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Abstract—Discovering gene regulatory networks from data is one of the most studied topics in recent years. Neural networks can
be successfully used to infer an underlying gene network by modeling expression profiles as times series. This work proposes a
novel method based on a pool of neural networks for obtaining a gene regulatory network from a gene expression dataset. They
are used for modeling each possible interaction between pairs of genes in the dataset, and a set of mining rules is applied to
accurately detect the subjacent relations among genes. The results obtained on artificial and real datasets confirm the method
effectiveness for discovering regulatory networks from a proper modeling of the temporal dynamics of gene expression profiles.

Index Terms—Gene Regulatory Networks, Gene profiles, Times Series Data, Neural Networks.

1 INTRODUCTION

GENE regulatory network (GRN) is an abstract

mapping of gene regulations in living organisms
that can help to predict the system behavior. During
last years, many approaches have been proposed
to unravel the complexity of gene regulation [1].
Genes interact with one another and these interactions
can be measured over a number of time steps,
producing temporal gene expression profiles. A hot
topic on gene expression data analysis nowadays is
the reconstruction of a GRN from such data, revealing
the underlying network of gene-to-gene interactions
[2]. In other words, the goal is to determine the
pattern of activations and inhibitions amongst genes
that make up the underlying GRN.

Given the expression levels of a set of interacting
genes measured at different time points, formal
methods can be developed to model gene interaction
[3]. In fact, discovering gene regulatory networks by
data-driven methodologies has been under study in
the last years [4]-[7]. For instance, Boolean networks
[8] [9] only consider the expression of a gene as on/off
(do not taking into account intermediate expression
level) hence having inadequate resolution. Bayesian
networks [10] are represented as graphs considering
the joint probability distribution of genes. This
model can capture the inherent noise and stochastic
behavior in gene expression data effectively, but
the high computational cost hinders the application
to a large number of genes in network. Dynamic
Bayesian networks [11] have extended Bayesian
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networks to include temporal components. Also
genetic algorithms [12] were applied to predict the
regulatory pathways represented as an influence
matrix. This approach can be applied with a small
amount of data, optimizing a large number of
parameters simultaneously, and solving nonlinear
models. A neural network (NN) based model was
presented in [13] for identifying gene regulatory
networks from temporal gene expression data, in
which both feedforward and Elman networks were
used. The proposed models have a structural
resemblance to genetic networks and also have the
ability to capture the strengths of gene interactions
in the form of network weights. Two iteratives
methods were proposed to determine a set of potential
regulators of a target gene. An artificial dataset that
contained a subjacent GRN was used to test the
approach, and some of the existing interactions were
found, but not all of them.

Recently, the results of a comparative study [14]
among six different reverse engineering methods,
have highlighted the NN approach as the best
performing method. This approach [15] involved a
Recurrent Neural Network, whose topology was a
simplified representation of a GRN with a weight
matrix having non-zero entries to indicate interactions
(activation or inhibition) of nodes (representing
genes). Sensitivity was 57%, that is, only about half
of the regulations were found.

Artificial neural networks can be used to infer
genetic networks by modeling pairs of genes activity
over a number of time steps. Thus, for modeling
gene regulation all the possible combinations between
genes must be analyzed in order to discover
their relations. Using neural networks for modeling
interactions in genetic networks requires training
them to predict a target gene regulation from
candidate regulating profiles. By adjusting their
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Fig. 1. Temporal delay identification between two gene
expresion levels data.

synaptic weights, NNs alter their configuration to
model each gene connection, which results in a
minimum error in predicting a target profile.

This work proposes a novel approach to discover
a GRN from temporal genes expression profiles by
using a pool of multi layer perceptrons (MLP) with
temporal delays at the input, named GRNNminer!. In
any GRN, the complex interactions occurring amongst
genes can be either instantaneous or time-delayed
[16]. Genes expression profiles are considered here as
time series [17], and are used to train a pool of NN
models. Each NN is designed to discover, for a target
gene profile at the output, the potential regulator of
that gene at the input, by modeling their gene-to-gene
interaction during a time period. The ability of each
trained NN to model each possible relation is judged
by the evaluation of the generalization error during
the training process. For each possible relationship
found, a score matrix is computed to detect the
most likely regulations. Three rules for mining the
unknown GRN from the score matrix are proposed,
which allows to discover each correct gene-to-gene
relation from all the possible ones.

The manuscript is organized as follows: Section
2 explains in detail the novel GRNNminer approach
for GRN mining. Section 3 presents the datasets
used in this study, whereas Section 4 explains the
experimental setup and introduces the performance
measures used for validation. In Section 5 the
experimental results are presented and discussed. At
last, conclusion and future works are given in Section
6.

2 NOVEL APPROACH FOR GRN MINING
This section explains how a NN can be trained
by using temporal data from gene profiles for

1. The source code is freely available for academic purpuses at
http:/ /sourceforge.net/projects/sourcesinc/files/grnnminer/
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Fig. 2. NN model with temporal delays at the input.

modeling gene-to-gene relations. After that, the novel
GRNNminer will be presented for discovering the
subjacent GRN.

Temporal gene expression profiles represent genes
activity observed over a number of time steps. For
instance, in Figure 1 a segment of two genes profiles
is shown both possibly related. It can be seen that,
for gene A at time 4 the signal starts to increase,
while for gene B this behavior is only beginning to be
perceived at the sixth time instant. It could be stated
that gene A behavior has some influence on gene
B, and the temporal delay between the activation of
these two genes is around 2 time steps. This temporal
series can be used to train a NN aiming to model this
gene-to-gene relation in a GRN.

A NN can be loosely defined as a large set of
simple interconnected units (neurons), which are
executed in parallel to perform a common global task
[18]. These units usually undergo a learning process
that automatically updates network parameters (the
connections among neurons, also named synaptic
weights) in response to a possibly evolving input
environment [19]. The model topology has several
layers with no connections among neurons belonging
to the same layer. The number of layers and neurons
in each layer is chosen a priori, as well as the type of
activation functions for the neurons [20].

The relation between two signals can be modeled
by using a NN. According to the ability for modeling
this relation within a bounded number of training
epochs, it could be possible to detect a regulation
between genes represented by two temporal series.
Figure 2 shows a NN model with time delays at
input layer, which can consider explicitly the temporal
structure of the input signal. Specifically, the MLP has
three layers (input, hidden and output), a sigmoid
activation function at the hidden layer, and a linear
activation function at the output. The first layer has
only input connections. The basic learning algorithm
used is backpropagation [20] which uses gradient
descent to minimize a cost function, generally defined
as the Mean Squared Error (MSE) between the desired
output (targets) and the actual network output.
During learning, the error propagates backwards
through the network and the model parameters are
changed accordingly [21]. The number of inputs is
related to the number of temporal delays considered



TABLE 1
Example of error ranking after five repetitions of an
experiment aiming to discover the regulator of gene B.

Repetition  Regulator  Regulated Error
1 A B 5.21e—10
C B 6.10e—10
’ A B 8.92¢—10
D B 9.57¢~10
3 A B 0.35e=99
E B 1.75e=09
4 A B 2.19¢—09
D B 8.32¢—09
5 A B 0.98¢~08
C B 1.64e~08

(window 7). That is to say, there will be 7 4 1
inputs, considering the input signal from time ¢ to
t — 7. The value of temporal delays 7 considered
at the input signal can be determined by analyzing
each gene-to-gene relation. In this way, all the
possible combinations of genes should be analyzed
to determine the temporal delay for each dataset.

Discovering all the possible relations among a
set of genes is the main objective of this network
mining approach. In order to achieve this aim, each
possible gene-to-gene relation can be modeled by
a NN with temporal delays. This model has to be
trained and the results must be analyzed to detect
which is the most probable GRN underlying the
dataset. The GRNNminer method consists in three
steps: 1) modeling all possible gene-to-gene relations
by using a pool of NNs, 2) putting a score to each
relationship found, 3) applying rules to discover the
underlying GRN. They are explained in detail in the
following subsections.

2.1 Pool
relations

of NN for modeling gene-to-gene

Modeling gene-to-gene relationships implies building
a NN for each possible combination of regulator
regulated genes and training the model with the
corresponding temporal series. In this work, it is
important to find a good model that takes into account
the dynamics underlying the data. In other words,
how good is the NN to identify the dynamics of the
model. If training error is high after a large number
of training epochs, it is possible to conclude that
there is no possible relation between those genes;
while if the error is low, it can be interpreted as an
indication that such relation exists. However, if the
relationship between two signals is not clear enough,

Regulated
cC| D

Regulator

Fig. 3. Example of filing one column of the scoring
matrix after considering Table 1.

independently of the number of training epochs, at
the end of the training process the error will be
high anyway. Similarly, if the relationship between
two signals is clear enough, whatever the number of
training epochs, the error will be low. In this work, the
training error is calculated regarding the prediction
of the regulated gene, as the mean square difference
between the target time series (of the regulated gene)
and the output time series obtained from the neural
model.

The training and test of the models have to be
repeated several times in order to achieve more robust
statistical results. Therefore, there will be a set of MLP
models specialized in each relation. Globally, this can
be considered as a pool of NNs whose main objective
is to measure how reproducible is the relationship
between two temporal series. That is to say, how much
modelable is each gene-to-gene relation. The ability of
a trained NN to model a gene network is assessed
using MSE, which is the mean of discrepancies
between the gene expression predictions made by
a NN and the true gene expression profiles, over
all measurements. Therefore, for each training done
within the pool of models, this generalization error
is measured by cross-validation in order to find the
differences and similarities between input and target
genes. This error is considered in the next step to
apply the scoring method.

2.2 Scoring method

In order to determine which gene is a potential
regulator of another one, it is necessary to give a
score to each modeled relation. This score is based on
how many times the smallest error has been achieved,
considering all the repetitions of each experiment,
with random initializations. This way, the neural
model that has the lowest error in most of the
repetitions determines which regulation is the easiest
to model, in a statistical sense. For instance, let us
suppose we have five genes {A, B, C, D, E}. All the
candidates as regulators of gene B are listed. Then,
a score is given to each possible regulator-to-regulated
relation {A—B, C—B, D—B, E—~B}. This is carried out
for all the genes, so that all alternatives are evaluated.



The results must be ordered so that the smallest
error is at the top of the list whereas the largest at the
bottom, as can be seen in Table 1. In order to clarify the
explanation, in this Table only the first five repetitions
(first column of the table) and the first two pairs
with minimum MSE for each repetition are shown.
In this example, the experiment which evaluates if
gene A regulates gene B has the minimum MSE in all
repetitions. After that, the scoring method is applied.

The scoring method consists in giving 2 points to
the regulator-regulated relation with the lowest error,
(the first position on the list), and 1 point to the
following relation with the lowest error (the second
position on the list). This procedure is iterated as
many times as repetitions in the table. For instance,
from the list shown in Table 1 it is possible to see that 5
repetitions have been done to determine which is the
regulator of gene B. These repetitions are separated
in the list by using a dotted line. In all of them, the
relation A—B has the first position, so its score is 10.
Relations C—B and D—B have the second position
in two repetitions, therefore 2 points are assigned to
both of them. At last, the score for E—B is 1 because
it obtained the second position in only one repetition.

Once the points have been assigned, it is possible
to build a scoring matrix to represent each possible
gene-to-gene relations, as can be seen in Figure 3.
Rows represent the potential regulator genes whereas
columns depict regulated genes. The diagonal is not
taken into account because autoregulation is not
considered in this work. Filling the scoring matrix
involves putting the scores on the corresponding
requlator-regulated cell in the matrix. For instance, the
second column of the matrix shown in Figure 3 is
filled with the scores calculated above by applying
the scoring method over the list.

2.3 Mining rules

During the previous step, the scoring matrix is filled
with the values obtained after analyzing the results of
the pool of NNs defined in Subsection 2.1. In Figure
4a), an example of a full scoring matrix is presented. It
is possible that some doubtful relations can be present
on the matrix. The aim of the rules is to solve these
conflicts, as follows.

2.3.1 Threshold rule

Observing Figure 4a) it is difficult to identify which
gene is regulated by whom because of the different
score. It is necessary to eliminate weak connections
from the score matrix in order to clarify the way the
genes are related. Therefore, the first step consists in
excluding those relationships whose errors are above
a threshold. This threshold is calculated as the lowest
error in all runs plus a percentage 6 of that error.
Considering the errors associated with the example,
the grey cells in Figure 4a) are the relationships that
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Fig. 4. Application of mining rules. a) Original scoring
matrix. b) Resultant matrix after Threshold rule is
applied. c) Resultant matrix after Symmetric rule is
applied. d) Resultant matrix after the application of
Unchained rule.

must be removed. Figure 4b) shows the resultant
matrix after the application of this rule.

2.3.2 Symmetric rule

Another doubtful case can occur between two
particular genes that are apparently mutually
regulated. For instance, in Figure 4b) it can be
seen how the regulation B—D has 4 points and
the regulation D—B contains 3 points. After the
application of this rule, shown in Figure 4c) , only
remains the relation with the best average value
between normalized error and score.

Given two genes i and j, ¢ relates both possible
models errors as

€= It M

max{e;;, ej; }
where e;; is the error of the model i—j, and e;; is the
error of the reverse model j—i. When €, > 0, it means
that i—j is the model that has the lowest error. On the
contrary, when ¢, < 0 the j—i model has the lowest
value.

Analogously, p, relates both models scores as

pu= I, @
max{s;;,sj; }

where s;; is the score of the model i—j, and sj; is
the score obtained by the reverse model j—1i, so that
ps > 0 if the first model has the maximum score. In
both cases, ¢, and p, are normalized in order to have
the same weight in the average, by dividing each one
by their corresponding maximum value.

Therefore, when the average between ¢, and p; is
greater than zero, it can be inferred that i—j is the
winning relationship, and when the average is less
than zero, the opposite j—i is true.




Fig. 5. A simple GRN discovered at the end of the
mining rules application.

This approach could be used in more general cases
where mutual regulation is present in the biological
network simply by not applying this symmetric
rule. In this way mutual regulations would be fully
contemplated within the model.

2.3.3 Unchained rule

In Figure 4c) it can be observed another special case
among genes B, D and E. Analyzing the matrix, the
relations B—D, D—E and B—E may be present. It is
necessary to remove one of the relations to unchain a
possibly redundant regulation. Two possible scenarios
can be considered here. The first one is that the correct
chain is B—+D—E, thus regulation B—E should be
removed because E is regulated by B but through
D. The second scenario could be that the correct
regulations are B—+D and B—E. In this case, D—E
should be discarded because both genes D and E are
regulated by the same parent gene B. To determine
whether one situation or the other is the correct one,
it is possible to use the averaged errors and scores.
If the regulation chain involves genes i, j and k, with
links i—j, i—k and j—k, the normalized sum of all
models errors is

(eij + eir) — (eij + ejk)

€y = , 3
max{(ei; + €jx), (€i; + €ix)} )
and for scores
Sij + Sjk) — (Sij + Sq
Pu = ( J ]k) ( J k) (4)

max{(si; + Sjx), (Sij + Six)}

Therefore, when the average between ¢, and p, is
greater than zero, it can be inferred that i—j—k has the
best value, so that i—k must be removed; and when
the average is less than zero, the best value is for i—j
and i—k regulations, determining that j—k must be
removed.

Considering again the example at Figure 4c),
B—E is effectively removed from the matrix (cell
highlighted in grey). The resulting matrix after the
application of this rule is shown in Figure 4d).

Finally, at the end of the application of the three
rules explained in 2.3.2, 2.33 and 23.1, a final
GRN can be obtained from the resultant scoring
matrix. For example, from Figure 4d) it is possible
to obtain the GRN shown in Figure 5 by drawing the
requlator-requlated relations represented by the matrix.
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Fig. 6. Example of time series for the activation signal
(top) and the expression of genes 1, 10 and 15.

3 MATERIALS

In this section an artificial dataset with known
connections is described. A real dataset which have
been used to validate the proposal is also presented.

3.1 Artificial data set

The artificial data set was developed by Smith et al.
[22] and improved by Yu et al. [23]. They modeled a
genetic regulatory network of arbitrary structure and
measured values for gene expression levels at discrete
time-steps. The method was the same used by Knott.
et al [13] to model the gene expression values and
validate its gene regulatory model.

Figure 6 shows examples of some of the time
series used in this study. It can be seen that
an increase in activity (top trace) is followed by
upregulation of gene 1 (second trace from top) with
a slight time lag. When activity drops, then gene
1 returns to hover near its target level, also with
a little delay. Gene 10 (third trace from the top) is
down-regulated considerably later than the response
of gene 1 to activity, showing that the regulatory
effects are propagated through a network over time.
Gene 15 (bottom trace) is an unregulated gene which
changes in a wide range and without relationship to
the activity or the other genes shown. The activity
level acts as an activation signal starting randomly
between a low or high level, and directly affecting
the expression levels of the first two genes of the
GRN. These two genes, in turn, affect the expression
levels (time series) of eight downstream genes. For
these time series, the corresponding network is
shown in Figure 7. It contains 20 genes, where only
10 are associated among them through regulatory
interactions, while the remaining 10 genes serve as
distractors. Each connection between genes has a
number that represents the expression proportion
that is added or substracted from the regulator



Fig. 7. Artificial data set GRN topology used as golden
standard.

gene signal [22]. This proportion indicates whether
the predecessor upregulates or downregulates the
successor gene signal.

At each time point, the expression levels of genes
in the network are governed by the expression
levels of their regulators, a degradation factor and
a noise factor. In contrast, the expression levels of
the remaining genes randomly fluctuate within the
upper and lower expression level bounds. Due to
the stochastic nature of the noise in the system, the
output will slightly differ in each replicate but it
will be governed by the same underlying network
interactions.

In this work 10 replicates will be used, where
each one comprised 20 gene expression levels at 200
time points, sampled at five minutes intervals. This
multiple replicates method was originally suggested
in [24] for solving the dimensionality problem,
by combining multiple microarray datasets from
different conditions for inferring the GRN, in order to
derive in the most consistent network structure with
respect to all the datasets. Similarly, we used several
replicates in order to train our models with enough
samples from the same GRN. The 80% of the whole
dataset will be used for training, while the remaining
20% for validation.

3.2 Five-gene network in Yeast

Yeast (Saccharomyces cerevisiae) cell cycle-regulated
genes were identified by microarray hibridation
[25]. The time series of gene-expression data from

yeast protein synthesis? has 17 sampling points and
the observation interval is 10 min. Data between
timepoints have been normalized with respect to each
other. In this work, data for five genes have been
selected (HAP1, CYB2, CYC7, CYT1, COX5A) because
the relations among those genes have been reported
and validated by biological experiments [26].

4 EXPERIMENTAL SETUP

The experimental setup will be explained here,
detailing neural networks configuration. The
performance measures for evaluating the proposed
GRNNminer will be also presented.

4.1

A NN with temporal delays has a particular input
layer, in which the number of elements depends
on the number of temporal delays (7) considered
at the input data. In this work, two values were
considered: 7 = {2,3}. As regards hidden layer, a
simple heuristic was adopted in which the number
of hidden neurons were 50%, 100%, 150% and 200%
of the inputs number. For example, for input layer
with 4 elements (7 = 3), the hidden layer can have
2, 4, 6 or 8 neurons. The output layer has only one
neuron, which represents the value of the target gene
expression at time ¢.

Weights and biases were initialized according to the
Nguyen-Widrow initialization algorithm [27], which
chooses random values in order to distribute the
active region of each neuron approximately evenly
across the input space. The models were trained using
a function that updates weights and bias according to
Levenberg-Marquardt optimization [28]. The number
of training epochs used as stop criteria were 50, 100
and 500. In this work, the parameter # was tested
between 0 and 1, with an incremental factor of 0.01.

Neural models configuration

4.2 Performance measures

Two measures were used in this work: accuracy
and sensitivity. Accuracy is the proportion of true
results (both true positives and true negatives) in the
population, whereas sensitivity relates to the ability
to identify positive results. The known GRN of the
dataset (Figure 7) was used as the golden reference
for performance calculation. Accuracy and sewnsitivity
are defined as

TP+TN
A:
TP+TN+FP+FN’ ©)
TP
SiTP—i—FN’ ©

where TP, TN, FP and FN stand for true positives,
true negatives, false positives and false negatives
respectively.

2. http:/ /www.wanghaixin.com/biowq2007 html



TABLE 2
Accuracy when the highest sensitivity are achieved in
each experiment.

Window size (7) | Epochs [ A [%] S [%]
50 0.02 99.71 100.00

2 100 0.02 99.12 88.89

500 0.02 99.42 100.00

50 0.02 99.12 88.89

3 100 0.02 98.83 T7.78

500 0.02 99.12 88.89

It is important to note that if accuracy is 1, all
the relations are discovered and there are no false
positives in the results. That is to say, when accuracy
is 1, sensitivity is 1, but not the opposite. On the
other hand, if sensitivity is 1, all the desired relations
are discovered, but there can be some false positives
present in the results.

5 RESULTS AND DISCUSSION

The experimental results obtained on two GRN
mining problems are shown in this section. First,
the performance measures obtained from the results
of mining the artificial dataset will be shown, in
order to demonstrate the strengths of the proposed
method. The discovered GRN will be analysed and
a discussion with related work will be done. Second,
the results from the application of the GRNNminer to
a real dataset will be discussed.

Table 2 presents global results of the proposed
mining approach on the artificial data set. The first
column indicates the window sizes used, representing
the temporal delay taken into account at the NN
input. The different training epochs considered are
shown at the second column. The third column
presents the best 6 for the threshold rule. The accuracy
is presented at column four, while the sensitivity is
shown in the last column.

Analyzing this table, two important results can be
highlighted. First, by using GRNNminer it is possible
to obtain all the relations of the golden reference,
because the sensitivity was 100% in two cases (rows
1 and 3). Secondly, accuracies are higher than 99%
for these two cases so that there are very few extra
relations discovered. The best accuracy obtained was
of 99.71% (row 1, shown in bold), which means that
there is only one extra relation, and the proposed
method is capable of discovering a GRN that is
almost identical to the golden reference. That is to
say, all of the gene-to-gene relations that have to be
discovered were obtained, adding only one relation
that is not present in the reference network. Sensitivity
and accuracy show that it is possible to find a good
model that takes into account the temporal structure
of the data independently of the number of epochs.
That is, the NN with temporal delays can identify the

Fig. 8. Discovered GRN. Dotted lines indicate the
activity influence over genes 1 and 4. Thick lines are
the relations discovered by GRNNminer that match the
golden reference relations in the dataset. Thin line is
the FP that was discovered by the proposed method.
Each line has it corresponding score.

TABLE 3
Comparison of GRNNminer against literature

methods.

Methods A %] | S[%]

Pearson correlation 92.69 | 100.00

Rank correlation 83.92 100.00

Mutual Information | 65.79 | 100.00

Knott et al. [13] 99.71 88.89

Smith et al. [22] 98.54 88.89

GRNNminer 99.71 100.00

dynamics of the actual model, achieving very similar
results with either high or low number of training
epochs. Therefore, the neural models proposed here
can effectively deal with the identification of two
related genes by modeling their temporal profiles.

From the score matrix it is possible to obtain the
GRN shown in Figure 8. It can be clearly seen that
GRNNminer was able to discover all the regulatory
interactions existing between genes, as shown by
thick lines. Only one extra relation was discovered,
indicated with thin line (gene 4 — gene 1).

In this same problem, our proposal was compared
against five methods. Results are shown in Table 3.



The first column shows the methods in comparison.
The second and third columns report the accuracy,
obtained when the highest sensitivity is achieved,
respectively. The first row shows the results of a
method based on Pearson correlation [29], where the
correlation over all possible pairwise relationships
between genes is calculated, and only those values
that are higher than a threshold are selected
as indicative of a possible regulation relationship
between two genes. To determine this threshold, all
possible values were evaluated between 0 and 1
(with step 0.01), selecting the one which allowed to
find the best sensitivity and accuracy. Similarly, Rank
Correlation [29] and Mutual Information [30] methods
are reported in the second and third row, respectively.

In comparison to the method proposed in Knot et
al. [13] for the same GRN, our proposal was able
to discover all the interactions, while the Knot et
al. method was able to infer only eight of the nine
regulatory interactions. Their analysis was unable to
identify gene 3 as a regulator of gene 6. Since it
is was not specified in their work, we assumed for
the best that they did not have any false positive.
Another related work [22] that used the same data set
and GRN was also unable to predict the regulation
of gene 6 by gene 3, as well as five incorrect extra
links between genes were additionally found. Its
corresponding accuracy and sensitivity are reported
in the fifth row. It should be highlighted here that
the GRNNminer presented in this work, instead, was
capable of finding this important regulation between
genes 3 and 6, with the best accuracy and sensitivity
(as shown in the sixth row).

Analyzing Table 3 in detail it can be stated
that, although by using the proposals of Knott
et al. and Smith et al. it is possible to obtain
most part of the reference network (accuracies of
99.71% and 98.54%, respectively), it is not possible
to fully reconstruct it, since the sensitivity was
88.89% in both cases. As regards Rank correlation
and Mutual Information methods, in spite they can
obtain the complete reference network there are
also so many false positives that impact negatively
on the performance of both methods (accuracies
of 83.92% and 65.79%, respectively). By using the
Pearson correlation, high sensitivity and accuracy
(92.69%) can be obtained. However, GRNNminer has
a better accuracy (99.71%), which means that it not
only obtains the reference network, but also obtains
only one false positive. This better performance of
GRNNminer is due to the advantage of modeling the
dynamic relationship between genes profiles. Unlike
the traditional correlations methods, the temporal
dynamic is considered explicitly in GRNNminer by
modeling gene regulation through neural networks
with temporal delays at the input.

In order to further evaluate the scalability and
robustness of GRNNminer, this experimental work

Fig. 9. Discovered yeast GRN. Thick lines are the
relations discovered by GRNNminer that matched the
golden reference relations in the yeast dataset. Thin
line is the relation discovered that is not present in the
subjacent network. Dashed lines are the relations that
the proposal was not able to discover because discards
mutual regulations. Each line has it corresponding
score.

was extended to discover the same GRN with 100
genes (9900 putative relationships between genes).
The accuracy increased to 99.99% at a sensitivity of
100%. It shows the capability of the proposed method
for mining GRNs from larger datasets.

GRNNminer method was also tested with the real
dataset described in Section 3.2. Figure 9 shows
the GRN reconstruction after the application of the
mining method. In this case, three correct relations
have been found: HAP1—-COX5, HAP1—CYT1 and
CYC7—CYB2 (thin lines). All the relations discovered
by the proposed method are real regulations between
genes in the yeast protein synthesis pathway. These
results are in agreement with the experimental
findings in [26]. Since mutual regulation is not
considered in GRNNminer, the CYB2—CYC7 relation
has not been found (dotted line). Another case to
be analyzed is the false positive between HAP1
and CYT1. Although the real sense of the relation
between CYT1 and HAPI is the opposite, it should
be highlighted that the relation was effectively found
by the proposed approach. The same problem was
addressed in [31], where the same relations between
genes have been discovered, plus one extra regulation
between CYB2—CYC7 and another one between
HAP1—CYT1. That work has also found an extra
relation COX5—HAP1 that is not actually present in
the real network. It is worth noting that this false
positive has not been indicated by GRNNminer due
to the fact that mutual regulation is not considered
into the mining rules and our approach based on the
minimum error of the neural models has correctly
identified the regulation HAP1—COXS5 as stronger (it
has obtained a higher score) than COX5—HAP1.



6 CONCLUSIONS AND FUTURE WORK.

A novel approach for successfully obtaining a GRN
from genes expression data was proposed and
explained in detail. GRNNminer involves modeling
each pair of genes interaction with NNs. Specifically,
a pool of multilayer perceptrons was used to model
all the possible combinations of gene-to-gene relations
between genes present in the dataset. The ability
of modeling each relation was measured according
to the generalization error. A scoring method was
proposed in order to determine the most probable
interactions in the dataset. From the resulting scoring
matrix, a set of mining rules were applied to
discover the underlying GRN. Several experiments
were done over a known GRN present in an artificial
dataset, in comparison against traditional and recent
methods in literature. By calculating sensitivity and
accuracy measures, experimental results demonstrate
that the proposal is capable of discovering all the
gene-to-gene relations and reconstruct the subjacent
GRN. Moreover, applying the same method over a
real dataset, it was possible to obtain the interactions
between real genes. The capability of our mining
approach to identify the potential existing relations
between genes could be very useful because it allows
to focus the attention over a set of genes. GRNNminer
could be used as a starting point from where
researchers can reconstruct or build a regulation
pathway, later to be tested or validated through wet
experiments.

Future work involves the scaling up of the proposed
method to more complex problems, including a large
number of genes. Also, in order to improve the
estimation of the temporal delays to be considered
at the input of each neural model, we will study
the automatic evaluation of the temporal dynamics
at each gene expression data.
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