Industrial Engineering Computations 7 (2016)

7

Table 6
Ie, IH, and IR2 (MF04) for IBEA, NSGAII and SPEAII

MF04 / Problem 10 × 10 with 30 operations (flexible)
 Ie IH IR2
 IBEA NSGAII SPEAII IBEA NSGAII SPEAII IBEA NSGAII SPEAII

IBEA - 0,45378 0,42336 - 0,44017 0,41066 - 0,46739 0,43606
NSGAII 0,54622 - 0,49118 0,55983 - 0,47939 0,53261 - 0,49118
SPEAII 0,57664 0,50882 - 0,58934 0,52061 - 0,56394 0,50882 -

Table 7
Ie, IH, and IR2 (MF05) for IBEA, NSGAII and SPEAII

MF05 / Problem 15 × 10 with 56 operations (flexible)
 Ie

1 IH IR2
1

 IBEA NSGAII SPEAII IBEA NSGAII SPEAII IBEA NSGAII SPEAII
IBEA - 0,02654 0,04166 - 0,02574 0,04041 - 0,02734 0,04291

NSGAII 0,97346 - 0,39616 0,97426 - 0,38691 0,97266 - 0,40776
SPEAII 0,95834 0,60384 - 0,95959 0,61309 - 0,95709 0,59224 -

Given these results, we have to note that an assessment based on a relatively small number of runs
requires further analysis in order to ensure its robustness. We have to see that the results reported in the
previous subsections are statistically significant. We proceed as follows. For each algorithm we take the
final outcome on each problem. This is written as a vector. Then we take a component by component
distance to the vector of solutions (of the same dimensionality). Then we postulate different hypotheses,
one the null hypothesis (that the algorithms do not yield differences) and alternative ones, indicating
differences among the algorithms. To see this, we start introducing a distance to the frontier variable,
which is basically a variant of a taxicab metric. Let us remark that the results we present below are robust
under changes in the underlying metric: the same analysis based on the Euclidean and the supremum
metric yield analogous results. The distance of the frontier is obtained as the addition of the distances to
their corresponding values in the frontier of the actually obtained values f1 and f2:

 * *
x,i 1,i 1,i 2,i 2,id f f f f , where x,id is the distance yield by algorithm x on observation i. The values

of i refer to the observations (i=1,…,n), 1,if and 2,if to values on the frontier and *
1,if , *

2,if to the actual
output of the algorithm on i. Notice that this distance (unlike the taxicab one) is negative. In case an
algorithm does not reach a solution, we assign the maximal distance found for the other algorithms on
that observation. Table 8 shows the P-values of differences in means test for the different algorithms. As
indicated, the null hypothesis is the means are equal. All the results are significant, meaning, in particular,
that the number of cases considered were enough to make the assessment.

Table 8
P-values in the difference of means test between IBEA, NSGAII and SPEAII.

P-values (IBEA, NSGAII and SPEAII)
Test Pr (|T| > |t|) Pr(T > t) Pr(T < t)

IBEA=SPEAII 0.0000 0.0000 1.0000
IBEA=NSGAII 0.0000 0.0000 1.0000

SPEAII=NSGAII 0.4895 0.2448 0.7552
H0 mean(diff) = 0 mean(diff) = 0 mean(diff) = 0
H1 mean(diff) ≠ 0 mean(diff) > 0 mean(diff) < 0

It can be seen that IBEA is more efficient (in the sense that the distance to the frontier is much shorter,
indicated by Pr(T>t)). On the other hand, there are no significant differences between SPEAII and
NSGAII.
4.2 MOHEA vs. MOEA: Why Hybrid?

Now we report the results of experiments comparing the MOEA (IBEA in our case) and the MOEA
complemented with a search process (IBEA + Simulated Annealing). In Figures 3, 4, 5, 6 and 7 (Left)
we show the Pareto frontiers for both algorithms. The MOEA yields an incomplete frontier, which,

8

moreover is sometimes dominated by the frontier obtained by the MOHEA. Furthermore, the latter
exhibits a better distribution of solutions. In Figs. 3, 4, 5, 6 and Fig. 7 (Right) show the mean number of
undominated solutions (S) found by the MOHEA and the MOEA, for different generation numbers (G).
It can be seen that for the 250 generations run by the two algorithms, there exists a clear difference between
them. Other experiments, not reported here, indicated that the MOEA reached the undominated solutions for
these problems around generation 500. Putting this together with the number of evaluations in the search
process we conclude that for similar results, the MOHEA on average required 35,2 % less evaluations than
MOEA.

Fig. 3. f1 vs. f2 (Left) and G vs. S (Right) for MOHEA () and MOEA () (MF01)

Fig. 4. f1 vs. f2 (Left) and G vs. S (Right) for MOHEA () and MOEA () (MF02)

Fig. 5. f1 vs. f2 (Left) and G vs. S (Right) for MOHEA () and MOEA () (MF03)

Fig. 6. f1 vs. f2 (Left) and G vs. S (Right) for MOHEA () and MOEA () (MF04)

25

50

75

0 20 40

f2

f1

S

G

0

5

10

15

20

0 50 100 150 200 250 300

f2

f1

25

100

175

10 45 80

S

G

0

5

10

15

20

25

30

0 50 100 150 200 250 300

f2

f1

20

220

420

0 70 140

S

G

0

5

10

15

20

25

0 50 100 150 200 250 300

f2

f1

0

150

300

5 35 65

S

G

0

5

10

15

20

25

30

0 50 100 150 200 250 300

M. Frutos et al. / International Journal of Industrial Engineering Computations 7 (2016)

9

Fig. 7. f1 vs. f2 (Left) and G vs. S (Right) for MOHEA () and MOEA () (MF05)

4.3 Comparison of the MOHEA with HABC and MPICA

We compared also the results under our MOHEA with those obtained by the Hybrid Artificial Bee
Colony Algorithm (HABC) introduced by Li et al., (2011) and by the Multi-Population Interactive
Coevolutionary Algorithm (MPICA) presented in (Xing et al., 2011). These two algorithms were
implemented in C++. The parameters for them were taken from the publications in which they have been
presented. They were also run 30 times each and the outcomes were evaluated according to the same
metrics used in the choice of the selector. Fisher’s test was used again with a confidence level α = 0.05.
Tables 9, 10 and 11 show no significant differences for MF01, MF02 and MF03 under the different
algorithms and indexes. Tables 12 and 13 show significant differences in problems MF04 and MF05,
between MOHEA and MPICA over HABC.

Table 9
Ie, IH, and IR2 (MF01) for HABC, MPICA and MOHEA

MF01 / Problem 3 × 4 with 8 operations (flexible)
 Ie IH IR2
 MOHEA HABC MPICA MOHEA HABC MPICA MOHEA HABC MPICA

MOHEA - 0,36593 0,41144 - 0,35495 0,39910 - 0,38423 0,43201
HABC 0,63407 - 0,52850 0,64505 - 0,51265 0,61577 - 0,55493
MPICA 0,58856 0,47150 - 0,60090 0,48736 - 0,56799 0,44508 -

Table 10
Ie, IH, and IR2 (MF02) for HABC, MPICA and MOHEA

MF02 / Problem 4 × 5 with 12 operations (flexible)
 Ie IH IR2
 MOHEA HABC MPICA MOHEA HABC MPICA MOHEA HABC MPICA

MOHEA - 0,18634 0,23476 - 0,17702 0,22302 - 0,19938 0,25119
HABC 0,81366 - 0,51885 0,82298 - 0,49291 0,80062 - 0,55517
MPICA 0,76524 0,48115 - 0,77698 0,50709 - 0,74881 0,44483 -

Table 11
Ie, IH, and IR2 (MF03) for HABC, MPICA and MOHEA

MF03 / Problem 10 × 7 with 29 operations (flexible)
 Ie IH IR2
 MOHEA HABC MPICA MOHEA HABC MPICA MOHEA HABC MPICA

MOHEA - 0,37590 0,43288 - 0,35335 0,40691 - 0,41349 0,47617
HABC 0,62410 - 0,56399 0,64665 - 0,53015 0,58651 - 0,62039
MPICA 0,56712 0,43601 - 0,59309 0,46985 - 0,52383 0,37961 -

As in the previous section we run a robustness analysis, again by the same procedure. The results are
reported in Table 14, which shows that MOHEA yields better results than MPICA and HABC. In turn,
these last two algorithms do not exhibit significant differences.

f2

f1

0

450

900

10 80 150

S

G

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300

10

Table 12
Ie, IH, and IR2 (MF04) for HABC, MPICA and MOHEA

MF04 / Problem 10 × 10 with 30 operations (flexible)
 Ie IH IR2
 MOHEA HABC MPICA MOHEA HABC MPICA MOHEA HABC MPICA

MOHEA - 0,03178 0,60145 - 0,03019 0,57138 - 0,03448 0,65257
HABC 0,96822 - 0,96711 0,96981 - 0,95260 0,96552 - 0,98162
MPICA 0,39855 0,03289 - 0,42862 0,04740 - 0,34743 0,01838 -

Table 13
Ie, IH, and IR2 (MF05) for HABC, MPICA and MOHEA

MF05 / Problem 15 × 10 with 56 operations (flexible)
 Ie IH IR2
 MOHEA HABC MPICA MOHEA HABC MPICA MOHEA HABC MPICA

MOHEA - 0,02749 0,45332 - 0,02653 0,43745 - 0,02776 0,47825
HABC 0,97251 - 0,97112 0,97347 - 0,95170 0,97224 - 0,97209
MPICA 0,54668 0,02888 - 0,56255 0,04830 - 0,52175 0,02791 -

Table 14
P-values in the difference of means test between MOHEA, HABC and MPICA

P-values (MOHEA, HABC and MPICA)
Test Pr (|T| > |t|) Pr(T > t) Pr(T < t)

MOHEA=MPICA 0.0001 0.0000 1.0000
MOHEA=HABC 0.0000 0.0000 1.0000
MPICA=HABC 0.9250 0.5375 0.4625

H0 mean(diff) = 0 mean(diff) = 0 mean(diff) = 0
H1 mean(diff) ≠ 0 mean(diff) > 0 mean(diff) < 0

Finally, we also compare the mean running times of the three algorithms (see Table 15). We see that
HABC runs faster that MOHEA and MPICA, but as seen above, its solutions are not as good as those of
MOHEA. On the other hand MOHEA ran faster than MPICA in four out of five cases.

Table 15
Mean Running Time for MOHEA, HABC and MPICA

Mean Running Time
 MOHEA (in seconds) HABC (∆% MOHEA) MPICA (∆% MOHEA)

MF01 84,28 -15,66 4,32
MF02 146,91 -10,41 7,89
MF03 165,98 -9,32 2,31
MF04 302,20 -17,97 -5,20
MF05 398,90 -20,75 10,78

5. Conclusion
We presented a Multi-Objective Hybrid Evolutionary Algorithm (MOHEA) for the Flexible Job-Shop
Scheduling Problem (FJSSP). Our algorithm integrates two meta-heuristic procedures: a Multi-Objective
Evolutionary Algorithm (MOEA) and a Multi-Objective Simulated Annealing (MOSA) algorithm.
Individuals are coded in a way that facilitates the application of two basic genetic operators. Different
MOEAs were tested for the first component of the MOHEA. IBEA showed to perform better than
NSGAII and SPEAII. We also compared MOHEA with the Hybrid Artificial Bee Colony Algorithm
(HABC) and the Multi-Population Interactive Coevolutionary Algorithm (MPICA). The running time
performances of MOHEA and MPICA were better than that of HABC. Only in one case MPICA
improved over MOHEA. We can conclude that our hybrid structure intended to provide solutions to the
FJSSP obtains good solutions at a reasonable time.
Acknowledgement

We would like to thank the economic support of the Consejo Nacional de Investigaciones Científicas y

M. Frutos et al. / International Journal of Industrial Engineering Computations 7 (2016)

11

Técnicas (CONICET) and the Universidad Nacional del Sur (UNS) for Grant PGI 24/ZJ34. We want
also thank Dr. Ana C. Olivera for her constant support and help during this research.

References

Agnetis, A., Flamini, M., Nicosia, G. & Pacifici, A. (2001). A job-shop problem with one additional
resource type. Journal of Scheduling, 14(3), 225-237.

Armentano, V. A. & Scrich, C. R. (2000). Tabu search for minimizing total tardiness in a job-Shop.
International Journal Production Economics, 63(2), 131-140.

Bihlmaier, R., Koberstein, A. & Obst, R. (2009). Modeling and optimizing of strategic and tactical
production planning in the automotive industry under uncertainty. OR Spectrum, 31(2), 311-336.

Bleuler, S., Laumanns, M., Thiele, L. & Zitzler, E. (2003). PISA: A platform and programming language
independent interface for search algorithms. Evolutionary Multi-Criterion Optimization, 2632, 494-508.

Brandimarte P. (1993). Routing and scheduling in a flexible job-shop by tabu search. Annals of
Operations Research, 41(1), 157-183.

Chao-Hsien, J. & Han-Chiang, H. (2009). A hybrid genetic algorithm for no-wait job-shop scheduling
problems. Expert Systems with Applications, 36 (3), 5800-5806.

Chinyao, L. & Yuling, Y. (2009). Genetic algorithm-based heuristics for an open shop scheduling problem
with setup, processing, and removal times separated. Robotics and Computer-Integrated Manufacturing,
25(2), 314-322.

Coello Coello, C. A., Lamont, G. B. & Veldhuizen, D. A. (2006). Evolutionary Algorithms For Solving
Multi-Objective Problems. Genetic and Evolutionary Computation. New York, Springer-Verlag.

Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. (2002). A fast and elitist multi-objective genetic
algorithm: NSGAII. IEEE Transactions on Evolutionary Computation, 6(2), 182-197.

Della Croce, F., Grosso, A. & Salassa, F. (2014). A matheuristic approach for the two-machine total
completion time flow-shop problem. Annals of Operations Research, 213(1), 67-78.

Fattahi, P., Saidi, M. & Jolai, F. (2007). Mathematical modeling and heuristic approaches to flexible job-
shop scheduling problems. Jounal of Intelligent Manufacturing, 8(3), 331-342.

Frutos, M., Olivera, A. C. & Tohmé, F. (2010). A memetic algorithm based on a NSGAII scheme For
the flexible job-shop scheduling problem. Annals of Operations Research, 181, 745-765.

Frutos, M. & Tohmé, F. (2015). Choice of a PISA selector in a hybrid algorithmic structure for the FJSSP.
Decision Science Letters, 4(1), 247-260.

Frutos, M. & Tohmé, F. (2009). Desarrollo de un procedimiento genético diseñado para programar la
producción en un sistema de manufactura tipo job-shop. Proc. VI Congreso Español sobre Meta-
heurísticas, Algoritmos Evolutivos y Bioinspirados, Málaga, Spain, 23-30.

Goldberg, D. E. (1989). Genetic Algorithms In Search. Optimization and Machine Learning.
Massachusetts, Addison Wesley.

Hansmann, R. S., Rieger, T. & Zimmermann, U. T. (2014). Flexible job shop scheduling with blockages.
Mathematical Methods of Operations Research, 79(2), 135-161.

Heckman, I. & Beck, J. C. (2011). Understanding the behavior of solution-guided search for job-shop
scheduling. Journal of Scheduling, 14 (2), 121-140.

Heinonen, J. & Pettersson, F. (2007). Hybrid ant colony optimization and visibility studies applied to a
job-shop scheduling problem. Applied Mathematics and Computation, 187(2), 989-998.

Ho, N. B., Tay, J. C. & Lai, E. M. (2007). An effective architecture for learning and evolving flexible
job-shop schedules. European Journal of Operational Research, 179(2), 316-333.

Ho, N. B. & Tay, J. C. (2005). Evolving dispatching rules for solving the flexible job-shop problem.
Proc. IEEE Congress on Evolutionary Computation, 3, 2848-2855.

Kacem, I, Hammadi, S. & Borne, P. (2002). Approach by localization and multi-objective evolutionary
optimization for flexible job-shop scheduling problems. IEEE Transactions on Systems, Man, and
Cybernetics, 32(1), 1-13.

Knowles, J., Thiele, L. & Zitzler, E. (2005). A tutorial on the performance assessment of stochastic
multiobjective optimizers. TIK Computer Engineering and Networks Laboratory.

12

Li, J., Pan, Q., Xie, S. & Wang, S. (2011). A hybrid artificial bee colony algorithm for flexible job shop
scheduling problems. International Journal of Computers Communications & Control, 6(2), 286-296.

Li, J., Pan, Q. & Chen, J. (2012). An effective shuffled frog-leaping algorithm for multi-objective flexible
job shop scheduling problems. Journal of Production Research, 50(4), 1063-1078.

Li, J., Pan, Q. & Gao, K. (2011). Pareto-based discrete artificial bee colony algorithm for multi-objective
flexible job shop scheduling pProblems. International Journal of Advanced Manufacturing
Technology, 55(9), 1159-1169.

Lin, Y., Pfund, M. & Fowler, J. (2011). Heuristics for minimizing regular performance measures in
unrelated parallel machine scheduling problems. Computers & Operations Research, 38(6), 901-916.

Mesghouni, K., Hammadi, S. & Borne, P. (1997). Evolution programs for job-shop scheduling. Proc.
IEEE International Conference on Systems, Man, and Cybernetics, 1, 720-725.

Nazarathy, Y. & Weiss, G. (2010). A fluid approach to large volume job shop scheduling. Journal of
Scheduling, 13(5), 509-529.

Nidhiry, N. M. & Saravanan, R. (2012). Evaluation of genetic algorithm approach for scheduling
optimization of flexible manufacturing systems. International Journal of Engineering Research and
Applications, 2(4), 437-446.

Nowicki, E. & Smutnicki, C. (2005). An advanced tabu search algorithm for the job shop problem.
Journal of Scheduling, 8(2), 145-159.

Papadimitriou, C. H. (1994). Computational Complexity. USA, Addison Wesley.
Pezzella, F., Morganti, G. & Ciaschetti, G. (2008). A genetic algorithm for the flexible job-shop

scheduling problem. Journal Computers and Operations Research, 35(10), 3202-3212.
Tay, J. C. & Wibowo, D. (2004). An effective chromosome representation for evolving flexible job-shop

schedules. Proc. GECCO 2004, LNCS 3103, 210-221.
Tsai, C. F. & Lin, F. C. (2003). A new hybrid heuristic technique for solving job-shop scheduling

problems. Proc. Second IEEE International Workshop on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications.

Ullman, J. D. (1975). NP-complete scheduling problems. Journal of Computer System Sciences, 10, 384-393.
Van Laarhoven, P. J. M., Aarts, E. H. L. & Lenstra, J. K. (1992). Job-shop scheduling by simulated

annealing. Operations Research, 40(1), 113-125.
Wu, C. G., Xing, X. L., Lee, H. P, Zhou, C. G. & Liang, Y. C. (2004). Genetic algorithm application on

the job-shop scheduling problem. Proc. 2004 International Conference Machine Learning and
Cybernetics, 4, 2102-2106.

Xing, L. N., Chen, Y. W. & Yang, K. W. (2011). Multi-population interactive coevolutionary algorithm
for flexible job-shop scheduling problems. Computational Optimization and Applications, 48, 139-155.

Xiong, J., Tan, X., Yang, K., Xing, L. & Chen, Y. (2012). A hybrid multiobjective evolutionary approach
for flexible job shop scheduling problems. Mathematical Problems in Engineering, 1, 1-27.

Yang, S., Wang, D., Chai, T. & Kendall, G. (2010). An improved constraint satisfaction adaptive neural
network for job-shop scheduling. Journal of Scheduling, 13(1), 17-38.

Yazdani, M., Zandieh, M. & Amiri, M. (2010). Flexible job-shop scheduling with parallel variable
neighborhood search algorithm. Expert Systems with Applications: An International Journal, 37(1),
678-687.

Yuan, Y. & Xu, H. (2015). Multiobjective flexible job shop scheduling using memetic algorithms. IEEE
Transactions on Automation Science and Engineering, 12 (1), 336-353.

Zhang, G. & Gen, M. (2005). Multistaged-based genetic algorithm for flexible job-shop scheduling
problem. Complexity International, 11, 223-232.

Zitzler, E. & Künzli, S. (2004). Indicator-based selection in multiobjective search. Proc. Conference on
Parallel Problem Solving from Nature (PPSN VIII), LNCS 3242, 832-842.

Zitzler, E., Laumanns, M. & Thiele, L. (2002). SPEAII: Improving the strength pareto evolutionary
algorithm for multi-objective optimization. Evolutionary Methods for Design, Optimisations and
Control, 19-26.

