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Background: Neutron stars are astronomical systems with nucleons submitted to extreme conditions. Due to
the long range coulomb repulsion between protons, the system has structural inhomogeneities. These structural
inhomogeneities arise also in expanding systems, where the fragment distribution is highly dependent on the
thermodynamical conditions (temperature, proton fraction, . . . ) and the expansion velocity.

Purpose: We aim to find the different regimes of fragment distribution, and the existence of infinite clusters.

Method: We study the dynamics of the nucleons with a semiclassical molecular dynamics model. Starting with
an equilibrium configuration, we expand the system homgeneously until we arrive to an asymptotical configuration
(i. e. very low final densities). We study the fragment distribution throughout this expansion.

Results: We found the typical regimes of the asymptotical fragment distribution of an expansion: u-shaped,
power law and exponential. Another key feature in our calculations is that, since the interaction between protons
is long range repulsive, we do not have always an infinite fragment. We found that, as expected, the faster the
expansion velocity is, the quicker the infinite fragment disappears.

Conclusions: We have developed a graph-based tool for the identification of infinite fragments, and found a
transition from U-shaped to exponential fragment mass distribution with increasing expansion rate.

PACS numbers: PACS 24.10.Lx, 02.70.Ns, 26.60.Gj, 21.30.Fe

I. INTRODUCTION

A neutron star is an astronomical object with a radius
of approximately 10 km and a mass of about m ' 1.5M�.
Its structure can be divided in two parts, according to
current models [1, 2]: the crust, about 1.5 km thick and
with a density of up to half the normal nuclear density
ρ0; and the core, where the structure is still unknown
and remains highly speculative [3]. Ravenhall et al. in
Ref. [4] and Hashimoto et al. in Ref. [5] proposed that the
neutron star crust is composed by the structures known
as nuclear pasta.

When two neutron stars collide, a neutron star merger
happens. According to hydrodynamic models [6], these
have typical expansions coefficents of η = 10−21 c/fm <
η < 4 · 10−20 c/fm.

Semiclassical models with molecular dynamics have
been used to study the nuclear pasta regime, with mainly
two parametrizations of the interaction: Simple Semiclas-
sical Potential [7], Quantum Molecular Dynamics [8] and
Classical Molecular Dynamics [9, 10].

Multifragmentation in nuclear systems has been stud-
ied before [11, 12], but mostly with nuclear matter (with-
out Coulomb interaction). In a recent work by Caplan et
al [13], expanding neutron star matter has been studied
as possible explanations for nucleosynthesis in neutron
star mergers.

Inspired by the neutron star merger, we perform a
study on the fragmentation of expanding neutron star
matter. In section II we define the model we use and in
section III we explain how we simulate the expansion of
the system. To analyze fragments, we describe in sec-
tion IV the cluster recognition algorithm, with emphasis

on the identification of infinite fragments.

II. CLASSICAL MOLECULAR DYNAMICS

In this work, we study fragmentation of Neutron Star
Matter under pasta-like conditions with the classical
molecular dynamics model CMD. It has been used in
several heavy-ion reaction studies to: help understand
experimental data [14]; identify phase-transition signals
and other critical phenomena [15–19]; and explore the
caloric curve [20] and isoscaling [21, 22]. CMD uses two
two-body potentials to describe the interaction of nucle-
ons, which are a combination of Yukawa potentials:

V CMD
np (r) = vr exp(−µrr)/r − va exp(−µar)/r
V CMD
nn (r) = v0 exp(−µ0r)/r

where Vnp is the potential between a neutron and a pro-
ton, and Vnn is the repulsive interaction between either
nn or pp. The cutoff radius is rc = 5.4 fm and for
r > rc both potentials are set to zero. The Yukawa
parameters µr, µa and µ0 were determined to yield an
equilibrium density of ρ0 = 0.16 fm−3, a binding en-
ergy E(ρ0) = 16 MeV/nucleon and a compressibility of
250 MeV.

To simulate an infinite medium, we used this poten-
tial with N = 11000 particles under periodic bound-
ary conditions, with different proton fraction (i.e. with
x = Z/A = 0.2 < x < 0.4) in cubical boxes with sizes ad-
justed to have densities ρ = 0.05 fm−3 and ρ = 0.08 fm−3.
These simulations have been done with LAMMPS [23],
using its GPU package [24].
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A. Coulomb interaction in the model

Since a neutralizing electron gas embeds the nucleons
in the neutron star crust, the Coulomb forces among
protons are screened. The model we used to model
this screening effect is the Thomas-Fermi approximation,
used with various nuclear models [8, 9, 25]. According to
this approximation, protons interact via a Yukawa-like
potential, with a screening length λ:

VTF (r) = q2
e−r/λ

r
.

Theoretical estimates for the screening length λ are
λ ∼ 100 fm [26], but we set the screening length to
λ = 20 fm. This choice was based on previous stud-
ies [27], where we have shown that this value is enough to
adequately reproduce the expected length scale of den-
sity fluctuations for this model, while larger screening
lengths would be a computational diffculty. We analyze
the opacity to neutrinos of the structures for different
proton fractions and densities.

III. EXPANSION

To simulate an expanding system we scale linearly with
time the length of the box in every dimension,

L(t) = L0(1 + η t)

This, however, is not enough to expand the system col-
lectively. We also need the particles inside the cell to
expand like the box. In order to accomplish this, based
on Ref. [28], we add to each particle a velocity vexp de-
pendent on the position in the box:

vexp = η r

We can see from this expression that the particles in the
edge of the box will have an expanding velocity equal to
that of the box.

Another effect to consider of this expansion is that
when a particle crosses a boundary its velocity has to
change according to the velocity of the expanding box.
For example, if the particle crosses the left-hand bound-
ary of the periodic box, the velocity of the image particle

v†i on the right-hand must be modified v†i = vi + L0 η.

IV. CLUSTER RECOGNITION

In typical configurations we have not only the struc-
ture known as nuclear pasta, but also a nucleon gas that
surrounds the nuclear pasta. In order to properly char-
acterize the pasta phases, we must know which particles
belong to the pasta phases and which belong to this gas.
To do so, we have to find the clusters that are formed
along the simulation.

One of the algorithms to identify cluster formation is
Minimum Spanning Tree (MST). In MST algorithm, two
particles belong to the same cluster {CMST

n } if the rela-
tive distance of the particles is less than a cutoff distance
rcut:

i ∈ CMST
n ⇔ ∃j ∈ Cn | rij < rcut

This cluster definition works correctly for systems with
no kinetic energy, and it is based in the attractive tail of
the nuclear interaction. However, if the particles have
a non-zero temperature, we can have a situation of two
particles that are closer than the cutoff radius, but with
a large relative kinetic energy.

To deal with situations of non-zero temperatures, we
need to take into account the relative momentum among
particles. One of the most sophisticated methods to ac-
complish this is the Early Cluster Recognition Algorithm
(ECRA) [29]. In this algorithm, the particles are parti-
tioned in different disjoint clusters CECRA

n , with the total
energy in each cluster:

εn =
∑
i∈Cn

KCM
i +

∑
i,j∈Cn

Vij

where KCM
i is the kinetic energy relative to the center

of mass of the cluster. The set of clusters {Cn} then is
the one that minimizes the sum of all the cluster energies
Epartition =

∑
n εn.

ECRA algorithm can be easily used for small sys-
tems [30], but being a combinatorial optimization, it can-
not be used in large systems. While finding ECRA clus-
ters is very expensive computationally, using simply MST
clusters can give extremely biased results towards large
clusters. We have decided to go for a middle ground
choice, the Minimum Spanning Tree Energy (MSTE) al-
gorithm [9]. This algorithm is a modification of MST,
taking into account the kinetic energy. According to
MSTE, two particles belong to the same cluster {CMSTE

n }
if they are energy bound:

i ∈ CMSTE
n ⇔ ∃j ∈ Cn : Vij +Kij ≤ 0

While this algorithm doesn’t yield the same theoretically
sound results from ECRA, it still avoids the largest pitfall
of näıve MST implementations for the temperatures used
in this work.

A. Infinite Clusters

We developed an algorithm for the recognition of infi-
nite clusters across the boundaries. We explain here in
detail the implementation for MST clusters in 2D, be-
ing the MSTE and 3D extension straightforward. In fig-
ure 1 we see a schematical representation of 2D clusters
recognized in a periodic cell, labeled from 1 to 6 (note
that these clusters don’t connect yet through the peri-
odic walls).
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Figure 1: (Color online) Schematical representation of
2D clusters, recognized only in the cell and not through
the periodic walls, labeled as N, S, W, E. The clusters

inside the cell are labeled from 1 to 6,

In order to find the connections of these clusters
through the boundaries, we draw a labeled graph of the
clusters, where we connect clusters depending on whether
they connect or not through a wall and label such con-
nection with the wall label. For example, we begin with
cluster 1. It connects with cluster 2 going out through
the E wall, therefore we add a 1→ 2 connection labeled
as E. Symetrically, we add a 2 → 1 connection labeled
as W. Now we go for the pair 1-3. It connects going out
through the S wall, so we add 1 → 3 labeled as S and
3→ 1 labeld as N. Cluster 1 does not connect with 4, 5,
or 6, therefore those are the only connections we have.
Once we’ve done that, we get the graph of figure 2.

We now wonder whether these subgraphs represent an
infinite cluster or not not. In order to have an infinite
clusters, we need to have a loop (the opposite is not true:
having a loop is not enough to have an infinite cluster,
as we can see in subragph 5–6), so we first identify loops
and mark them as candidates for infinite clusters. Every
connection adds to a loop (since the graph connections
are back and forth), but we know from inspecting the
figure 2 that the cluster 1–2–3 is infinite. Finding out
what makes, in the graph, the cluster 1–2–3 infinite is
key to identifiy infinite clusters. And the key feature of
cluster 1–2–3 is that its loop 1–2–3–1 can be transversed
through the walls E–E–S, while loops like 5–6 can be
transversed only through E–W. Now, in order for the
cluster to be infinite, we need it to extend infinitely in (at
least) one direction. So once we have the list of walls of
the loop, we create a magnitude I associated to each loop
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Figure 2: Graph of the clusters with connections labeled
by the wall of the boundary they connect through. The
graph can be divided in 2 subgraphs that don’t connect:
1–2–3–4 and 5–6. Each of these subgraphs is as cluster

when periodic boundary conditions are considered.

that is created as follows: beginning with I = 0, we add
a value Mi if there is (at least one) i wall. The values are:
ME = 1, MW = −1, MN = 2, MS = −2. If I is nonzero,
then the loop is infinite. For example, for the loop E–E–
S, we have E and S walls, so I = ME +MS = 3 and the
loop is infinite. For the loop E–W, I = ME + MW = 0,
and the loop is finite.

V. RESULTS

In figure 3 we show the initial and final states for the
expansion of N = 11000 particle primordial cell (see cap-
tion for details) for the case of low velocity expansion.
It can be immediately seen that though the initial con-
figuration shows a compact particle distribution, the fi-
nal configuration consists of gnocchi structures (almost
spherical fragments) with a mass of about 80 particles.

In figure 4 we show the fraction of particles in the pri-
mordial cell that form part of an infinite cluster (Infinite
Fragment Fraction, IFF). It can be easily seen that in the
early stages of the evolution, due to the fact that the tem-
perature is low, most of the system in the primordial cell
belongs to the infinite clusters. But as the system evolves
according to the expansion rate as explained above, the
IFF goes down and goes to zero rather quickly, meaning
that there is no more infinite fragment in the system. See
caption for details.

Figure 5 shows the asymptotical fragment mass distri-
bution for 4 different expansion rates. In this case, the
MSTE algorithm has been applied over the primordial
cell, taking into account periodic boundary conditions
knowing that there is no infinite fragment as shown in
figure 4. It can be seen that as the homogeneous expan-
sion velocity increases, the fragment mass distribution
displays the familiar transition from U-shaped to expo-
nential decay. Somewhere in between, a power law dis-
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(a) η = 0.0001 fm/c (b) η = 0.0005 fm/c

Figure 3: (Color online) Snapshots of a system in the initial configuration 3a and the final expanded system 3b. In
the expanded system we see clearly formed gnocchi clusters
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Figure 4: (Color online) Infinite Fragment Fraction (see
text) as a function of the length of the edge of the

primordial cell. For every expansion rate displayed the
IFF goes to zero in the asymptotic regime.

tribution is to be expected. In particular, figure 5c shows
that with an expansion of η = 0.009 fm/c we are close to
a power law distribution. It is interesting to note that
at variance with percolation or Lennard-Jones systems,
due to the presence of the Coulomb long range repulsion
term, it is not possible to see an infinite cluster in the
asymptotical regime. Moreover, together with the rather

large rate of expansion, we do not expect to find big clus-
ters.

VI. DISCUSSION AND CONCLUDING
REMARKS

In this work we have performed numerical experiments
of homogenously expanding systems with not very small
amount of particles in the primordial cell. In order to an-
alyze the fragment structure of such a system as a func-
tion of time, we have developed a graph-based tool for
the identification of infinite fragments for any definition
of percolation-like (i. e., additive) clusters. Once this for-
malism is applied to the above mentioned simulations, we
have been able to identify the region in which a power-law
distribution of masses is expected. The fragment mass
distribution shapes range from U-like to exponential de-
cay.

We are currently performing simulations with more
number of particles to properly characterize the critical
behavior of the system.
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(a) η = 0.0001 fm/c
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(b) η = 0.0005 fm/c
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(c) η = 0.009 fm/c
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(d) η = 0.03 fm/c

Figure 5: (Color online) Fragment mass distribution. Labels grow with larger expansion rates. System consisting of
11000 particles with x = 0.4 and initial density ρ0 = 0.08 fm−3
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