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The equivalence between the Schrödinger dynamics
of a quantum system with a finite number of basis
states and a classical dynamics is realized in terms of
electric networks. The isomorphism that connects in
a univocal way both dynamical systems was applied
to the case of neutral mesons, kaons in particular,
and the class of electric networks univocally related
to the quantum system was analysed. Moreover,
under CPT invariance, the relevant ε parameter
that measures CP violation in the kaon system is
reinterpreted in terms of network parameters. All
these results were explicitly shown by means of both a
numerical simulation of the implied networks and by
constructing the corresponding circuits.

1. Introduction
After the proposal of Rosner [1] (see also [2,3]) of an
analogy between the physics of the weak decay of neutral
K-mesons (kaons) and a classical system of oscillators
either electrical [1] or mechanical [2–5], it was shown
[6] that this analogy is an equivalence, stricto sensu
from the mathematical point of view. This equivalence
is an isomorphism that connects in a univocal way

2016 The Author(s) Published by the Royal Society. All rights reserved.
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the Schrödinger dynamics of a quantum system with a finite number of basis states and a classical
dynamics.

As already stated in [7], analogies have an important impact in the development of theoretical
physics. They may be similarities of physical concepts related to similarities in the mathematical
formalization or it may be a purely mathematical equivalence to suggest the development of
analogous physical concepts.

This paper presents the construction, via electronic circuits, of the classical equivalent system
to a quantum system. In particular, the well-known oscillatory behaviour between particle and
antiparticle that neutral mesons present is quantitatively reproduced. In this case of neutral kaons,
one is interested in the aspects of Charge conjugation−Parity, CP, invariance [8]. In the context of
validity of CPT symmetry, the equivalent analysis of Time reversal, T, invariance can be considered.

The class of electric networks R considered is univocally related to the kaon system because
one finds the complete map between the matrix elements of the effective Hamiltonian of kaons
and those elements of the classical dynamics of the networks. Moreover, there exists a one-to-
one relationship between the states |K0〉 and |K̄0〉 and port voltages, or currents, of the electric
network.

Following this lines, we can give a formal classical test of the CP invariance that is a reflection of
the corresponding quantum test. One also concludes that any violation of the CP (or T) symmetry
is directly related to the non-reciprocity of the network [1]. In fact, the observable related to the
violation of T invariance at quantum level is associated with the conductance of a non-reciprocal
element needed to be included in the network, the gyrator. This is a two ports, non-reciprocal,
passive network without losses that violates the classical symmetry T [9–11]. In this way, one
ends up with a network completely equivalent to the kaon system, that allows one to present
the relevant parameters of the quantum system in terms of circuit parameters. The interaction
between both initial subnetworks gives rise to a shift in the proper initial free frequencies, in
the same way as the masses of kaons. Moreover, the presence of proper relaxation times of the
circuit are associated with the mean lives of the combinations K−short and K−long. The purpose
of this paper is to transcend the formal aspects introduced in [6], presenting details not only
of the numerical simulation of the previously proposed circuits but also to explicitly show the
implementation of the circuit together with the corresponding experimental measurements.

In §2, we briefly summarize the equivalence between the quantum and the classical dynamics,
in particular for the case of the neutral kaon system. This section also includes a brief account of
the electric networks of interest. Section 3 summarizes the physical observables in both systems.
The design, simulation and realization of the electric circuit is presented in §4. Finally, in §5 we
state our conclusions.

2. Equivalence between dynamics

(a) Kaons and oscillators
Let us consider a quantum system Q of n= 2 orthonormal basis states denoted by {|j〉 : j= 1, 2} in
a certain Hilbert space driven by a Hamiltonian H.

The system is described by a vector ψ(t) on C
2 that can be written as ψ(t)= (ψ1(t),ψ2(t))ᵀ in

terms of the coordinates ψj(t)= 〈j|ψ(t)〉. This ψ(t) satisfies the Schrödinger equation

ıdt |ψ(t)〉 =H|ψ(t)〉 or dtψ(t)=Kψ(t) (2.1)

where K ∈C
2x2, with elements Kij =−ı〈i|H|j〉.

In order to correctly state the equivalence with a classical system, it is necessary to perform
a decomplexification [6]. Consequently, the vector decomplexification map D : C

2 −→R
4, gives

rise to D(ψ)= (ϕ1,ϕ2)ᵀ with ϕ1 = (�(ψ1),�(ψ2))ᵀ, ϕ2 = (�(ψ1),�(ψ2))ᵀ and ᵀ denotes the matrix
transposition. We use the decomplexification introduced by Arnold [12] that is equivalent to the
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Figure 1. Schematic idea to establish a map between this two dynamics. The symbol Q represents the deterministic part of the
quantum systemQ, i.e. only its Hamiltonian time evolution given by (2.1).

process presented in [6]. Equation (2.1) can be written as

dt

(
ϕ1
ϕ2

)
=
(

Kr −Ki
Ki Kr

)(
ϕ1
ϕ2

)
(2.2)

with Kr and Ki being the real and the imaginary part of K, respectively. The non-hermitian
character of H is in order because the kaons decay. After a standard decoupling procedure one
gets the equations

ϕ̈j(t)− 2Krϕ̇j(t)+ (K2
r +K2

i )ϕj(t)= 0. (2.3)

It is clear that even if both the real and imaginary part of ψ verify the same equation, one cannot
leave out one of them because the solution of equation (2.3) implies the knowledge of the initial
conditions. In this second-order case, one needs to specify the function and the first derivative at
t= 0, while in quantum mechanics one only knows the function. In order to fix the first derivative
at t= 0, dtψ(0), one needs the knowledge of ψ(0) and of K from (2.1). Moreover, the calculation of
the probability density |ψ(t)|2 necessarily includes both real and imaginary parts.

Let us now go to a classical system C. We start with a system of linear differential equations of
second order, entirely similar to equation (2.3)

q̈(t)+A q̇(t)+ B q(t)= 0 (2.4)

with q : R−→R
2 are the generalized coordinates; A, B ∈M2×2(R).

The equivalence (isomorphism) between Q and C dynamics, discussed in detail in [6], implies
that the real part and the imaginary part of the quantum function are each associated with a
real classical system. One can eventually take two identical classical systems but prepared with
different initial conditions.

We see that it is possible to establish a bridge between these two systems of two states (|1〉, |2〉)
and (q1, q2) via the isomorphism Φ presented in [6]. This bridge can be established to translate (as
a dictionary) two systems with any number of denumberable states (figure 1).

We will see below that in the case of electrical networks this is related with different voltages
in each case, representing the real and the imaginary parts of ψ .

We are particularly interested in the quantum system of neutral kaons because, under the
hypothesis of Wigner & Weisskopf [13,14], it can be written as a two-state system. This exemplifies
very easily the equivalence with a classical system.

General principles on the basis of quantum field theory guarantee the validity of the CPT
symmetry [15]. Consequently, in this context it is equivalent to speak about CP or T invariance,
or non-invariance. Note that when CPT is a symmetry, the masses of a particle and its antiparticle
have to be equal [8].
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We consider here the weak decay of the neutral kaons K0, K̄0 in the standard formalism.
Consequently, a state at time t is represented by

|ψ(t)〉 =
2∑

j=1

|j〉〈j|ψ(t)〉, (2.5)

where {|1〉, |2〉} corresponds to {|K0〉, |K̄0〉}, respectively. The evolution equation of the dynamics
under consideration (2.1) takes the form [8]

ıdtψ(t)= (M− ıΓ )ψ(t), (2.6)

where M and Γ are hermitian matrices

M− ıΓ =

⎛
⎜⎜⎝

M11 − i
2
Γ11 M12 − i

2
Γ12

M∗12 −
i
2
Γ ∗12 M22 − i

2
Γ22

⎞
⎟⎟⎠ . (2.7)

Clearly, the matrix Γ takes into account the decay width. To complete the physical description, it
is necessary to give the initial condition for the evolution.

All the information on the decay channels is contained in (2.6) as is clear from the matrix
elements of M− ıΓ . The CPT−symmetry implies that M11 =M22 and Γ11 = Γ22, while if T (CP)
would be also a symmetry, then M12 =M∗12 and Γ12 = Γ ∗12, where z∗ is conjugate of the complex
number z.

(b) CP violation
After the crucial experiment [16], it was clear that CP symmetry was violated by weak
interactions. The eigenstates of M− ıΓ expressed in the basis {|K0〉, |K̄0〉} are now

|KS〉 = 1√
2(1+ |ε|2)

[
(1+ ε)|K0〉 + (1− ε)|K̄0〉

]

and |KL〉 = 1√
2(1+ |ε|2)

[
(1+ ε)|K0〉 − (1− ε)|K̄0〉

]
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.8)

where, as usual, the indices S, L are related to the decay times short, long, respectively and ε is a
small parameter that measures the breaking of CP symmetry and can be written [6] in terms of
the matrix elements of H (Hij = 〈i|H|j〉) as

ε =
√

H12 −
√

H21√
H12 +

√
H21

. (2.9)

It remains to present the time evolution of the solution of the quantum dynamical equation in
the basis {|K0〉, |K̄0〉}

|ψ(t)〉 =ψ1(t)|K0〉 + ψ2(t)|K̄0〉. (2.10)

It is of interest to make explicit the probability amplitudes

〈K0|ψ(t)〉 =ψ1(t) (2.11)

and

〈K̄0|ψ(t)〉 =ψ2(t). (2.12)

We chose a slightly different notation for the coordinates ψj(t), given by (2.11) and (2.12),
denoting the initial condition. We use ψji(t) for the j−component of the solution ψ(t) of (2.6) when
the initial condition is |ψ(0)〉 = |i〉, i= 1, 2, i.e. the system is prepared in state |1〉 = |K0〉 or |2〉 = |K̄0〉,
initially.
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For the initial condition |ψ(0)〉 = |K0〉, the coordinates (2.11) and (2.12) becomes

ψ11(t)= ekSt + ekLt

2
,

and ψ21(t)= 1− ε
1+ ε

ekSt − ekLt

2
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.13)

where kS =−ΓS/2− imS and kL =−ΓL/2− imL are the eigenvalues of K.
Repeating the calculation for the initial condition |ψ(0)〉 = |K̄0〉 the coordinates (2.11) and (2.12)

becomes

ψ12(t)= 1+ ε
1− ε

ekSt − ekLt

2

and ψ22(t)= ekSt + ekLt

2
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.14)

These solutions are obtained directly from (2.13) interchanging the subindexes j←→ i and
ε −→−ε.

The expressions (2.13) and (2.14), with these two initial conditions, will be useful to calculate
transition probabilities, governed by the evolution operator U(t). The quantum amplitude that
associates with the transition |i〉 �−→ |j〉 is Aji(t)= 〈j|U(t)|i〉 and also this notation is given by

Aji(t)=ψji(t). (2.15)

Just to be ready to compare the circuit signals, let us present the real part of the quantum
probability amplitudes (2.13), namely

Re(ψ11(t))= 1
2

[e−ΓSt/2 cos(mSt)+ e−ΓLt/2 cos(mLt)]

and Re(ψ21(t))= f (ε)
2

[e−ΓSt/2 cos(mSt)− e−ΓLt/2 cos(mLt)],

⎫⎪⎪⎬
⎪⎪⎭ (2.16)

where f (ε)=Re((1− ε)/(1+ ε)). Also real part of the quantum probability amplitudes (2.14),
namely

Re(ψ12(t))= g(ε)
2

[
e−ΓSt/2 cos(mSt)− e−ΓLt/2 cos(mLt)

]

and Re(ψ22(t))= 1
2

[
e−ΓSt/2 cos(mSt)+ e−ΓLt/2 cos(mLt)

]
,

⎫⎪⎪⎬
⎪⎪⎭ (2.17)

where g(ε)=Re((1+ ε)/(1− ε)).
The expressions (2.16) and (2.17) are obtained from the condition |ε| � 1. The imaginary

part will not be necessary due to the very good approximate validity of the Bedrosian theorem
presented below.

(c) Electric networks
Finally, let us introduce the electric networks of interest. As is well known, an electric network
[9,10] includes a set of elements together with a given way of connections among them. These
elements can be classified into five classes, namely: resistors (R), capacitors (C), inductances
(L), voltage generators (vs) and current generators (is). We are particularly interested in lumped
element model circuits where voltage and current depend only upon time.

The corresponding dynamics of an electric network is defined by the appropriate use of
the Kirchhoff rules that take care of the topology of the network. We restrict our analysis to
passive networks, where the energy provided by an external source is non-negative. The network
has ports: pairs of terminals that allow to exchange energy with the surroundings and have a
given voltage and current. One has the possibility of choosing the voltage or the current as the
representative state variable of the excitation or the response of the network. We call V the vector
corresponding to the port voltage and I the port current.
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Figure 2. CP conserving electric network equivalent. (a) Schematic of the ideal circuit. (b) Simulation of port time response to
an initial condition in left C.

A very important concept, relevant to our discussion, is that of reciprocity. A network not
connected to external energy sources is reciprocal if considering two different terminals α = β,
the excitation in α gives rise to a response in β that is invariant under the permutation α←→ β.

In [6], an electric circuit that is equivalent to the system of neutral kaons (and eventually the
other neutral mesons), in the sense previously introduced, was presented. As a result, the matrix
elements of the effective Hamiltonian H were related, by means of a similitude transformation to
those of the appropriate electric circuit. In this way, the symmetries present in the kaon system
and the corresponding tests of validity have a unique reflection in the electric circuit.

The analysis of the time evolution of electric circuits results in a system of linear differential
equations with constant coefficients as equation (2.4). The synthesis [9] of all electric networks in a
given family was analysed in [6] and ends, in the case of exact CP symmetry, with the simple
circuit in figure 2. This circuit, due to the presence of a loop of inductances has two proper
frequencies [9].

Note that the equations that govern the circuit in figure 2 will be given as a particular case of
the more general ones stated below when the non-reciprocal elements are included.

The next step is to find a modified circuit in order to take into account the CP violation
experimentally present in the kaon system. A brief review of our previous analysis shows that
the only way of breaking the CP symmetry is the interaction network being non-reciprocal [6].

Owing to the fact that any combination of {R, L, C} elements provides a reciprocal network [9],
the introduction of some new kind of component is unavoidable. A gyrator, which is a passive
element of two ports, does the job [11].

As a consequence of the introduction of a gyrator of conductance g in a circuit, the admittance
(or impedance) matrix is not symmetric anymore.

Under the hypothesis that the non-reciprocity is very small because the CP violation is
measured by a parameter of the order |ε| ∼ 10−3, one has to deal with a small perturbation on
the initial reciprocal circuit and consequently there is not a measurable change of the proper
frequencies of the symmetric system. When the gyrator is included in the coupling between the
original oscillators, the circuit it that shown in figure 3.
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Figure 3. Non-reciprocal electric circuit. (a) Schematic of the ideal circuit. (b) Simulation of port time response to an initial
condition in left C.

Now the equations relating current and voltage through the gyrator read

I1 = gV2, I2 =−gV1. (2.18)

We consider for the moment node 1, because for node 2 the situation is entirely similar. Current
conservation implies I1 + IL + IC + IR + IRa + ILa = 0. From here one directly obtains

V̈1 + (γ + γa)V̇1 + (ω2
0 + ω2

a )V1 + (γg − γa)V̇2 − ω2
a V2 = 0,

where the parameters are defined through

γ = 1
RC

, γa = 1
RaC

, γg = g
C

, ω2
0 =

1
LC

, ω2
a =

1
LaC

.

In the same way, for the node 2 one gets, merely exchanging 1 by 2 and the gyrator sign

V̈2 + (γ + γa)V̇2 + (ω2
0 + ω2

a )V2 − (γg + γa)V̇1 − ω2
a V1 = 0,

where we have omitted the time dependence for simplicity.
The last two differential classical equations can be summarized as a system of differential

equations

V̈ +AV̇ + BV = 0, (2.19)

where V , A and B are given by

V = (V1, V2)ᵀ (2.20)

and

A=
(
γ + γa γg − γa

−γg − γa γ + γa

)

and B=
(
ω2

0 + ω2
a −ω2

a
−ω2

a ω2
0 + ω2

a

)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.21)
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The system (2.19), with (2.21), corresponds to a non-normal system of differential equations
because [A, B] = 0 [17]. However, it is a special one because the characteristic polynomial
associated A is equal (at order γ 2

g ) to the case of γg = 0.
Let us see this as follows from A0 =A|γg=0, then the difference of the characteristic polynomial

of A and A0 is equal to γ 2
g . Therefore, the eigenvalues of A are almost equal to the A0 at order γ 2

g .
We will demonstrate that there is an explicit correspondence between the solutions of (2.6) and

(2.19) given by

Re(ψ)←→V . (2.22)

Introducing the eigenvalues of A0 and B

Γ+ = γ Γ− = γ + 2γa

and ω2
+ =ω2

0 ω2
− =ω2

0 + 2ω2
a .

⎫⎬
⎭ (2.23)

Referring now to the parameters related to the damping, one defines


ω=ω+ − ω−
and 
Γ = 1

2 (Γ+ − Γ−).

⎫⎬
⎭ (2.24)

We considered that
Γ+ ≤ Γ− � 2ω±,

2γg <Γ±

and 0� |
ω| � |
Γ |.

⎫⎪⎪⎬
⎪⎪⎭ (2.25)

Under the approximations mentioned above, the modes of the damped coupled equations (2.19)
are not changed. The term modes here refers simply to the roots of the characteristic polynomial
that associated the system (2.19) with (2.21).

As we did in §2, we chose a notation for the coordinates Vj(t), given by (2.20), denoting the
initial condition. We use Vji(t) for the j−component of the solution V(t) of (2.19) when the initial
condition is the state that corresponds to the excitation of the i−node only.

We associate the state |K0〉 with the left oscillator in figure 3 at an initial time. Consequently,
the case that |ψ(0)〉 = |K0〉 corresponds to the excitation of the node 1 only, i.e. an initial condition
V11(0)= E, V21(0)= 0 and V̇11(0)= 0= V̇21(0), therefore the solutions result in

V11(t)= E
2

[
e−Γ+/2t cos(ω+t)+ e−Γ−/2t cos(ω−t)

]

and V21(t)= μE
2

[
e−Γ+/2t cos(ω+t)− e−Γ−/2t cos(ω−t)

]
,

⎫⎪⎪⎬
⎪⎪⎭ (2.26)

where μ= (1+ γg/γa).
There is an explicit correspondence between the classical and quantum coordinates only if

there is an identification

Re
(

1− ε
1+ ε

)
←→

(
1+ γg

γa

)
(2.27)

and

(ΓL,ΓS, mL, mS) ←→ (Γ+,Γ−,ω+,ω−). (2.28)

From (2.27), using |ε| � 1 and arg(ε)= π/4 (or 5π/4) [8], we have

|ε| ←→ γg√
2γa

. (2.29)

The right side of the correspondence (2.29) is the classical quantity associated |ε|, denoted by

ξ = γg√
2γa

. (2.30)

 on November 24, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


9

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20160615

...................................................

This clearly allows the announced identification of the CP violation parameter with the circuit
parameters. Also shows that in the implementation of the circuit one faces a compromise between
the coupling of the separate initial oscillators and the effect of the gyrator.

Moreover, the case that |ψ(0)〉 = |K̄0〉 corresponds to the excitation of the node 2 only, i.e. an
initial condition V22(0)= E, V12(0)= 0 and V̇12(0)= 0= V̇22(0). As we did in §2, the solutions are
obtained directly from (2.26) interchanging the subindexes j←→ i and g−→−g, therefore the
solutions result in

V12(t)= ν E
2

[
e−Γ+/2t cos(ω+t)− e−Γ−/2t cos(ω−t)

]

and V22(t)= E
2

[
e−Γ+/2t cos(ω+t)+ e−Γ−/2t cos(ω−t)

]
,

⎫⎪⎪⎬
⎪⎪⎭ (2.31)

where ν = (1− γg/γa). One should also note that the non-reciprocity introduced by means of the
gyrator is present only in A (2.21), while the CP violation is present also in |K|2 :=K2

r +K2
i (2.3).

However, if the quantum system is prepared with an initial condition |ψ(0)〉 = |1〉, the port voltage
V11 and V21 (2.26) are entirely similar to the real part of ψ11 and ψ21 given by (2.13). On the other
hand, if the quantum system is prepared with an initial condition |ψ(0)〉 = |2〉, the port voltage
V12 and V22 (2.31) are entirely similar to the real part of ψ12 and ψ22 given by (2.14). In summary,
we have presented an explicit correspondence between the quantum and classical coordinates

Re(ψji(t)) ←→ Vji(t) (2.32)

and we are ready to implement this correspondence experimentally.

3. Building observables
This section is devoted to the presentation of the physical observables in both systems, the neutral
kaons and the electrical network.

The analysis is simplified when the concept of analytic signal [18] is introduced. Let us consider
the voltage signal V(t). It can be expressed in terms of the Fourier representation

V(t)=
∫∞
−∞

v(ω) e−2π ıωt dω. (3.1)

If the signal is real, one has v(−ω)= v∗(ω), that means that the positive frequency already contains
all the information. Given a real signal V(t), the analytic signal is introduced through

Va(t)= 2
∫∞

0
v(ω) e−2π ıωt dω, (3.2)

clearly we have
V(t)=Re(Va(t)). (3.3)

Consequently, va(t) is a complex signal having the actual signal as the real part and the Hilbert
transform of the signal as the imaginary component; namely,

va(t)=V(t)+ iH(V(t)), (3.4)

where H is the Hilbert transform defined as

H(V(t))= 1
π

P
∫∞
−∞

V(t′)
t− t′

dt′, (3.5)

where P denotes the Cauchy principal value. The Hilbert transform relates the real and imaginary
parts of the analytic signal

Im(Va(t))= 1
π

P
∫∞
−∞

Re(Va(t))
t′ − t

dt′ (3.6)

and

Re(Va(t))= 1
π

P
∫∞
−∞

Im(Va(t))
t− t′

dt′ =V(t). (3.7)
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Note that the Hilbert transform H(V(t)) satisfies the same differential equation as V(t). The use of
the analytic signal allows a closer contact with quantum-mechanical descriptions.

In the process of comparison of observables in our systems, we have to take into account the
fact that the resulting signal in both cases is composed (see for example equations (2.16), (2.26)) by
a rapidly varying part (∼ cos(ω±t)) modulated by a slowly varying term (∼ eΓ±t). This particular
situation allows the use of the Bedrosian theorem [19] that states

Let f and g ∈ L2(R). Suppose that the Fourier transform of f (x), F(ω), vanishes for |ω|> a, with a ∈R
+

and the Fourier transform of g(x), G(ω), vanishes for |ω|< a; then H(f (x) g(x))= f (x) H(g(x)).
This theorem is, with very good precision, valid in our case, due to fact that the spectra of the

signal have very separate frequencies. As a consequence of the validity of the theorem, one can
consider only the real part of the solution and from it to construct, via the Hilbert transform, the
corresponding imaginary part. We said that Re(ψi(t))←→Vi(t), for i= 1, 2; from the last theorem
we complete the sentence as Im(ψi(t))←→H(Vi(t)). Therefore, the vector of quantum coordinates
ψ = (ψ1,ψ2)ᵀ of (2.13) is related to the analytic signal of V = (V1, V2)ᵀ, va according to (3.4), as

ψ←→Va. (3.8)

The quantum amplitudes of probabilities are given by the analytic signals of the real parts,
equivalent of port voltages. As a corollary, the probabilities, defined as the square of the quantum
amplitudes, are given by the envelope of these classical signals.

If we define an operator A such that it returns the analytical signal, we have A(V)= va,
from (3.8)

Aji(t)←→A(Vji(t)). (3.9)

(a) Neutral kaons
The physical magnitudes of the kaon system that are of interest for the comparison with
the equivalent electrical network are related with time-dependent probabilities [4]. These are
expressed as

Pji(t)= |〈j|U(t)|i〉|2, (3.10)

where |i〉 and |j〉 are the initial and final states, respectively. In particular, i, j= 1, 2 and again
the states {|1〉, |2〉} correspond to {|K0〉, |K̄0〉}, respectively. These quantities are interpreted as
conditional probabilities (transition probabilities) to start in the state |i〉 and evolve at state |j〉
at time t.

It is clear that the validity of CPT−symmetry implies that

P11(t)= P22(t), (3.11)

while the CP, or T, violation manifest itself by the inequality

P21(t) = P12(t), (3.12)

showing the non-reciprocity of the kaon system.
Any one of the probabilities mentioned above are obtained from the corresponding wave

function. They are all of the type presented in equation (2.10) and due to the validity of the
Bedrosian theorem, they can be expressed in terms of only the real (or the imaginary) part of
the wave function. It is worth remarking that this possibility, which seems to indicate that in
quantum mechanics the imaginary (or the real) part is almost superfluous, is only a particularity
of systems such as the kaon one, where the spectrum of frequencies involved defines two very
separated regimes (the overlapping is negligible).
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The probabilities Pji(t) are equal to |ψji(t)|2 given by (2.13) and (2.14), according to the initial
condition i= 1, 2. The explicit expressions for the probabilities are

P11(t)= 1
4 [e−ΓSt + e−ΓLt + 2 e−(ΓS+ΓL)t/2 cos(
mt)], (3.13)

P21(t)= 1
4 |1− 2ε|2[e−ΓSt + e−ΓLt − 2 e−(ΓS+ΓL)t/2 cos(
mt)], (3.14)

P12(t)= 1
4 |1+ 2ε|2[e−ΓSt + e−ΓLt − 2 e−(ΓS+ΓL)t/2 cos(
mt)], (3.15)

and P22(t)= 1
4 [e−ΓSt + e−ΓLt + 2 e−(ΓS+ΓL)t/2 cos(
mt)], (3.16)

where 
m=mL −mS and |1± 2ε|2 � 1± 4Re(ε), under |ε| � 1.
The probabilities Pji are associated with |A(Vji)|2 (3.9). In particular, Pj1 is related to |A(Vj1)|2

given by (2.26) for j= 1, 2, respectively. And Pj2 is related to |A(Vj2)|2 given by (2.31) for j= 1, 2,
respectively. In summary, we have

|A(V11(t))|2 = E2

4

[
e−Γ−t + e−Γ+t + 2 e−(Γ−+Γ+)t/2 cos(
ωt)

]
, (3.17)

|A(V21(t))|2 = μ
2E2

4

[
e−Γ−t + e−Γ+t − 2 e−(Γ−+Γ+)t/2 cos(
ωt)

]
, (3.18)

|A(V12(t))|2 = ν
2E2

4

[
e−Γ−t + e−Γ+t − 2 e−(Γ−+Γ+)t/2 cos(
ωt)

]
, (3.19)

and |A(V22(t))|2 = E2

4

[
e−Γ−t + e−Γ+t + 2 e−(Γ−+Γ+)t/2 cos(
ωt)

]
. (3.20)

(b) Electric network
The previous discussion of the particularities of the quantum system under consideration has its
reflection in the classical system. In fact, it is not necessary to consider, as was mentioned before,
two identical circuits with different initial conditions in order to maintain the complex character
of the quantum equivalent system.

The analysis of the classical signal, in our case the electric voltage, clearly shows that in
making the comparison of observables, corresponding to the quantum and the classical systems,
the analytic signal is obtained from the measurement of the voltage and can be put in direct
connection with the wave function of kaons.

4. Simulation and experimental results

(a) Resonant network
The CP−conserving electric circuit consists of two identical resonant LCR networks, coupled by a
parallel LaRa impedance. LTSpice (www.linear.com/ltspice) simulations were used in the design
process to solve several implementation trade-offs and to calculate port output as in figure 2. The
quotient La/L determines the relationship between fast and slow dynamics. This relation cannot
be arbitrarily chosen. For instance, setting too fast an oscillation frequency increases energy
dissipation, thus making the phenomenon almost invisible due to excessive damping.

Two identical inductors were made for L, while La was selected one order of magnitude higher.
A value of La/L= 25 was chosen, which allows adequate filtering of the individual dynamics,
and still allows application of the Bedrosian theorem in the calculation of Hilbert transforms.
Inductors were made using copper wire wound on ferrite nuclei, resulting in values of L= 0.7
mHy (pot core, Q= 70) and La = 18 mHy (toroidal, Q= 150). The wire used to implement L
introduces a parasitic resistance (in series with each inductor) of approximately 2Ω . These
are critical in the experimental realization, being responsible for the resonance attenuation. Of
course, the series resistance of La is even higher. These unavoidable resistances make the actual
circuit different from the ideal case. In fact, in the real circuit, the oscillations vanish after a
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Table 1. Circuit parameters.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f+
1
2π

√
1
LC

19.02 kHz

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f−
1
2π

√
1
LC
+ 2

LaC
19.74 kHz

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


f f+ − f− 0.72 kHz
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f̄
1
2
(f+ + f−) 19.38 kHz

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

few milliseconds. This establishes an important difference between the actual circuit behaviour
and its kaon counterpart. In the real case, there appears a third proper frequency due to these
unavoidable resistances. This new mode vanishes almost immediately and does not obscure the
analysis. The parasitic resistances were included in all the Spice simulations performed.

For C, polyester capacitors of 0.1 µF were selected, in order to achieve proper resonant
frequencies. Obviously, in the experimental set-up imbalances exist between the LCR
subnetworks. Therefore, small-value capacitors were added in parallel with C, to allow
experimental tuning of the individual resonance frequencies. Additionally, it must be noted that
a limitation exists in the values that R can take for simulations and implementation, as they are
connected in parallel with the loss resistances of C, which cannot be modified.

Chosen values result, from (2.23) and (2.24), in the circuit parameters presented in table 1.
The relation f̄/
f is given by La/L. It fixes the relation between the two distinguishable

frequencies in port voltages. The component values chosen result in γ−1
a = 0.3 ms and γ−1

g = 1 ms,
while γ−1 = 0.23 ms, which is imposed by the parasitic resistances.

Port voltages were acquired using an Agilent MSO-X 2024A 200 MHz oscilloscope in averaging
mode, and then processed using MATLAB. This processing involves computing the discrete
Hilbert transform of the acquired data and multiplying it by its complex conjugate, in order to
obtain the squared envelope signal. A brief comment about MATLAB: The command hilbert(x)

returns the complete analytic signal of x.
The circuit was also simulated using LTSpice, including all the parasitic resistances. Simulated

port voltages were processed using the same MATLAB algorithm.

(b) Gyrator implementation issues
The gyrator is a hypothetical circuit element that is passive and lossless. It does not exist as
a physical element. However, it is certainly possible to build an active circuit which behaves
as a gyrator nearby a given operational point. Following [20], such a device was built using a
dual operational transconductance amplifier (Texas Instruments LM13700). This device features
excellent matching between amplifiers.

Generally speaking, an operational transconductance amplifier (OTA) is a device that acts as
a voltage-controlled current source. It has the convenient feature of requiring the modification
of a single parameter (the amplifier bias current from an external source) to change its
transconductance value. This is accomplished by using an external resistor connected to a DC
source.

In the gyrator implementation, two OTAs with equal transconductance values are
interconnected (with opposite polarities), one in the forward and other in the backwards direction,
as shown in figure 4a. This arrangement effectively behaves as a gyrator, featuring g in the forward
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V1
IRFD9110

Vcc = 4 V

0.7 mH

18 mH

0.7 mH

0.1 mF 0.1 mF0–15 V

+15 V

–15 V

+
+

1/2
LM13700

1/2
LM13700

20 Hz

IRFD420
V2

3 K

33 K 33 K

0.1 mS
gyrator

(b)

(a)

Figure 4. Experimental implementation. (a) Schematic of the real circuit. (b) Measured time response of the real circuit.

path and−g in the backwards path, as was experimentally verified in [20]. The parameter g results
from the transconductance value of the amplifiers, which must strictly match.

One of the main drawbacks of the resulting circuit is that a modification of g requires the
simultaneous change of two precision resistors (one for each OTA). For this reason, the circuit was
calibrated for a single, fixed value g= 0.1 mS. The calibration procedure involves the trimming of
an external input resistor (not shown) in each amplifier, in order to ensure matching g values in
both paths. This value was used as a starting point for the design.

Although the circuit has the desired behaviour for this application, it differs from the ideal
gyrator in several aspects. On the one hand, its dynamic range, bandwidth and rise times are
limited by the characteristics of the transconductance amplifiers. This issue was minimized
restricting operating frequencies to a few kilohertz and ensuring small signal amplitudes. On
the other hand, like in any operational amplifier, it presents nonlinearities that could affect signal
amplitudes, eventually resulting in distortion. In order to improve linearity, the LM13700 internal
output buffers were not used. Instead, external non-inverting buffers (followers), based on a
CA324 dual operational amplifier (not shown in the figure) were included in the feedback path.
In this way, nonlinearity issues are negligible for the operational conditions devised. This allows
modelling of the gyrator in the simulations as two ideal voltage-dependent current sources.

(c) Setting the initial conditions
In order to replicate the initial conditions used in simulations, and display the desired circuit
behaviour as a steady image in the oscilloscope, two basic requirements must be met: (i) an initial
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g = 0

V1
|A

(V
ji
)|2

V2

V1 (+)
V2 (+)

V1 (–)
V2 (–)
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V2 (–)

g = 0.1 mS g = –0.1 mS non-reciprocity
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Figure 5. Simulated envelope squared port voltages for different gyrator values.
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ji
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Figure 6. Experimental values of envelope squared port voltages under different gyrator conditions. (Online version in colour.)

charge in one of the capacitors must be ensured while the other initial conditions of the circuit are
null (the other capacitor is discharged and there is no current in all inductors) and (ii) this situation
must be repetitive. Therefore, additional circuitry was included to disconnect one of the capacitors
from the rest of the circuit, charging it to a known state (V1(0)=Vcc in figure 4), and reconnecting
once the transient has vanished. This was implemented with a pair of MOSFET power transistors
(IRFD9110 N channel and IRFD420 P channel), driven by a square wave provided by an Agilent
8648C signal generator. During operation, the ON-state of the P channel transistor (1Ω) appears
in series with left C, increasing dissipation in the resonant circuit.

The complete experimental circuit is shown in figure 4a. The layout permits enabling/
disabling the gyrator operation, as well as inversion of the gyrator ports.

(d) Final results and comments
In figures 5 and 6, simulation and experimental results are presented, respectively. There one can
easily observe the following: when g= 0, namely, when no gyrator is included, both probabilities
P11 and P21 from (3.13) and (3.14) are correlated to |A(V11)|2 and |A(V21)|2 from (3.17) and (3.18),
having exactly the same asymptotic behaviour. When the gyrator is acting, the second figures
show the probabilities correlated to (3.17) and (3.18) having, as expected, a different asymptotic
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behaviour, measured by g. The third figures include the corresponding probabilities (3.15) and
(3.16), correlated to (3.19) and (3.20), with an entirely similar behaviour to the previous ones.
Finally, the fourth figures show clearly the non-reciprocity effect present in (3.18) and (3.19) and
equivalent to the CP or T violation established in (3.12).

The similar shape of the three first graphs in figures 5 and 6 (labelled g= 0; g= 0.1 mS and
g=−0.1 mS) shows the disappearance of the initial neutron kaon (K0 or K̄0) with time and
the appearance of the corresponding antiparticle. Consequently, the fourth graph in each figure
subsumes the CP violating effect measured by the difference in the probabilities when one starts
with K0 or with K̄0. After the transient, this difference is practically constant in time.

The effect due to parasitic resistances is evident in the attenuation slope. Good agreement
between simulated and experimental data is evident, showing the feasibility of the proposed
design approach. It should be noted that, with the actual circuit parameters, values of ωa/ω0 = 0.2
and ξ = 0.2 are obtained. Although these values are not so consistent with the real kaon system
as to perform precise measurements, the general behaviour of both cases is similar and therefore
can be easily observed.

We would like to stress that the figures 5 and 6 illustrate the physical realization in terms
of electric networks of the mathematical equivalence between the Schrödinger dynamics of a
quantum system with a finite number of basis states and a classical dynamics.

5. Conclusion
The previously obtained equivalence, stricto sensu, between the Schrödinger dynamics of a
quantum system with a finite number of basis states and the classical dynamics of electric
networks; namely, the isomorphism that connects in a univocal way both dynamical systems, was
numerically simulated and physically realized in terms of electric circuits. This realization of the
equivalence between the neutral kaon system and a classical dynamics was conceived in terms
of simple circuits including gyrators in the case of CP violation while maintaining the validity
of CPT symmetry. The comparison between dynamics implied a decomplexification procedure.
The observable related to the violation of T invariance at the quantum level is associated, in
our realization, with the conductance of a gyrator, the two-port, non-reciprocal, passive network
without loses that violates the classical symmetry T. The network, completely equivalent to
the kaon system, allows one to represent the relevant parameters of the quantum system in
terms of circuit components. In a sense, the gyrator is an equivalent representation of the weak
interaction Hamiltonian.

The concept of circuit duality [9] allows to obtain two equivalent electrical representations of
the same classical differential equation, used in [6]. This facilitates the selection of the parameters
that govern the CP or T violation in the network. Moreover, there exists a one-to-one relationship
between the states |K0〉 and |K̄0〉 and port voltages, or currents, of the electric network. The
interaction between both LC subnetworks gives rise to a shift in the proper initial free frequencies,
in the same way as the masses of kaons do. Moreover, the presence of proper relaxation times of
the circuit are associated with the mean lives K−short and K−long.

Analogies have always been important tools for gaining insight into physical problems,
potentiated when these analogies have the character of equivalence. By analysing the equivalent
electric circuit, one can improve the understanding of the CP violation mechanism in kaons. For
example, inspired by the present results, the connection between the Jarlskog invariant of the
three generations Cabibbo–Kobayashi–Maskawa matrix and the Berry geometrical phase is being
analysed. Other aspect of the kaon physics that could eventually be studied in terms of electric
circuits is related to the different decay channels. Of course, an interested reader could go ahead
with other physical ideas in both directions.
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15. Lüders G. 1957 Proof of the TCP theorem. Ann. Phys. 2, 1–15. (doi:10.1016/0003-4916(57)

90032-5)
16. Christenson JH, Cronin JW, Fitch VL, Turlay R. 1964 Evidence for the 2π decay of the K0

2
meson. Phys. Rev. Lett. 13, 138. (doi:10.1103/PhysRevLett.13.138)

17. Politzer D. 2015 The plucked string: an example of non-normal dynamics. Am. J. Phys. 83, 395.
(doi:10.1119/1.4902310)

18. Nussenzveig HM. 1973 Introduction to quantum optics. London, UK: Gordon and Breach
Science Publishers.

19. Bedrosian E. 1963 A product theorem for Hilbert transforms. Proc. IEEE 51, 868–869.
(doi:10.1109/PROC.1963.2308)

20. Tatai I, Zaharie I. 2012 The energy transfer between the ports of an implemented gyrator
using LM13700 operational transconductance amplifier. Rev. Sci. Instrum. 83, 114702.
(doi:10.1063/1.4766332)

 on November 24, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1119/1.18472
http://dx.doi.org/doi:10.1119/1.18472
http://dx.doi.org/doi:10.1119/1.1289212
http://dx.doi.org/doi:10.1103/PhysRevD.63.096002
http://dx.doi.org/doi:10.1088/0954-3899/39/8/083002
http://dx.doi.org/doi:10.1088/0954-3899/39/3/033101
http://dx.doi.org/doi:10.1016/j.aop.2011.05.004
http://dx.doi.org/doi:10.1016/j.aop.2011.05.004
http://dx.doi.org/doi:10.1143/PTPS.184.1
http://dx.doi.org/doi:10.1007/BF01336768
http://dx.doi.org/doi:10.1007/BF01397406
http://dx.doi.org/doi:10.1016/0003-4916(57)90032-5
http://dx.doi.org/doi:10.1016/0003-4916(57)90032-5
http://dx.doi.org/doi:10.1103/PhysRevLett.13.138
http://dx.doi.org/doi:10.1119/1.4902310
http://dx.doi.org/doi:10.1109/PROC.1963.2308
http://dx.doi.org/doi:10.1063/1.4766332
http://rspa.royalsocietypublishing.org/

	Introduction
	Equivalence between dynamics
	Kaons and oscillators
	CP violation
	Electric networks

	Building observables
	Neutral kaons
	Electric network

	Simulation and experimental results
	Resonant network
	Gyrator implementation issues
	Setting the initial conditions
	Final results and comments

	Conclusion
	References

