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Abstract—The recognition of movements through 
electromyographic (EMG) signals is critical for myoelectric 
control systems. Performance of these systems depend on 
processing methods  and protocols used to extract the EMG 
signals. The aim of this study is to evaluate the performance of 
classification of a kinematic recognition system based on 
dynamic EMG signals. For this, a correlation analysis between 
dynamic EMG signals and kinematic features of movements is 
realized, and then, a kinematic recognition system based on 
dynamic EMG signals is implemented. Dynamic EMG signals 
from forearm muscles during finger flexion movements were 
recorded and analyzed by using an amplitude estimator. Linear 
and no-linear correlations between EMG amplitudes and 
kinematic features were found. Then, a step of classification 
based on discriminant analysis was implemented to categorize 
the finger movements in multiple kinematic states. The accuracy 
of classifications were 95%, 88%, 81% and 76% for two, three, 
four and five states respectively, and by using a simple-channel 
recording and an EMG amplitude estimator. The results of this 
study demonstrate that it is possible to improve aspects of 
“intuitiveness” through dynamic EMG evoked by natural and 
more intuitive movements. 

 
 Keywords—EMG; root mean square; kinematic features; 

discriminant analysis. 

I.  INTRODUCTION 
 
Temporal and spectral features extraction from 

electromyography signal (EMG) is very important in 
myoelectric control systems [1]. These systems use specific 
EMG features and converts them into commands for 
controlling devices. Ideally, it is required that a myoelectric 
control system be able to control a large number of degrees of 
freedom by using few recording electrodes. For this, digital 
processing techniques and EMG acquisition protocols must be 
optimized and improved. The input features frequently used in 
a myoelectric control system are extracted from EMG signals 
evoked by static contraction [2][3]. In these systems, a time to 
establish a control command is required, thereby exhibiting 
temporal limitations on information transfer rates. One 
possible alternative to overcome these limitations is through 
the use of dynamic EMG. 

The dynamic EMG signal refers to EMG signal acquired 
during a nonisometric and nonisotonic contraction [4]. In a 
static contraction, i.e. when a muscle performs a constant-
force isometric contraction, the EMG signal can be assumed 
to be one realization of a wide-sense stationary random 
process [5]. However, when the EMG signal is recorded from 
the surface of a muscle during varying-force, termed dynamic 

contraction, (i.e. an exercise where the position of the body 
segments change), the signal properties may change at a much 
faster rate because of rapid recruitment and derecruitment of 
motor units and changes in joint angle. Consequently, the 
above assumption of stationarity no longer holds in the 
dynamic phase of a muscle contraction [6].  

Analysis techniques for stationary signals are often not 
appropriate during dynamic contractions. However, many 
studies have proposed/extrapolated processing techniques for 
its implementation on dynamic EMG signals [5][7][8][9][10]. 
In EMG-dynamic signal processing, one must take into 
account the factors that can introduce mistakes in the data-
interpretation process. For instance, EMG amplitude and its 
frequency content would be related to the continuous changes 
of force, muscle fiber length, relative position of electrodes 
and the amount of active muscle fibers during a dynamic task 
[4][5]. 

The aim of this work is to assess the performance of 
classification of a kinematic recognition system based on 
dynamic EMG signals. Similar studies (such as [11]) have 
proposed a three states classifier (rest, slow contraction and 
fast contraction) based on dynamic EMG signals evoked by 
different speeds of movement of a human elbow. Likewise, 
Sundaraj [12] implemented a EMG pattern recognition of five 
status (rest, slow weak contraction, slow strong contraction, 
fast weak contraction and fast contraction) by using artificial 
neural network and a classification accuracy of 88% was 
reported. Our research not only increases the number of states 
to classify, but also analyze the correlations between dynamic 
EMG signals and kinematic features of movements. These 
correlations would optimize the acquisition and processing 
protocols in myoelectric control systems. Furthermore, the 
experimental protocols used in [11] and [12] could lead to 
muscle fatigue, mainly due to the nature of contractions (fast 
and strong contractions). Here, a experimental protocol based 
on natural and more intuitive movements is implemented. 

Briefly, the organization of the paper is as follows. First, a 
study of correlation between dynamic EMG signals and 
kinematic features of movements was realized. Second, a 
kinematic recognition system based on dynamic EMG signals 
was implemented. 

II. MATERIAL AND METHODS 

A. EMG recordings of finger flexors muscles 
The EMG signals from finger flexor muscles were 

registered during dynamic contractions evoked by ring and 
middle finger flexion movements (right hand). EMG 
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recording electrodes were placed on motor point (MP) and out 
MP (about MP) of Flexor Digitorum Superficialis muscles 
(muscle subgroups responsible of ring and middle finger 
movements). The location of two specific flexor muscle MP 
was established by using electrical stimulation. For this, we 
used a GRASS S88 stimulator and isolated unit SIU5. The 
stimuli were square-wave pulses (0.3 ms duration, 40-60 V 
amplitude, 3 Hz). The reference electrode was placed in 
forearm backside, while the active electrode was used for to 
stimulate different places (zones near to MP of interest) (Fig. 
1A). The MP was established as the place where electrical 
stimulation evoked maximum contraction of the flexor muscle 
subgroup. This muscular contraction level was indirect 
measured through finger movement by using an accelerometer 
placed at the fingertip. This procedure was carried out for 
localization of flexor muscle MPs of ring and middle fingers. 
Importantly, the electrical stimulation of a MP only evoked 
the movement of a single finger. The MP locations were 
realized in sixteen healthy subjects (all male, 25.5 ± 6.8 years 
old).  

Then, two pairs of bipolar electrodes on MP site and out 
MP site (about MP) were placed. Each pair of bipolar 
electrodes was placed in longitudinal alignment to direction of 
muscle fibers. Inter-electrode distance was 2 cm (Fig. 1B). 

Reference electrode was placed in forearm backside.  
Finally, EMG was recorded during voluntary and non-

sustained contractions of the extrinsic flexor muscles of ring 
and middle fingers. EMG was acquired with a BIOPAC 
system (www.biopac.com): MP30 module, 2 kHz (sample 
frequency) and 60 dB (amplifier gain). Analog filters were set 
to obtain 0.05 to 1 kHz of bandwidth. General parameters of 
acquisition system were set with BSL-Pro software. 

B. Monitoring of finger movements 
An acceleration sensor ADXL330 (www.analog.com) was 

used to monitor ring and middle finger movements. The 
ADXL330 uses a single structure for sensing the X, Y, and Z 
axes on a single monolithic IC. The operation range is ± 3 g (g 
= 9.8 m/s2) and nominal resolution of 0.3 g/V. The 
acceleration signals were recorded with a bandwidth of 50 Hz 
(by using a C = 0.10 μF) (see datasheet of ADXL330). The 
ADXL330 can measure the static acceleration of gravity as 
well as local acceleration resulting from motion. 

The three acceleration signals (X, Y and Z axes) were 
represented as a vector by using a three-dimensional vector 
magnitude (3DVM). The 3DVM is a way to sum and 
normalize the acceleration data from three axes and was 
obtained as follows: 

 
222 )()()()(3 iaccZiaccYiaccXiDVM 

 (1) 
 
Where, accX(i), accY(i) and accZ(i) are i-th samples of the 

acceleration series recorded in X, Y and Z directions, 
respectively. First, ADXL330 was placed at the fingertip of 
ring finger (Fig. 1C and 1D) and measurements were taken 
during flexion ring finger movements. Then, the ADXL330 
was placed at the fingertip of middle finger and the 
measurements were realized.  

The follow procedures were used to synchronize the EMG 
activity with acceleration signal evoked by finger movements. 
The acceleration signals were acquire by using a µDAQ-Lite 
(acquisition board, www.eagledaq.com). Synchronization 
between EMG and acceleration signals was performed by 
sending the EMG activity to an analog input of µDAQ-Lite 
via analog output of the MP30 (Fig. 2A). Thus, EMG 
activities and acceleration signals were acquired with µDAQ-
Lite by using 2 kHz (sample frequency). The acquisition 
parameters were set with DASYLAB software. 

C. Experimental Protocol 
Each subject remained seated with the right arm partially 

extended (angle between the arm and forearm, approx. 120°), 
and ensuring that the forearm backside remains in contact with 
the table. The hand palm was maintained extended in a natural 
and relaxed position before beginning the movements (Fig. 
1C). 

Subjects were instructed to perform finger flexion 
movements at different speed (from slow to faster 
movements). First, flexion movements had an angular 
displacement of approximately 180º (from its rest position to 
maximum flexion position, Fig. 1D). Then, the finger returned 
to its rest position through an extension movement. Each 
subject performed at least 120 repetitions of the finger 
flexion/extension movements. This procedure was carried out 
for ring and middle fingers. No feedback was provided to the 
subjects to regulate the position and speeds, but visual 
validation of the motions was performed by the experimenter. 
The whole EMG recording setup is shown in Fig. 2. 
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Fig. 1. Recording Set-up. (A) MP location. (B) A pair of electrodes in 
bipolar configuration for EMG signals acquisition from a flexor 
muscle subgroup. (C) Rest position of ring finger. (D) Maximum 

flexion of ring finger. The accelerometer is placed at ring fingertip. 
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D.  Digital processing 
EMG amplitude was analyzed during the flexion phase by 

using root mean square (RMS). The choice of this amplitude 
estimator was realized considering previous works [9][13]. 
RMS is a popular feature in analysis of the EMG signal 
[14][15]. The mathematical definition of RMS can be 
expressed as: 
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
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i
ix
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21

i = 1, 2, …, N (2) 
 
N is number of samples and xi is the i-sample of EMG 

signal. 
Flexion phase was determined from low-frequency 

component of 3DVM signal (static acceleration of gravity). 
For this, high-frequency component of 3DVM was filtered 
with a Butterworth low-pass filter. Cutoff frequency was 
established according to maximum average of flexion time (fc 
= 5 Hz for flexion time of 0.1 sec). 

Local acceleration was used to quantify another kinematic 
feature of fingers movements. For this, low component 
frequencies were removed by using a 4th order, Butterworth 
high-pass filter (fc = 5 Hz). Then, the local acceleration 
amplitudes were estimated with the absolute mean value 
(AMV) for each finger movement as follow. 
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 i = 1, 2, …, N (3) 
Where yi is the i-sample of local acceleration serie. 

E. Discriminant analysis for classification states 
A discriminant analysis was used to categorize finger 

flexion movements according EMG signal evoked. For this, 
we have imposed two, three, four and five kinematics states 
which were pre-established by finger movement measures 
(flexion time and local acceleration). These states were 
defined in each subject as follows. First, range value of 
kinematic features of finger flexion movement was obtained 
(from slowest to fastest movements). This range was divided 
in two states (slow movements and fast movements) according 
to percentiles theory. The same procedure was used to divide 
the kinematic range of flexion movements in three, four and 
five states. It is important to highlight that the states were 
established using only the acceleration signals, while the 
classification with discriminant analysis only uses the EMG 
amplitudes. 

The basic idea of discriminant analysis is to seek a 
projection matrix W which projects the original dataset into a 
new coordinate system where the class separability is 
maximized by making the between-class scatter (Sb) largest 
and the within-class scatter (Sw) smallest. Sb and Sw are defined 
respectively as follows: 
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Where C is the number of class, Ni is the number of 

samples of each class. μi is the mean vector for each class, μ is 
the mean vector for all classes, and Xi denotes the original 
feature vectors of each class. The optimal matrix W can be 
obtained by: 
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The original feature matrix (M x N) is proyected by: 

 
xWy T

    (7) 
 
The matrix y stands for the projected feature vectors with 

R-dimensionality (R ≤ M, R ≤ C-1). 

III. RESULTS 
 
Fig. 3 shows the EMG activities evoked by ring finger 

flexion movements and their corresponding acceleration 
signals at three different speeds. Low-frequency component of 
3VDM signal allowed identifying the finger movement 
phases: flexion movement, static contraction and extension 
movement (shaded areas). It is possible to note that time 
interval of flexion movements is shorter for faster movements; 
while time interval of static contraction phases shows no 
significant differences with the movement speed. 
Furthermore, one can see that amplitude of local acceleration 
components (Local Acc) increases with the movement speed 
in flexion phase. 
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Fig. 2. (A) Connection diagram of experimental Set-up. (B) Equipment 
used for simultaneous recording of acceleration signals and 

dynamic EMG. 
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Fig. 4 shows the correlation between EMG rms vs 
kinematic features of flexion movements (AMV of local Acc 
and Flexion time). These results belonging to four 
experimental subjects, who executed ring finger flexion 
movements of right hand at different speeds. It is possible to 
note that kinematic features ranges of flexion movements 

differ significantly from one subject to another just like EMG 
amplitude. A linearly increasing of EMG rms with AMV of 
local Acc is observed (high values of coefficients of 
determination, R2) while an exponential decreasing of EMG 
rms with flexion time is observed. R2 were calculated in both 
cases, and these are shown in Table 1 and Table 2. 
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Fig. 3. 3DVM and an EMG evoked by ring finger movements at three different speeds. (A) Slow movements. Each movement consists of three phases: 
flexion, static and extension phases. 3DVM recording can be considered as the sum of Local Acc plus Gravity component acc (graph at top). The 

Gravity component acc is the low-frequency component of 3DVM. Thus, Local Acc is Total Acc minus Gravity component acc (middle graph). EMG 
related to slow movements is shown in bottom graph. (B) Medium movements. (C) Fast movements. 
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Fig. 4. Fig. 4 Correlation between EMG rms and kinematics features of flexion movements. A) Linear correlation between EMG rms and AMV of Local 
Acc for four experimental subjects. B) Exponential correlation between EMG rms and Flexion time for four experimental subjects (the same subjects 

than in A). 
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Goodness of linear fits between EMG rms and AMV of 
local Acc of ring and middle finger flexion movements were 
R2 = 0.79 and 0.81 respectively (with recordings electrodes 
placed on MP of flexor muscles) (Table 1). The R2 
coefficients were obtained from an average of 109 and 68 ring 
and middle finger movements, respectively. R2 values 
increased when recording electrodes were placed out of MP 
(0.84 and 0.89, respectively). 

Table 2 shows the goodness of exponential fits between 
EMG rms and flexion time. Averages R2 were 0.79 and 0.84 
for ring and middle fingers movements, respectively (with 
recording electrodes placed on MP). Then, averages R2 were 
0.75 and 0.83 with recording electrodes placed out MP. In the 
latter case it is possible to note that there were no significant 
changes in R2 values with the recording electrodes position. 

Classification errors of discriminant analysis are displayed 
in Fig. 5. The classes were determined from AMV of local 
Acc. Then, classification was realized with EMG rms values. 
Errors have an incremental behavior with number of pre-
established classes. Likewise, in most cases, no significant 
differences were found in the classification of EMG signals 
with recording electrodes placed on MP and out MP of flexor 
muscles. A lower error is observed when the recording 
electrode is placed out MP (error of 33% on MP and 26% out 
MP) for classification into five classes of ring finger 
movements. 

The confusion matrices for classifications of 2, 3, 4 and 5 
classes are shown in Table 3. Here, each column of the matrix 
represents the instances in a predicted class, while each row 
represents the instances in an actual class. Thus, the confusion 
matrix provides detailed information of percentage accuracies 
obtained in the classification of each group, such as true 
positives, false negatives, false positives and true negatives 
[16]. Confusion matrix, referred to as RFFM - On MP (ring 
finger flexion movement with recording electrodes placed on 
MP, Table 3A - top left), shows a classification of 90.8% 
accuracy for Class 1, being misclassified as Class 2 a 5.9% 
(when these belonging to class 1). Similarly an accuracy of 
94% for class 2, and inputs misclassified as Class 1 of 10.5% 
is observed. Similar results at the classification of ring finger 
flexion, with the recording electrodes placed out of MP, were 
observed (matrix lower left - Table 3A). Highest percentages 
at the classification of middle finger movements with the 
recording electrodes placed on MP and outside of MP were 
observed (matrices upper and lower right - Table 3A). 

The classification accuracies of three classes (slow, 
medium and fast flexion movements) with EMG recording 
electrodes outside MP are higher than on MP (matrices upper 
and lower left of Table 3B). In all cases, the best 
classifications are performed for slow and fast movements. 
For these cases, higher percentages of classification than in 
two-class classification were obtained.  

Overall, percentage accuracies for 4 and 5-classes 
classifications are higher with recording electrodes out MP 
(matrices of Tables 3C and 3D). 
 
 
 

IV. DISCUSSION 
 
In this report we show the correlations between dynamic 

EMG and kinematic features of flexion movements. In flexion 
phase, EMG amplitude has a strong linear correlation with 
acceleration motion and an exponential correlation with 
flexion time. Similar results were observed with other EMG 
amplitude estimators, such as absolute mean value, difference 
absolute mean value, variance of EMG and waveform length 
(data not shown). 

Currently, there is much controversy about monitoring of 
muscle electrical activity on a MP. It is known that if the 
recording electrodes are placed on the MP, the EMG signal 
appears as more jagged and with more sharp peaks in the time 
domain [17]. Here, we have observed that linear correlation, 
between EMG amplitude versus local acceleration, increases 
when the recording electrodes are placed outside of MP. This 
result coincides with comments made by Hermens et al. [17]. 
However, in practice, a correlation with R2 = 0.79 ± 0.09 (on 
the MP) could not be significantly different from R2 = 0.84 ± 
0.05 (outside of MP). This result allows one to suspect that 
EMG electrodes placed on MP might not have significant 
influences on implementation of a myoelectric control based 
on dynamic EMG. 

Many have been the attempts at optimize the processing 
techniques and acquisition protocols of EMG signals in order 
to minimize the recording electrodes number, to maximize the 
amount of gestures to recognize, and to control a larger 
number of degrees of freedom [1]. Often, efforts have been 
invested in classification of EMG signals evoked by static 
contractions [2][3], consequently resulting in temporal 
limitations on information transfer rates. A recent 
investigation showed changes in average classification rates 
due to number of muscle involved. These classification rates 
were below 90% in all cases. In such investigations, five static 
hand positions (including a neutral hand position) were 
classified by using EMG features from five EMG channels 
[2]. In the present study, percentage accuracies about 75% 
were obtained using a simple-channel (five classes) and an 
EMG amplitude estimator. Based on these results one could 
speculate that the classification could be significantly 
improved by including others EMG features. Furthermore, the 
combination of dynamic EMG from different muscle groups 
would increase the myoelectric control performance. 

2 3 4 5
0

5

10

15

20

25

30

35

40

45

Classes

E
rr

o
r 

(%
)

Ring finger flexor muscle

 

 

2 3 4 5
0

5

10

15

20

25

30

35

40

45

Classes

E
rr

o
r 

(%
)

Middle finger flexor muscle

 

 

On MP

Out MP

On MP

Out MP

Fig. 5. Classification errors by using dynamic EMG features and 
discriminant analysis. The mean and standard deviation of sixteen 

subjects are shown. 
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TABLE I.  GOODNESS OF LINEAR FITS BETWEEN EMG RMS AND AMV OF LOCAL ACC. 

 EMG electrodes on MP EMG electrodes out MP 

 
Ring finger movements - 
Local acceleration 

Middle finger movements - 
Local acceleration 

Ring finger movements - 
Local acceleration 

Middle finger movements - 
Local acceleration 

 sse R2 dfe sse R2 dfe sse R2 dfe sse R2 dfe 

S1 0.07 0.70 127 0.02 0.76 101 0.07 0.79 102 0.03 0.88 83 

S2 0.00 0.86 78 0.02 0.85 89 0.02 0.85 75 0.01 0.85 77 

S3 0.04 0.86 52 0.01 0.94 54 0.01 0.87 50 0.00 0.91 49 

S4 0.02 0.65 58 0.01 0.83 62 0.02 0.81 54 0.05 0.89 57 

S5 0.02 0.94 67 0.02 0.88 49 0.01 0.77 56 0.02 0.88 45 

S6 0.04 0.85 103 0.01 0.69 81 0.01 0.91 96 0.04 0.87 80 

S7 0.01 0.81 96 0.01 0.76 105 0.03 0.87 96 0.00 0.92 54 

S8 0.04 0.79 97 0.02 0.78 56 0.06 0.83 80 0.02 0.94 64 

S9 0.28 0.83 64 0.04 0.86 60 0.02 0.86 54 0.04 0.87 70 

S10 0.06 0.88 149 0.04 0.65 45 0.04 0.87 43 0.03 0.85 61 

S11 0.02 0.81 156 0.03 0.81 67 0.03 0.82 84 0.01 0.90 70 

S12 0.09 0.73 137 0.03 0.74 68 0.01 0.86 56 0.03 0.80 61 

S13 0.01 0.67 161 0.02 0.90 81 0.03 0.88 82 0.06 0.91 40 

S14 0.41 0.80 129 0.01 0.84 55 0.01 0.94 44 0.03 0.89 50 

S15 0.48 0.84 134 0.01 0.71 66 0.04 0.78 71 0.02 0.89 68 

S16 0.73 0.61 138 0.02 0.96 59 0.03 0.80 23 0.03 0.92 46 

μ 0.15 0.79 109.1 0.02 0.81 68.63 0.03 0.84 66.63 0.03 0.89 60.94 

σ 0.21 0.09 36.91 0.01 0.09 17.92 0.02 0.05 22.48 0.02 0.03 13.10 

 

TABLE II.  GOODNESS OF EXPONENTIAL FITS BETWEEN EMG RMS AND FLEXION TIME. 

 EMG electrodes on MP EMG electrodes out MP 

 
Ring finger movements - 
Flexion time 

Middle finger movements - 
Flexion time 

Ring finger movements - 
Flexion time 

Middle finger movements - 
Flexion time 

 sse R2 dfe sse R2 dfe sse R2 dfe sse R2 dfe 

S1 0.07 0.69 125 0.04 0.65 99 0.13 0.62 100 0.04 0.71 81 

S2 0.01 0.74 76 0.02 0.81 87 0.04 0.76 73 0.01 0.70 75 

S3 0.04 0.87 50 0.00 0.98 52 0.00 0.96 48 0.05 0.83 41 

S4 0.04 0.42 56 0.01 0.95 60 0.05 0.53 52 0.06 0.80 55 

S5 0.03 0.91 65 0.02 0.73 47 0.01 0.74 54 0.08 0.83 43 

S6 0.02 0.92 101 0.02 0.73 79 0.01 0.93 94 0.04 0.94 78 

S7 0.01 0.80 94 0.00 0.81 103 0.02 0.89 94 0.03 0.82 52 

S8 0.10 0.79 95 0.04 0.83 54 0.09 0.85 78 0.05 0.75 62 

S9 0.22 0.86 62 0.03 0.90 58 0.03 0.76 52 0.03 0.89 68 

S10 0.13 0.76 147 0.02 0.82 43 0.03 0.59 41 0.02 0.89 59 

S11 0.02 0.82 154 0.03 0.93 65 0.05 0.74 82 0.07 0.83 68 

S12 0.07 0.78 135 0.01 0.92 66 0.02 0.74 54 0.06 0.87 59 

S13 0.01 0.68 159 0.01 0.59 79 0.02 0.82 80 0.01 0.76 38 

S14 0.27 0.87 127 0.03 0.93 53 0.03 0.69 42 0.02 0.89 48 

S15 0.24 0.92 132 0.02 0.95 64 0.03 0.63 69 0.06 0.83 66 

S16 0.35 0.81 136 0.05 0.92 57 0.04 0.71 21 0.04 0.87 44 

μ 0.10 0.79 107.13 0.02 0.84 66.63 0.04 0.75 64.63 0.04 0.83 58.56 

σ 0.11 0.12 36.91 0.01 0.12 17.92 0.03 0.12 22.48 0.02 0.07 13.54 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS020404

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 5 Issue 02, February-2016

455



 

Classification errors achieved in this report are in some 
cases higher than those found by [2][3] and many others 
[18][19][20][21]. However, all these involve isometric 
contractions in their experimental protocols. Isometric 
contractions are still used as information source due to its 
higher signal amplitude, lower sensitivity to load variation and 
without motion artifact. A myoelectric control system based 
on isometric contractions is not intuitive, especially for 
subjects who have the limb with a diminished strength. Here, 
we have proposed the dynamic EMG as information source 
for myoelectric control. Importantly, the experimental subjects 
who participated in of this investigation had no any previous 
training, and finger movements were made in the most natural 
way possible. Thus, one might suspect that subjects with the 
ability to vary the kinetics features of finger flexion 
movements (with previous training) could reach high levels of 
control by setting multiple states. 

Moreover, one could use the extensor muscles of the 
forearm (which is very feasible) and improve / increase the 
control performance. This possibility significantly would 
increase the degrees of freedom that could be controlled. 
Finally, the multiple possibilities that can provide a 
myoelectric control based on dynamic EMG still must be 
studied, and technical feasibility aspects must be taken into 
account. Even so, it has been demonstrated that a myoelectric 
control based on dynamic EMG may be feasible, repeatable 
and accurate. 

V. CONCLUSIONS 
 
In this study is observed that dynamic EMG amplitude 

presents a linear correlation with local acceleration of flexion 
movements, and an exponential correlation with flexion time. 
Furthermore, these correlation levels change slightly when the 
recording electrodes are placed on MP of flexor muscles. In 
view to myoelectric control implementations, we propose to 
classify kinematic states via dynamic EMG amplitude. The 
accuracy of classifications were 95%, 88%, 81% and 76% for 
two, three, four and five states respectively, and using a 
simple-channel recording and an EMG amplitude estimator. 

The performance of a myoelectric control system is based 
on the optimization of three important aspects of 
controllability: the accuracy of movement selection, the 
intuitiveness of actuating control, and the response time of the 
control system. This study seeks to improve aspects of 
“intuitiveness” through dynamic EMG evoked by natural and 
intuitive movements. 
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TABLE III.  CONFUSION MATRICES FOR CLASSIFICATION 

OF TWO, THREE, FOUR AND FIVE CLASSES. REFERENCES: 
RFFM: RING FINGER FLEXOR MOVEMENT, MFFM: MIDDLE 

FINGER FLEXOR MOVEMENT, MP: MOTOR  POINT. 

A    RFFM - On MP  MFFM - On MP   

   

 

Predicted Class  Predicted Class   

  

A
ct

ua
l 

 
cl

as
s 

 1 2  1 2    

  1 90.8 5.9  94.4 5.4    

  2 10.5 94.1  6.1 94.6    
             

  

A
ct

ua
l 

 c
la

ss
 RFFM - Out MP  RFFM - Out MP   

  1 90.1 6.3  93.3 3.6    

  2 12.0 94.1  7.7 96.5    
             

B  

A
ct

ua
l 

cl
as

s 

 RFFM - On MP  MFFM - On MP   

   Predicted class  Predicted class   

   1 2 3  1 2 3   

  1 85.6 15.1 0.0  96.1 10.7 0.0   

  2 15.2 74.7 9.6  3.1 77.6 9.7   

  3 0.3 11.8 91.2  0.0 16.1 90.3   

  

A
ct

ua
l 

cl
as

s 

          

   RFFM - Out MP  MFFM - Out MP   

  1 86.3 15.2 0.0  91.6 19.6 0.0   

  2 13.8 79.0 7.7  7.0 73.9 11.4   

  3 0.0 8.1 93.6  0.0 10.3 88.5   
             

C   RFFM - On MP  MFFM - On MP  

   Predicted class  Predicted class  

 

A
ct

ua
l 

cl
as

s 

 1 2 3 4  1 2 3 4  

 1 80.9 15.8 0.9 0.0  85.7 11.2 0.0 0.0  

 2 22.6 67.5 15.1 0.8  15.8 77.3 11.1 0.0  

 3 1.3 17.7 72.7 18.5  2.0 12.3 72.0 8.3  

 4 0.0 0.8 12.3 84.6  0.0 0.0 23.0 90.9  
             

 

A
ct

ua
l 

cl
as

s 

 RFFM - Out MP  MFFM - Out MP  

 1 84.9 21.6 0.0 0.0  87.8 15.6 0.0 0.0  

 2 12.8 66.0 12.9 1.3  11.6 75.7 7.4 0.0  

 3 0.5 23.2 73.9 16.5  0.0 10.5 73.3 8.8  

 4 0.0 1.0 15.1 86.0  0.0 0.0 28.7 87.8  
             

D  RFFM - On MP  MFFM - On MP 

  Predicted class  Predicted class 

  1 2 3 4 5  1 2 3 4 5 

A
ct

ua
l 

cl
as

s 

1 76.6 18.0 1.8 0.2 0.0  78.9 15.6 0.0 0.0 0.0 

2 27.6 55.5 23.0 3.1 0.0  33.7 68.1 22.7 0.0 0.0 

3 1.5 24.8 62.4 11.2 1.3  0.0 14.3 63.5 39.6 0.9 

4 0.4 2.3 21.1 66.0 28.1  0.0 2.4 19.9 70.6 7.4 

5 0.0 0.0 3.3 19.7 77.8  0.0 0.0 1.8 10.3 92.7 

             

  RFFM - Out MP  MFFM - Out MP 

A
ct

ua
l 

cl
as

s 

1 82.0 14.4 5.6 0.0 0.0  83.0 9.5 0.0 0.0 0.0 

2 20.5 68.9 18.9 6.0 0.0  20.7 61.3 26.4 0.0 0.0 

3 0.8 15.2 71.8 13.6 1.7  0.0 45.6 67.2 21.4 2.4 

4 0.0 2.5 8.6 69.7 16.6  0.0 0.0 11.6 74.8 1.6 

5 0.0 0.0 1.3 19.0 82.0  0.0 0.0 5.6 29.2 93.9 
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