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Abstract The received signal strength (RSS) is a common

source of information used for estimating the distance

between two wireless nodes, whether these nodes are sta-

tionary or mobile. Minimum mean squared error distance

estimation methods that use the RSS require prior knowl-

edge of both the variance of the noise and, in the case of

mobile sensors, the dynamics of the nodes’ mobility. In

mobile applications, where low computational complexity

is important, pseudo-optimal estimations are preferred, as

they do not require such information. In this case, the

maximum likelihood estimator (MLE) is often used. In this

paper, we propose an efficient pseudo-optimal log-power

based distance estimation method using RSS under log-

normal shadowing, that improves the MLE. It does not re-

quire a priori knowledge either of the movement dynamics

or of the variance of the noise. The method is based on

adaptively minimizing the variance of the prediction error,

using a random walk model with correlated increments. It is

analytically demonstrated that the distance estimation error

variance of the proposed method improves the MLE in both

the static and mobile cases. We use a simulated velocity

model example to compare its performance with other

algorithms in this group, such as the linear mean square filter

and the Gauss–Newton search.

Keywords Adaptive distance estimation � Localization �
Wireless network � Received signal strength

1 Introduction

Methods for accurately locating a device on a wireless

network are crucial for a wide variety of applications, in-

cluding tracking mobile devices and routing information

between nodes in a wireless sensor network. A number of

methods can be used to find the location of both stationary

and mobile sensors (see for example [1, 2], and the refer-

ences therein). All of these methods are based on knowing

a set of distances. The most commonly used information

sources for estimating distances are the received signal

strength (RSS), the time of arrival (ToA), and the angle of

arrival (AoA) [3]. Due to their simplicity and low com-

putational cost, the RSS-based methods, where the path

loss propagation model (PLPM) is adopted to infer the

unknown distance, are often preferred. However, the RSS

can be severely affected by the various error sources such

as shadow noise [4, 5, 6]. For this reason, it is necessary to

use appropriate estimators, in order to obtain the distance

from RSS measurements.

In [7] it is shown that maximum likelihood estimation

(MLE), using RSS measurements, yields a bias and a

minimum mean squared error (MSE) that increases expo-

nentially with the strength of the noise. Various methods

have been proposed in order to improve the MLE. For the

fixed position case, assuming the PLPM parameters are

known, an unbiased estimator is proposed in [7]. In [8],
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using identified PLPM parameters, a reduced-bias MLE

estimator is proposed.

For the tracking of mobile node positions, distance es-

timation is often formulated as a filtering problem. Re-

cursive least squared or extended Kalman filter methods

are used in [9–12]. Based on unbiased distance estimations

from direct measurements of the RSS, Black et al. [13]

propose a two-step sensor location method. In the first step,

a stationary initial position is estimated using least-squares

or MLE; and in the second step, the mobile node is tracked

using a recursive least-squares algorithm.

However, it is important to note that all these methods

require a priori knowledge of the noise variance, input

variance, and the dynamics of node movement, which are

difficult to obtain for each specific case (see [14] for a survey

of possible models of movement dynamics). Moreover, their

performance greatly depends on the tuning of these pa-

rameters. In [15], the authors propose estimating the variance

of both noise measurements and moving dynamics using a

Kalman filter approach. In [16], an adaptive least squares

method for mobile nodes is presented. However, these ap-

proaches still require knowledge of the model’s dynamics.

In order to overcome these difficulties, different adap-

tive estimation procedures that do not require knowledge of

either the noise variances or the mobility dynamics can be

used, such as the linear mean square filter (LMS) [1] or the

Gauss–Newton (GN) search approach that we briefly de-

scribe for comparison purposes. The main problems with

these filters are that their stability is not guaranteed and the

difficulty to obtain the optimal tuning of their gains, which

may lead to unacceptable errors.

In cases where the nodes, due to their short-range

measurement capabilities, are unable to estimate their po-

sitions by directly measuring the distances to anchors,

multi-hop localization schemes are used, see for example

[17] and [18]. In order to avoid large errors, it is important

that the distance estimation at each hop be as precise as

possible [19].

We believe that, despite their importance, filtering

methods that reduce distance estimation uncertainties

without prior information about movement dynamics and

noise variance have not been sufficiently addressed in the

literature. Preliminary results of the one-step-ahead pre-

diction are presented in [20]. The main contribution of

this paper is to propose a method for estimating the

distance between mobile sensors that outperforms the

LMS and GN approaches. We assume that each node has

a transceiver. Thus, the distance is estimated between the

transmitter of one node and the receiver of the other, or

vice versa, by measuring the received power corrupted by

log-normal shadowing noise.

The paper is organized as follows: In Sect. 2, the MLE

and the unbiased estimation are presented for the PLPM. In

Sects. 3 and 4, the pseudo-optimal LMS and the GN

minimum error search are derived. In Sect. 5, using the

derivations of the GN search, the first order filter with only

one parameter is presented. The solution based on the pa-

rameter estimation using RPEM is obtained, which con-

stitutes the minimum prediction error filter (MPEF)

approach. In order to illustrate the procedure, in Sect. 6 we

develop an example of the velocity model driven by in-

crements with Gaussian distribution, which is an important

application case in the location of mobile nodes. We

compare four methods: the MLE, the LMS, the GN, and

our approach, the MPEF. Moreover, the performances are

compared with the Cramer–Rao lower bound (CRLB).

Simulations show that the proposed method outperforms

the LMS and the GN for the various cases. Finally, in Sect.

7, we present our conclusions.

2 The MLE and the unbiased distance estimation

The distance between any emitting source and a receiving

device can be determined in terms of the intensity of the

received power. The received logarithmic power loss at

distance d, from the transmitter, can be represented by the

following PLPM [4, 5, 6]:

plðdÞ ¼ plðd0Þ þ 10c log 10ðd=d0Þ þ g; ð1Þ

where plðdÞ is the power loss, in dB, at distance d between

the transmitter and the receiver, plðd0Þ is the logarithmic

power loss at a reference distance d0, which in our case is

d0 ¼ 1 m, c is the path loss distance exponent. The path

loss exponent measures the rate at which the RSS decreases

with distance, and its value depends on the specific

propagation environment. Based on the received power

measurements, there are several methods for estimating

this parameter [21]. The value of this parameter ranges

typically between 1 and 6 for different scenarios. The

variable g, in dB, represents the power variations due to

different sources of RSS uncertainties including hardware

imperfections, movement of persons or any other objects in

the surrounding of communicating nodes, random change

of electromagnetic field or interference with other wireless

networks in the same frequency range, multipath fading,

and also the so called shadow noise. It is modeled as a zero

mean, normally distributed random variable with standard

deviation between 1 and 8 dB (for details, see Sec-

tion 12.2.10 of [6]). In this paper we consider the path loss

exponent is known a priori, but not the variance of the

noise g which will be estimated by the proposed novel

algorithm.

Thus, the received power at distance d, prðdÞ, is equal to

the transmitted power pt minus the power loss plðdÞ, all in

dB, such that: prðdÞ ¼ pt � plðdÞ. Using the logarithmic
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path loss model (1), the noise-free logarithmic power pðdÞ
and the measured logarithmic power prðdÞ at the receiver

are represented by the following model:

p ¼ j� 10c log10ðdÞ; ð2Þ

pr ¼ pþ g; ð3Þ

where we have renamed pr ¼ prðdÞ, p ¼ pðdÞ, and j ¼
pt � plðd0Þ for the sake of simplicity. Our goal is to obtain

the best possible distance estimation from measurements of

pr, using the above model. If we knew the noise-free log-

power p, the distance could be obtained from (2) by means

of the following simple formula:

d ¼ be�ap; ð4Þ

where a ¼ lnð10Þ=10c and b ¼ 10j=10c. However, the value

of p is unknown. We assume, instead, that a given unbiased

estimation of p, denoted p̂, is available- we see latter how to

obtain different estimations, p̂- such that the error, e ¼ p� p̂,

is zero mean and with Gaussian distribution. The Gaussian

assumption has nice stochastic properties since zero mean

and minimum variance error means optimality. Thus, if p is

replaced by p̂, we obtain the following estimator:

d̂ ¼ be�ap̂; ð5Þ

which is in fact the MLE given p̂. As a result, by taking p̂

equal to the measured received power, pr , we obtain d̂ðkÞ ¼
beaprðkÞ; for k ¼ 1; 2; . . . is the MLE of distance.

Although the estimated power p̂ is unbiased, the esti-

mator of d is not. The bias and MSE of this estimator are

developed in detail in [17] and in [7]. The bias is given by

d � E½be�ap̂� ¼ d 1� ea2r2
e=2

� �
; ð6Þ

where E½�� means the expected value, and r2
e ¼ E½ðe�

E½e�Þ2� the variance of the estimated power error. The MSE

is given by

E½ðd � d̂Þ2� ¼ E½ð1� eaeÞ2�d2

¼ð1� 2ea2r2
e=2 þ e2a2r2

e Þd2:
ð7Þ

The bias compensation that leads to the unbiased distance

estimation, used extensively in [7, 13, 17], is given by:

d̂u ¼ ~be�ap̂; where ~b ¼ be�a2r2
e=2: ð8Þ

Note that for this estimator, it is necessary to have a priori

knowledge of the variance of the power error r2
e in order to

remove the bias. Using (8), the MSE of the unbiased dis-

tance estimator is obtained as

E½ðd � d̂uÞ2� ¼ E½ð1� eaee�a2r2
e=2Þ2�d2

¼ðea2r2
e � 1Þd2:

ð9Þ

Note that the MSE of both estimators, i.e., the MLE (7),

and the unbiased estimator, (9), grows exponentially with

r2
e . For example, when the measured log-power pr is used

as an estimator, even though the MSE of the unbiased es-

timator in (9) is lesser than the MSE of the biased estimator

in (7), both grow exponentially with r2
e ¼ r2

g. It will be

shown in Sect. 5 that it is possible to obtain a power esti-

mate p̂, with r2
e � r2

g, improving the error bounds of the

MLE and the unbiased estimator, by properly filtering a

sequence of sampled measured power. Before that, how-

ever, in the next two sections, we introduce two alternative

distance-estimation methods where prior knowledge of

noise variances or mobility dynamics is also not required:

the LMS and the GN. We will calculate the performance of

these estimators both for comparative purposes and be-

cause they will be used later for developing the proposed

algorithm.

In what follows we assume that the received power pr is

converted into digital form by an analog-to-digital con-

verter. The conversion is done at a constant sampling time

giving a sequence of numbers equally spaced in time and

denoted by prðkÞ for k ¼ 1; 2; . . .. For each sample, the

different proposed algorithms produce an estimation of the

distance.

3 Linear mean square filter

Assume that the distance between transmitter and recevier

changes at each sample k. The LMS filter consists in re-

cursively finding an estimated distance at each sampling

time, d̂ðkÞ, that minimizes a cost-function by using the

steepest descent algorithm (SDA) togheter with the se-

quence of measured log-powers prðkÞ for k ¼ 1; 2; . . .. Let

us assume the following quadratic cost:

VðkÞ ¼ 1

2

Xk

i¼1

kk�i�2ðiÞ; ð10Þ

where �ðkÞ is the prediction error given by

�ðkÞ ¼ prðkÞ � p̂ðk � 1Þ; ð11Þ

p̂ðkÞ ¼ � 1

a
log

d̂ðkÞ
b

 !
: ð12Þ

The latter is obtained from (5). k is a scalar in the interval

ð0; 1� called the forgetting factor which performs an ex-

ponential windowing over the previous prediction errors.

The width of the exponential window depends on the value

of k. If k\1, previous prediction errors contribute only

marginally to the criterion function. The window’s width is

reduced as k decreases. In the case where k ¼ 1, all past
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data are equally weighted. Thus, the value of k determines

the memory of the past data, which is a suitable parameter

to take into account for time-variant mobility dynamics.

We now apply the SDA in order to estimate the distance

which minimizes the cost function VðkÞ. The SDA is the

simplest of the gradient methods used in filtering problems

[22]. The choice of direction is where the cost VðkÞ de-

creases most quickly, which is in the direction opposite to

the gradient VðkÞ0. The search starts at an arbitrary point

d̂ð0Þ and then slides down the gradient, until the minimum

cost is reached. By applying the SDA to the cost VðkÞ the

following recursion is obtained:

d̂ðkÞ ¼ d̂ðk � 1Þ � lV 0ðkÞ; ð13Þ

where l is the step length and V 0ðkÞ means the derivative of

the cost with respect to d̂ðk � 1Þ.
The LMS is a simple algorithm, but the problem is that it

can be unstable. Depending on the value chosen for the

step length l, we obtain either a smooth approach to the

optimum, or an oscillatory one. A low l stabilizes the al-

gorithm, but it does so slowly, which means that l repre-

sents a compromise between stability and speed of

convergence. A variety of criteria to tune the value of l are

available (see e.g., [22]). However, all of them require

knowledge of the signal statistics, which in our case we

assume to be unknown. Consequently, the value of the step

length should be chosen conservatively.

The gradient of the cost, V 0ðkÞ, in (13) is obtained as

follows:

VðkÞ ¼ kVðk � 1Þ þ 1

2
�2ðkÞ; ð14Þ

V 0ðkÞ ¼ kV 0ðk � 1Þ þ �ðkÞ �0 ðkÞ ¼ �ðkÞ �0 ðkÞ; ð15Þ

where the last equation holds because d̂ðk � 1Þ is a

minimizer of Vðk � 1Þ. The derivative of the prediction

error with respect to d̂ðk � 1Þ is given by

�
0 ðkÞ ¼ 1=ad̂ðk � 1Þ: ð16Þ

Then, by replacing �
0 ðkÞ in (15) and in (13), the LMS filter

is given by

d̂ðkÞ ¼ d̂ðk � 1Þ � l�
0 ðkÞ�ðkÞ: ð17Þ

The recursion (17) is in fact a random walk model with

correlated increments. This kind of model is defined as a

process where the current value of a variable is composed

of the past value plus a correlated random increment with a

given distribution. In the LMS case, the increments are

given by the last term of the right side of (17).

A possible pseudocode of the LMS algorithm is given in

Algorithm 1

Parameters: a, β, μ
Input : pr (k)

Output : d̂(k)

p̂(0) ← pr (1) ;
d̂(0) ← 1 ;
k ← 1 ;
while 1 do

d̄(k) ← βe−a p̂(k−1) ;
(k) ← 1/(ad̄(k)) ;
k) ← pr (k) − p̂(k − 1) ;

d̂(k) ← d̂(k − 1) − (k k) ;
if |d̂(k)| < 1 then

d̂(k) ← 1 ;
end
deliver d̂(k) ;
p̂(k) ← log(β)/a − log(d̂(k))/a ;
if External Interrupt then

stop
else

k ← k + 1;
end

end

Algorithm 1: LMS

4 Gauss–Newton search

The LMS method can be improved by taking into account

the second derivative of the cost (10) with respect to

d̂ðk � 1Þ. This minimum search procedure is known as the

Newton–Raphson method [23]. The Newton–Raphson

method applied to the cost function (10) gives

d̂ðkÞ ¼ d̂ðk � 1Þ � V 0ðkÞ
V 00ðkÞ : ð18Þ

From (15), we obtain

V 00ðkÞ ¼ kV 00ðk � 1Þ þ �02ðkÞ þ �ðkÞ �00 ðkÞ: ð19Þ

where �ðkÞ is obtained by using (18) in (11) and (12). Since

VðkÞ is a least-squares criterion, close to the minimum, the

error �ðkÞ is small and can be neglected. Then, the simplified

algorithm, called Gauss–Newton, is used. By denoting

mðkÞ ¼ 1=V 00ðkÞ and considering small changes between

samples, (18) and (19) can be computed recursively by

d̂ðkÞ ¼ d̂ðk � 1Þ þ mðkÞ�0 ðkÞ�ðkÞ; ð20Þ

mðkÞ ¼ mðk � 1Þ
kþ mðk � 1Þ�02ðkÞ : ð21Þ
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Note that the resulting distance mobility model obtained

for GN in (21) is also a random walk model with correlated

increments. Although extensive simulations for different

dynamics of movement carried out by the algorithm rapidly

converge to a minimum, it is difficult to prove convergence

without strong assumptions.

A possible pseudocode of the GN algorithm is given in

Algorithm 2

Parameters: a, β, λ
Input : pr (k)

Output : d̂(k)

p̂(0) ← pr (1) ;
m(0) ← 1 ;
d̂(0) ← 1 ;
k ← 1 ;
while 1 do

d̄(k) ← βe−a p̂(k−1) ;
(k) ← 1/(ad̄(k)) ;
k) ← pr (k) − p̂(k − 1) ;

m(k) ← m(k − 1)/(λ + 2(k)m(k − 1)) ;
d̂(k) ← d̂(k − 1) − m(k (k k) ;
if |d̂(k)| < 1 then

d̂(k) ← 1 ;
end
deliver d̂(k) ;
p̂(k) ← log(β)/a − log(d̂(k))/a ;
if External Interrupt then

stop
else

k ← k + 1;
end

end
Algorithm 2: GN

5 Minimum prediction error filtering (MPEF)

We now will develop the novel MPEF filter. Assume, as

before, that the distance between transmitter and receiver

change at each sample k. We propose to smooth the re-

ceived log-power, pr, by a unit-gain first-order stable low-

pass filter with the following recursion:

p̂ðkÞ ¼ prðkÞ � h�ðkÞ ð22Þ

�ðkÞ ¼ prðkÞ � p̂ðk � 1Þ ð23Þ

The filtered signal p̂ðkÞ will be used in (8) to produce the

unbiased estimation. Note that, by choosing this simple

structure, h is the sole parameter to tune. In what follows

we require h 2 ½0; 1�. Note that when p̂ðkÞ ¼ pðkÞ the

prediction error is �ðkÞ ¼ gðkÞ, and h ¼ 1.

Consequently, the prediction error variance is always

greater than or equal to the noise variance, r2
� � r2

g.

Therefore, it makes sense to find the estimator that

minimizes the prediction error variance trying to reach the

lower bound, r2
g. For this purpose we want to tune the

parameter h such that it minimizes the prediction error

variance. The value of h that minimizes r2
� will be obtained

recursively by using the well-known RPEM [23]. To this

end, the Gauss–Newton recursive algorithm over the cost

function (10) is used. The algorithm and its properties are

given by the following theorem:

Theorem Consider the cost function VðkÞ in (10) to be

minimized, with respect to the parameter hðkÞ, by the fol-

lowing GN recursion:

mðkÞ ¼ mðk � 1Þ
kþ �02ðkÞmðk � 1Þ ; ð24Þ

hðkÞ ¼ hðk � 1Þ � mðkÞ�0ðkÞ�ðkÞ; ð25Þ

where the following recursive expressions for the predic-

tion error and its derivative, with respect to h, are obtained

by subtracting p̂ðk � 1Þ from prðkÞ in (23), as follows:

�ðkÞ ¼ prðkÞ � prðk � 1Þ þ h�ðk � 1Þ; ð26Þ

�0ðkÞ ¼ �ðk � 1Þ þ h�0ðk � 1Þ: ð27Þ

Then, the following holds:

(i) hðkÞ converges as k!1 with probability 1 to

one element of the set of minimizers

hjr02� ¼ 0
n o

; ð28Þ

where r
02
� is the derivative of the prediction error

variance with respect to h.

(ii) there is a unique minimizer of r2
� in the interval

h 2 ½0; 1� for almost all the movement dynamics;

(iii) by using the minimizer obtained by the recursion

(24�25) in (22) it holds that r2
e � r2

g for all

correlated or uncorrelated increments rðkÞ. More-

over, in the static case, rðkÞ ¼ 0, the error

variance r2
e is zero.

Proof For (i) see [23] and for (ii) and (iii), see the Ap-

pendix. h

From (i), it follows that the recursion (24�25) con-

verges to a minimizer of the prediction error variance in

the search interval, hðkÞ 2 ½0; 1�, without any other in-

formation than the measured power signal. Moreover,

from (ii) it follows that the minimizer reaches the global

minimum. From (iii), we conclude that the variance of

the estimated power error is always less than, or at least

equal to, r2
g. Thus, using this power estimation in the
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unbiased estimator (8), the error variance of the dis-

tance from that obtained with the MLE is always

improved.

Remark 1 Note that the prediction error, �ðkÞ, and its

derivative, �0ðkÞ, depend only on the measured log-power

prðkÞ and h. Moreover, by taking expected value in both

sides of (26) and considering jhj\1 and zero mean in-

crements rðkÞ, the prediction error �ðkÞ and the error

eðkÞ ¼ pðkÞ � p̂ðkÞ, in steady state, are unbiased. h

Remark 2 Note that we have not imposed any constraints

with respect to the statistical distribution of the increments.

In the particular case where the increments are a sequence

of iid Gaussian variables, the prediction error method

reaches the CRLB. This means that the predictor (22) gives

the minimum error variance r2
e achievable by any unbiased

estimator. However, in the more general case, where the

random walk model has an arbitrary distribution of the

increments rðkÞ, correlated or uncorrelated, the method

obtains a pseudo optimal estimation, p̂ðkÞ, in the sense that

the prediction error �ðkÞ has as small a variance as possible,

[23]. h

Finally, the unbiased distance estimate is obtained using

p̂ in (8) where the variance of the power estimation error is

given by

r̂2
eðkÞ ¼ ð1� 2hðkÞÞr̂2

gðkÞ þ h2ðkÞr̂2
� ðkÞ; ð29Þ

see the Appendix for its derivation. The estimated noise at

each sample, the prediction error variance r̂2
gðkÞ, and r̂2

� ðkÞ
are given by ðprðkÞ � p̂ðkÞÞ2 and �2ðkÞ, respectively. Note

that the MSE, obtained by Eq. (8), is a metric of the ab-

solute distance accuracy.

Routines for recursively estimating the parameter hðkÞ
that minimize the prediction error of the structure (22)

can be found in the literature (see for example the re-

cursive prediction error method, RPEM [23]). Based on

the literature mentioned, a possible pseudocode of the

MPFE algorithm is given in Algorithm 3, where in the

first four sentences, after the while in MPFE algorithm,

the theorem is applied. In the following sentence the

parameter is forced to lie within the interval jĥj\1 for

ensuring stability. After that, the filtered power at the

previous step is improved by using the updated value of

h. The same is performed with the error and the error

derivative.

Parameters: a, β
Input : pr (k)

Output : d̂(k)

p̂(0) ← pr (1) ;
m(0) ← 1 ;
d̂(0) ← 1 ;
k ← 1 ;
0) ← 0 ;
(0) ← 0 ;

while 1 do
(k) ← k − 1) + θ̂ (k − 1 (k − 1) ;

m(k) ← m(k − 1)/(0.98+ 2(k)m(k − 1)) ;
k) ← pr (k) − p̂(k − 1) ;

θ̂ (k) ← θ̂ (k − 1) − m(k k (k) ;
if |θ̂(k)| > 1 then

θ̂ (k) ← |1/θ̂(k)| ;
else

θ̂ (k) ← |θ̂ (k)| ;
end
p̂(k − 1) ← pr (k − 1) − θ̂ (k k − 1) ;

k) ← pr (k) − p̂(k − 1) ;
(k) ← k) + θ̂ (k (k − 1) ;

p̂(k) ← pr (k) − θ̂ (k k) ;
σ̂ 2e (k) ← (1− 2θ(k))(pr (k) − p̂(k))2 + θ2(k 2(k) ;

d̂(k) ← βe−a2 σ̂2e (k)/2ea p̂(k) ;
deliver d̂(k) ;
if External Interrupt then

stop
else

k ← k + 1;
end

end

Algorithm 3: MPEF

6 Simulation results and discussion

In order to illustrate the performance of the different

methods, let us consider the case where the distance is

given by the following discrete-time velocity model:

vðk þ 1Þ ¼ vðkÞ þ hwðkÞ; ð30Þ

xðk þ 1Þ ¼ hvðkÞ þ xðkÞ; ð31Þ

dðkÞ ¼ jxðkÞj; ð32Þ

where h is the sampling interval, wðkÞ is a zero mean i:i:d:

sequence with variance r2
w, vðkÞ and xðkÞ are the relative

velocity and position between both nodes, and dðkÞ is the

distance to be estimated. From (30), the variance of the

velocity is proportional to r2
w, h2, and the number of steps

N, as follows:
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r2
v ¼ r2

wh2N: ð33Þ

By defining ~vðkÞ ¼ hvðkÞ and using it in (30–31) we obtain

the following system:

~vðk þ 1Þ ¼ ~vðkÞ þ h2wðkÞ; ð34Þ

xðk þ 1Þ ¼ ~vðkÞ þ xðkÞ; ð35Þ

dðkÞ ¼ jxðkÞj: ð36Þ

Thus, the dynamics of the system become independent of

the sampling interval. For this reason, in what follows the

standard deviation of the speed rv and the square root of

the distance-MSE (Sd) of the diferent estimators are carried

out in the simulations with h ¼ 1 � s. Then, the perfor-

mance evaluation for different sampling periods can be

obtained directly by rescaling the velocity standard de-

viation by hrv, and the distance error Sd by hSd.

We have studied the behavior of different distributions

of increments wðkÞ, such as Gaussian, zero mean uniform

distribution, and the discrete-time sequences of iid random

variable taking the values 1 and �1 with equal probability.

Figure 1 depicts typical trajectories obtained from the

different distributions. However, due to that the increments

are filtered by a linear model, the statistic of the distance,

by the central limit theorem, converges to the Gaussian

distribution. Thus, the simulations based on Gaussian or

non-Gaussian distributed increments provide very similar

results. Thus, only simulation results with Gaussian in-

crements are presented here.

The parameters of the path loss model (2–3) are j ¼ 10

and c ¼ 3. Since the GN and MPFE filters are based on the

Gauss–Newton algorithm and both depend on k, we will

first analyze their comparative performances. In the case

where the distance is constant, the value of h is also con-

stant and theoretically we must have a constant value of

k ¼ 1 to get convergence to the minimum of the cost VðkÞ, [23]. In the case where the distance changes, also h chan-

ges, and it is preferable that k be slightly lesser, allowing an

adaptive estimation of h. Therefore, we choose a value of

k ¼ 0:98 for MPFE. In contrast, the optimum value of k in

the case of GN is not a fix value, so we are interested in

knowing how the error of GN behaves at different values of

k in comparisson with MPFE. To this end, let us denote by

SGN
d and SMPFE

d the square root of the distance-MSE of GN

and MPFE filters. In Figs. 2, 3 and 4 the relative error

between both methods, the MPEF and GN with k variable,

are depicted as a funcion of k for different amplitudes of

fading noise, rg ¼ 1; 3; and 6. Although at the minimum

the performance of GN is similar to MPFE, from the fig-

ures it can be observed that GN requires tuning k for each

speed and noise amplitude. Even when GN behaves

slightly better than MPEF—for high noise levels and very

low velocity—the performance degrades drastically for

small variations of k, which makes it inappropriate.
Fig. 1 Typical distance realizations obtained from Gaussian, Uni-

form, and Discrete distribution of increment

Fig. 2 Relative error between GN and MPFE for rg ¼ 1 and different

velocity standard deviations

Fig. 3 Relative error between GN and MPFE for rg ¼ 3 and different

velocity standard deviations
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Figures 5, 6 and 7 show the relative error distance es-

timation given by the quotient between the square root of

the distance-MSE with respect to the standard deviation of

velocity for different amplitudes of fading noise,

rg ¼ 1; 3; and 6, and for the following estimators: the

MSE , dMLE; the LMS, dLMS; and the minimum prediction

error filtering, dMPFE.

In the case of the LMS filter, it is impossible to deter-

mine, a priori, an optimal value of l without extra infor-

mation. As the aim of our simulations is to compare the

performance of LMS and LME with the proposed MPEF,

we prefer to find the best a posteriori value by performing

multiple simulations at different velocities and noise levels.

The best value of gain for LMS was found to be l ¼ 0:01.

Since the probability distribution of w is normal dis-

tributed, we can compare the performance with the theo-

retical Cramer–Rao minimum variance lower bound. It

must be taken into consideration that the CRLB is an

asymptotic bound for unbiased estimators. In [1] and [24],

the CRLB for the nonlinear filtering case is analyzed. It

consists in running the following recursion until conver-

gence is reached:

Pðk þ 1Þ ¼ ðAPðkÞAT þ Br2
wBTÞ�1 þ HT H

a2d2ðkÞr2
g

 !�1

;

ð37Þ

Var d̂ðkÞ � dðkÞ
� �

�HT PðkÞH; ð38Þ

Fig. 4 Relative error between GN and MPFE for rg ¼ 6 and different

velocity standard deviations

Fig. 5 Relative square root of the distance-MSE with respect to the

standard deviation of velocity when rg ¼ 1 for MLE, dMLE; Linear

Mean Square filter, dLMS; and Minimum Prediction Error Filtering,

dMPFE

Fig. 6 Relative square root of the distance-MSE with respect to the

standard deviation of velocity when rg ¼ 3 for MSE, dMLE; Linear

Mean Square filter, dLMS; and Minimum Prediction Error Filtering,

dMPFE

Fig. 7 Relative square root of the distance-MSE with respect to the

standard deviation of velocity when rg ¼ 6 for MSE, dMLE; Linear

Mean Square filter, dLMS; and Minimum Prediction Error Filtering,

dMPFE

Table 1 Comparative computational times

tMPFE=tMLE tGN=tMLE tLMS=tMLE

1.47 1.32 1.24
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where A, B, and H are obtained from the matrix description

of the velocity model with:

A ¼
1 0

1 1

� �
; B ¼

1

0

� �
; H ¼ ½0; 1�: ð39Þ

The CRLB is also depicted in the figures.

From the figures, it can be seen that LMS slightly out-

performs MPFE estimators in the static case, but in the case

of mobile sensors the slow convergence speed of the steepest

descent algorithm degrades the performance quickly. How-

ever, it is important to note that the improvement of the LMS

over the MPEF, in the static case, is negligible since the

plotted values are relative to the speed rv which is very low.

It should also be noted that MPFE is very close to the CRLB.

The relative computational time of each method, with re-

spect to the MLE, is shown in Table 1. The price to be paid for

the improvements obtained using GN or MPEF is a logical

increase in computation time. However, the increments of

time with respect to the MLE are relatively small.

7 Conclusions

An efficient adaptive estimation of the distance between

sensors in a mobile network was presented. The proposed

method outperforms the classical MLE, reaching error values

very close to the CRLB for both the static and mobile cases.

The computational cost is 50 % greater than the MLE.

However, since the MLE is very fast, the extra computational

cost is not significant and worthwhile. Three important

properties of the algorithm are the following: (i) The algo-

rithm does not need to know the variance of the noises nor the

dynamic of the movements; (ii) it was analytically demon-

strated that it outperforms the MLE or, in other words, its

MSE is less than, or at least equal to, the noise variance; and

(iii) it is based on the well-known algorithm RPEM, for which

convergence is guaranteed under mild conditions. The

method also outperforms the LMS and GN filters.
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Appendix

We first show that there is a unique minimizer of r2
� in the

interval hðkÞ 2 ½0; 1� for the family of movement dynamics

whose autocorrelation can be represented by a Fourier

series expansion. Various motion dynamic cases can be

represented using this representation, ([14]). By using (26),

the prediction error at step k þ 1 can be represented by the

following recursion:

�ðk þ 1Þ ¼ prðk þ 1Þ � prðkÞ þ h�ðkÞ ð40Þ

¼ rðk þ 1Þ þ gðk þ 1Þ � gðkÞ þ h�ðkÞ: ð41Þ

where rðkÞ is a zero mean, incremental log-power sequence

given by

rðkÞ ¼ pðkÞ � pðk � 1Þ: ð42Þ

By taking the expected value of �2ðkÞ and considering that

gðkÞ is an i:i:d: sequence, independent of rðkÞ, we obtain

the following relationship for the prediction error variance:

r2
� ¼ 2r2

gþ h2r2
� þr2

r � 2hE½gðkÞ�ðkÞ�þ 2hE½rðkþ 1Þ�ðkÞ�;
ð43Þ

where E½gðkþ 1Þ�ðkÞ� ¼ 0. The expectations of the last two

terms are given by

E½gðkÞ�ðkÞ� ¼ r2
g; ð44Þ

E½rðkþ 1Þ�ðkÞ� ¼ E½rðkþ 1ÞrðkÞþ hrðkþ 1Þ�ðk� 1Þ�
¼ E½rðkþ 1ÞrðkÞþ hrðkþ 1Þrðk� 1Þþ h2rðkþ 1Þ�ðk� 2Þ�

..

.

¼
X1
i¼1

hi�1RðiÞ;

ð45Þ

where RðiÞ ¼ E½rðkÞrðk� iÞ�. By using it in (43) and taking

into account that r2
r ¼ Rð0Þ, the final expression of r2

� is

obtained as

r2
� ¼

2ð1� hÞr2
g � r2

r þ 2
P1

i¼0 hiRðiÞ
1� h2

: ð46Þ

In order to analyze the possible minimizers of cost function

r2
� with respect to h, we need to write the correlation

function RðiÞ=r2
r . To this end, let us consider the following

complex series expansion representing the autocorrelation:

RðiÞ
r2

r

¼ 1

2N

XN

n¼1

ðai
n þ a�in Þ; ð47Þ

where an is complex with janj � 1, ð�Þ means compex

conjugate, and RðiÞ is a positive definite function, [25].

Thus, the last term in the numerator of (46) gives

r2
r

N

X1
i¼0

hi
XN

n¼1

ðai
n þ a�in Þ ¼

r2
r

N

XN

n¼1

X1
i¼0

ðhanÞi þ ðhanÞ�i

¼ r2
r

N

XN

n¼1

1

1� han

þ 1

1� ha�n
:

ð48Þ
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By denoting an ¼ qnejun and taking into account that both h
and qn are positive and less than one, a family of possible

values for each element of the sum are given by the fol-

lowing parametrization:

1

1� han

þ 1

1� ha�n
¼ 2

1� hqn cosðunÞ
ð1� hqnejunÞð1� hqne�junÞ ;

ð49Þ

where qn 2 ½0; 1� and un 2 ½0; 2p�. Now, we need the fol-

lowing lemma:

Lemma [26]: Let g and f be defined on a convex set H,

such that f ðhÞ 6¼ 0 for all h 2 H. Then, g=f has only one

minimum on H (quasi-convex) if both f ðhÞ[ 0 is concave

and gðhÞ� 0 is convex for all h 2 H.

First, from (46) and (49), we can write

gðhÞ ¼ 2ð1� hÞr2
g � r2

r þ
2r2

r

N
X1
n¼1

1� hqn cosðunÞ
ð1� hqnejunÞð1� hqne�junÞ

ð50Þ

f ðhÞ ¼ 1� h2: ð51Þ

From (51), f ðhÞ[ 0 concave, for h 2 ð0; 1Þ, and from (50),

gðhÞ is always positive definite. In order to study its con-

vexity we obtain the second derivative with respect to h
which gives

4 cos2ðunÞ � cosðunÞ½2ðhqnÞ3 þ 6hqn� þ 6ðhqnÞ2 � 2

½ðhqnÞ
2 � 2hqn cosðunÞ þ 1�3

:

ð52Þ

By calculating derivatives we find that the minimum of the

above is given at hqn ¼ 0 for any possible value of

cosðunÞ. Then, for cosðunÞ�
ffiffiffiffiffiffiffiffi
1=2

p
, the second derivative

is always positive, which restricts the value of un in the

interval [�p=4; p=4]. This means that the higher-frequency

sinusoidal component of the Fourier Series Expansion of

RðiÞ, (47), must contain at least eight samples per period,

which is a weak restriction. Thus, we can conclude that,

under mild assuptions, there exists only one minimizer for

the minimum variance prediction error for h, within the

interval (0; 1).

In order to prove (iii), let us compute the upper bound of

r2
� . By taking into account that RðiÞ=r2

r is an autocorrela-

tion function, from (46) the following inequality holds:

r2
� �

2ð1� hÞr2
g þ r2

r 2
P1

i¼0 hi � 1
	 


1� h2
ð53Þ

¼
2ð1� hÞr2

g þ r2
r

1þh
1�h

	 


1� h2
¼ hðhÞ: ð54Þ

Now, let us define the minimizer of hðhÞ as

�h ¼ arg min
h
fhðhÞg: ð55Þ

By multiplying both sides of (54) by 1� h2, within the

admissible interval of h, and performing the derivative,

with respect to h, the following upper bound for the

minimum of r2
� is obtained:

r2
�min�

r2
g

�h
� r2

r

2�hð1� �hÞ2
�

r2
g

�h
: ð56Þ

In order to find the relationship between the variance of

eðkÞ and the variance of the prediction error, we use (22) as

follows:

r2
e ¼ E½ðpðkÞ � p̂ðkÞÞ2� ð57Þ

¼ E½g2ðkÞ� þ h2E½�2ðkÞ� � 2hE½gðkÞ�ðkÞ�; ð58Þ

¼ ð1� 2hÞr2
g þ h2r2

� ; ð59Þ

where the last term of (58) is E½gðkÞ�ðkÞ� ¼ r2
g. Finally, by

replacing the bound (56) in (59) we obtain an upper bound

on the pseudo-optimal minimum error attainable for any

correlation function as follows:

r2
e � ð1� 2�hÞr2

g þ �h2r2
�min ð60Þ

� ð1� 2�hÞr2
g þ �hr2

g ð61Þ

� r2
g: ð62Þ

In particular, in the static case, r2
r ¼ 0, the minimizer is

�h ¼ 1, which leads to r2
�min ¼ r2

g and r2
e ¼ 0.
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