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Abstract
Line defects in graphene can be either tailored-growth or arise naturally and are at
the center of many discussions. Here we study the multiterminal conductance of
graphene with an extended line defect in the quantum Hall regime analyzing the
effects of the geometry of the setup, disorder and strain on the quantum Hall
plateaus. We show that the defect turns out to affect the local and non-local
conductance in very different ways depending on the geometrical configuration.
When the defect is parallel to the sample edges one gets an equivalent circuit
formed by parallel resistors. In contrast, when the defect bridges opposite edges, the
Hall conductance may remain unaltered depending on the geometry of the
voltage/current probes. The role of disorder, strain and the microscopic details of
the defect in our results is also discussed. We show that the defect provides a
realization of the electrical analog of an optical beam splitter. Its peculiar energy
dependent inter-edge transmission allows it to be turned on or off at will and it may
be used for routing the chiral edge states.
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1. Introduction

Graphene samples exhibit ballistic electronic transport over
micrometer scales even at room temperature [1]. But
ripples [2], charge puddles [3] and defects [4] may be
more common than not depending on the growth method
[4–6]. Common defects include vacancies, topological
defects and adsorbates [7, 8]. They can occur naturally
and/or be elegantly engineered. This is the case of line
defects which occur naturally in polycrystalline samples, but
that can also be designed either by a suitable choice of
substrate [9] or by simultaneous electron irradiation and Joule
heating [10].

Graphene’s Landau-level structure [11–13] leads to a half
integer quantum Hall effect (QHE) [14, 15] as expressed in
units of 4e2/h. This contrasts with the integer Hall effect
measured in the pioneering works on semiconductors [16]
and is one of its most celebrated properties. The large
cyclotron energies allow for the remarkable observation of

the QHE in graphene even at room temperature [17].
The influence of different types of disorder/defects in the
quantum Hall regime has been intensively debated over the
last years: from impurities or adatoms, to vacancies and
random magnetic fields [18, 19]. More recently, extended
defects developing along a line have started to trigger much
interest [7, 9]. These line defects induce a valley-dependent
scattering [20], or form a quantum one-dimensional channel
when adding a suitable staggering potential [21]. In the
quantum Hall regime, the ubiquitous line defects at the grain
boundaries of polycrystalline samples may form a network
which short-circuits the Hall chiral edge states, [22] and
their role in the observed quantum Hall response is still an
important open question [5, 22, 23]. Previous studies indicate
that the presence of extended defects almost automatically
destroy the two-terminal (local) conductance plateaus [22, 24]
while a longitudinal resistance develops [23]. However,
experiments show that the non-local conductance plateaus
predicted for pristine graphene remain even in mm-sized
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Figure 1. (a) Ball and stick model of the 5-8-5 line defect
considered in the text. Multi-terminal setups with the defect parallel
to the edges (b) and perpendicular to the edges (c). A magnetic field
is applied perpendicularly to the graphene sheet giving rise to
Landau levels. The system size in this scheme is chosen only for
illustration.

CVD samples with deviations of up to one per cent of
e2/h [25].

Here we focus on a single line defect (as shown in
figure 1(a)) embedded in a graphene ribbon in the quantum
Hall regime. We consider two multi-terminal configurations
represented in figures 1(b) and (c), hereafter called parallel
and perpendicular, respectively. By using atomistic models
we study how the local and non-local conductances are
affected by the defect in these two cases as well as the
role of disorder and strain. By local conductance we mean
the usual two-terminal conductance where the current and
voltage are measured in between the same electrodes (as
shown in the insets of figures 2(a) and (b)), while the non-
local conductance corresponds to the conductance measured
in the Hall configuration, where the bias voltage is measured
perpendicular to the injected current (see insets of figures 2(c)
and (d)). Our results show that the defect sustains roughly
localized states which in the presence of the magnetic field
behave as boundary states which, depending on the specific
energy, may move predominantly in opposite directions on
each side of the defect (much like for the case of chiral states).
Regarding the transport response, in the parallel setup the Hall
conductance is that of two resistors in parallel being the sum
of the conductance of pristine graphene and a contribution
due to states around the defect. In the perpendicular case,
the defect allows for inter-edge conduction (increasing the
longitudinal resistance) but does not necessarily affect the
non-local conductance plateaus. Indeed, depending on the
geometry of the voltage and current probes it may not change
it at all, emphasizing the importance of the geometry in the
non-local response. Moreover, thanks to the peculiar energy-
dependent inter-edge transmission this beam splitter can be

turned on or off by applying a gate voltage. Finally, we also
discuss the role of disorder, strain and of the microscopic
details on our results as well as their possible role in the
experimental measurements in large samples.

2. Atomistic model

We use a tight-binding Hamiltonian to describe the electrons
near the Fermi energy in graphene [26–28],

H =
∑

i

εi c
†
i ci −

∑
〈i,j〉

[γij c
†
i cj + h.c.] , (1)

where c
†
i and ci are the electronic creation and annihilation

operators at the π -orbital on site i, εi = 0 is the on-site energy,
and γij is the nearest-neighbors hopping matrix element (which
is taken here so that |γ0| = 2.7 eV in absence of an external
perturbation, see [27]).

The magnetic field is described through a Peierls
substitution, which modifies the phase of the hopping matrix
elements [28, 29]:

γij = γ0 exp

(
i
2π

�0

∫ rj

ri

A · d�

)
, (2)

where �0 is the magnetic flux quantum. For simplicity we
consider an ‘all graphene’ device where the leads are also
graphene ribbons extending to infinity. To avoid reflections
the magnetic field is applied to the whole device including the
leads. The magnetic field is chosen so that the decay length
of the edge states towards the sample ξ is much smaller than
the sample width W . In this multi-terminal case one needs to
smoothly change the gauge so that it preserves the translational
invariance on each terminal. To this end we use a Landau gauge
following the prescription given in [30].

Within this tight-binding Hamiltonian, the line defect
is assumed to change the lattice topology only (shown in
figure 1(a)). A more accurate parametrization of the hoppings
and on-site energies would give a small variation of the
hoppings of less than a few per cent [21] and is disregarded.
Magnetic effects deriving from the spin-polarization of the
states around the defect are not considered [31, 32], which
could add interesting effects on top of the physics described
here. The 5-8-5 configuration of figure 1(a) breaks the bipartite
nature of the graphene lattice, thus breaking the electron-hole
symmetry.

The conductance in the coherent zero-temperature limit
follows from the Landauer–Büttiker formalism [33, 34].
Specifically, the current at lead α in the low bias and low-
temperature limit is given by:

Iα = 2e

h

∑
β

[
Tβ,α(εF)µα − Tα,β(εF)µβ

]
, (3)

where Tβ,α is the transmission probability from lead α to β and
{µα} are the chemical potentials of each lead. Our calculations
use an implementation based on Kwant [35] to determine
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Figure 2. Two-terminal conductance G for the parallel (a) and
perpendicular (b) setups as a function of the Fermi energy. The Hall
conductance Gxy for the same configurations is shown in (c) and
(d). The results for pristine graphene are also shown with a solid
black line. The inset on each panel shows the corresponding setup
for easier reference. All the cases were calculated for W1 = 37.4 nm
and W2 = 24.8 nm. The device is threaded by a magnetic flux of
0.013�0 per plaquette.

Tβ,α . With this information, one fixes a small bias voltage
δV = (µ1 − µ6)/e between leads 1 and 6 and then solves for
the two-terminal conductance G = I1/δV , and for the Hall
conductance Gxy = eI1/(µ2 − µ4).

3. Multiterminal conductance and edge/boundary
states

We start by presenting the local and non-local conductances in
figure 2 (red line with shaded area underneath). The top panels
(figures 2(a) and (b)) show the two-terminal conductance
and the bottom panels (figures 2(c) and (d)) show the Hall
conductance. The panels on the left (right) show the results
for the parallel (perpendicular) setup. For reference, we also
include the results for pristine graphene with a solid black line.

In the case of the parallel configuration the conductance
G (red with a dashed area underneath) develops new plateaus,
a fingerprint of ballistic transport. These plateaus evidence
a number of conducting channels which are larger than
that of pristine graphene (black line). In contrast, for the
perpendicular case (figure 2(b)) the addition of the line defect
strongly deters transport in most of the presented energy range.
This occurs roughly in the same regions where transport is
enhanced in figure 2(a).

The Hall conductance curves complete the above picture.
For the parallel configuration new plateaus emerge in Gxy

(figure 2(c)), consistent with the ballistic behavior of the
local conductance. Interestingly, for the perpendicular setup
where the defect bridges the opposite sample edges, the Hall
plateaus of pristine graphene are fully preserved (the red
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Figure 3. (a) Scheme of a 5-8-5 line defect. The atoms used in the
calculation of the weight w, wup and wdown are marked with full
colors. (b) The bandstructure for a 5-8-5 line defect embedded at the
center of a zigzag ribbon. States having a weight (modulus squared
of the probability amplitude) larger than 0.01 on the atoms around
the defect are shown on a color scale from white (w = 0) to black
(w = 1). (c) Same as (b) but this time the color scale corresponds to
wup − wdown (only positive values are shown), that is, states with a
weight predominantly on the upper part of the defect. (d) Same as
(b) but for the partial weight wdown − wup.

and black curves are on top of each other). The contrast
between figures 2(b) and (d) is evident. How is the mechanism
weakening in the same way as the two-terminal conductance
but at the same time is able to keep the Hall plateaus unaltered?

Let us now examine the bandstructure of an infinite zigzag
ribbon hosting a line defect at its center. This is shown in
figure 3(b) (grey dots). The filled circles in the same figure
show states with a weight w on the area around the defect
(2a from the center, the corresponding sites are indicated
with black in panel (a)-left) with a magnitude encoded on
the color scale of the filling: white for vanishing weight and
black for maximum weight. In addition to the formation of
Landau levels as expected for graphene (grey dots), states
localized around the defect are also observed (thick color
line), in agreement with the main features reported in previous
works [36]. These states are much like the Hall states at the
sample edges.
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One may then wonder: are these states chiral? We find
that they are not strictly chiral in the sense that they have a
non-zero weight on both sides of the line defect. Nevertheless,
for some energies there is a predominant direction of motion
and the physics resembles that of chiral states. This can be
appreciated in figures 3(c) and (d), where the states moving
predominantly on the upper (lower) region of the defect are
shown. The partial weight on opposite sides of the defect is
denoted with wup and wdown, as indicated in figure 3(a)-right.

A related observation is the presence of gaps in the density
of states around the defect (e.g. in-between the n = 0 and
n = −1 Landau levels). These gaps appear because of the
hybridization among the chiral edge states on each side of
the defect. Indeed, reducing the hopping matrix elements
connecting the central line of the defect with the rest of the
sample narrows the gap. This hybridization also hinders the
chirality of the boundary states, as seen in figures 3(b) and (c).
Interested readers may find more details in appendix A. Once
the presence of this gap in the LDOS is established, one can
anticipate that within this gap transport will not be modified
by the defect either in the parallel or in the perpendicular
configurations.

A more accurate parametrization requires non-zero on-
site energies around the line defect [37]. The main effect of
this correction is to introduce a small shift of the line defect’s
states around zero energy. This does not change our main
conclusions, therefore here we keep the simpler description
without those on-site terms.

To gain more insight into the transport behavior let us
now turn to the scattering states for different energies and
asymptotic boundary conditions. Figures 4(a) and (b) show
the scattering states for electrons incident from terminal 1
in the parallel configuration (see figure 1(b)). Figure 4(a)
corresponds to the case of E = −0.15γ0 and figure 4(b) is
for E = +0.1γ0. It can be noticed that the chirality of the
states at the sample edges is reversed. Besides, we see that for
E = +0.1γ0 new conduction channels open up around the line
defect. These new channels turn out to be present in almost all
the energy range except for example around E ∼ −0.15γ0 as
mentioned previously.

The picture changes drastically for the perpendicular
configuration. Figures 4(d) and (e) show the scattering
states for electrons injected from the top leads marked with
arrows. Figure 4(d) corresponds to the case of E = −0.15γ0

and figure 4(e) is for E = +0.1γ0. Similar to figure 4(a), in
figure 4(d) the defect does not provide substantial scattering.
However, once the defect is active, as in figure 4(e), we see that
it splits the original beam into two parts: the first following
on the same edge and the second using the channel localized
around the defect to switch sides (see scheme in figure 4(f )).
Thus, the defect in this configuration fulfills the function of a
beam splitter.

In the following we rationalize the previous observations
based on a minimal model and discuss the role of disorder,
strain and the atomic structure of the defect in our results.

3.1. Minimal model for the multi-terminal conductances

In the following we present a simple model for the conductance
matrix that allows us to rationalize the essence of the results.

Figure 4. Panels (a), (b), (d) and (e) show the square modulus of
the scattering states calculated for an asymptotic condition with
electrons incoming from the lead marked with an arrow on each
plot. The energy of these states is given in units of γ0, −0.15 for (a)
and (d) and +0.1 for (b) and (e). (a) and (b) correspond to the
parallel setup while (d) and (e) are for the perpendicular setup. The
schemes in (c) and (f ) give a glance at the available edge and
boundary states for positive energy. In the perpendicular setup
(panel (f )), the line defect serves as a beam splitter.

This model highlights the importance of the geometrical
arrangement and warning on the use of the two-terminal
conductance as a proxy for the (non-local) Hall conductance.

Parallel setup. In the low bias, low-temperature limit the
currents and voltages follow equation (3) in the main text (see
also [33]). A model for the parallel setup can be constructed
by inspection of the scheme in figure 4(c) in the main
text as:




I

0
0
0
0

−I




=




νT 0 0 −νg 0 −νd

−νg νg 0 0 0 0
0 −νg νg 0 0 0
0 0 0 νg −νg 0
0 0 0 0 νg −νg

−νd 0 −νg 0 0 νT







V1

V2

V3

V4

V5

V6



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where we have set leads 1 and 6 as the current source and
drain, νg is the number of edge channels of pristine graphene
for the energy under study (the chirality is indicated by the
corresponding sign), νd is the contribution to the conductance
matrix due to the line defect and νT = νg + νd . We emphasize
that νg and νd are functions of the carriers energy and the
microscopic details of the system.

A simple calculation shows that the inverse resistances
follow the sum rule:

Gparallel = G0 + Gline−defect, (4)

Gxy(parallel) = Gxy(0) + Gxy(line−defect), (5)

where the subscript 0 and line-defect indicate, respectively, the
conductance for pristine graphene and the contribution due to
the channels at the line defect. In this case, Gxy is simply given
by Gxy = νT /R0, where R0 = h/(2e2).

Perpendicular setup. A minimal model for this sample maps
to that of a 6-terminal Hall configuration with a constri-
ction [34]:




I

0
0
0
0

−I




=




νg 0 0 −νg 0 0
−νg νg 0 0 0 0

0 −νt νg 0 −ν ′ 0
0 −ν ′ 0 νg −νt 0
0 0 0 0 νg −νg

0 0 −νg 0 0 νg







V1

V2

V3

V4

V5

V6




where νg is the number of edge channels of pristine graphene
for the energy under study as before, ν ′ is the fraction that is
deflected at the line defect, and νg = ν ′ + νt . Once more
we emphasize that ν ′ and νt depend on the energy of the
incoming electrons and the details of the defect. Based on
this model one finds G = (νg − ν ′)/R0, Gxy = νg/R0 and
Rxx = ν ′/(νg(νg − ν ′)) × R0.

The ratio of the incident electrons whose trajectory is
deflected by the line defect, which is given by ν ′/νg (and it
can be seen as the change in the two-terminal conductance
in figure 2(b)), has a peculiar energy dependence that allows,
for example, for easily switching on or off the beam splitter
by applying a gate voltage. Figures 4(d) and (e) show a
situation where the splitter is off and on respectively. The
line defect in this setup can therefore be used as a tool to steer
the conduction of the chiral edge states. To predict the precise
energy dependence a full atomistic calculation is needed (we
refer to the discussion around figure 3).

3.2. Effect of the geometry on the Hall response

Based on the previous discussion we can argue about the
dependence of the Hall conductance on the relative position
of the defect and voltage probes. Figure 5(a) shows the Hall
conductance obtained in a setup where leads 1 and 6 serve as

Figure 5. (a) Hall conductance (I :1,6; V :2,4) for the perpendicular
setup as a function of the Fermi energy (the same as in figure 2(d)).
(b) The same as (a) but with the voltage measured between leads 2
and 5, i.e. on opposite sites of the defect. The results for the pristine
case are also shown with a solid black line. The inset on each panel
shows the corresponding setup for easier reference. All the cases
were calculated for W1 = 37.4 nm and W2 = 24.8 nm. The device is
threaded by a magnetic flux of 0.013�0 per plaquette.

source and drain for the current while the voltage is measured
between leads 2 and 4 (same as figure 2(d))1. In figure 5(b)
the voltage is measured between leads on different sides of
the defect (leads 2 and 5), as schematically indicated in the
insets. It can be noticed that the first one is independent of the
inter-edge transmission and has the same value as for pristine
graphene; whereas for the latter, one gets a result resembling
the two-terminal conductance.

One can also verify that adding a second defect in the
perpendicular setup which short-circuits the edge states in
lead 1, does not change the Hall response between leads 2
and 4. This can be derived by following a reasoning similar to
the one provided in section 3.1.

3.3. Role of the microscopic details in the results

Considering the above analysis it can also be inferred that
the defect structure will not affect the main picture reported
here, but is crucial in establishing the precise location of
the energy-dependent features (plateaus, etc). The minimal
model is mainly ruled by: the geometrical arrangement of the
leads and the defect, and the microscopic details which are
encoded in the energy dependence of the transmission matrix.
The peculiarities of graphene enter only through the singular
structure of the Hall plateaus (the presence of a Landau level at
zero energy and the particular level spacing). The existence of
an energy region where the defect states have a gap produced
by the hybridization of the states on each side of the defect, as
discussed previously, is also quite general.

We verified this in an analogous system with a 5-7-7-5 line
defect (see appendix C). Our main conclusions remain valid
and only changes in the energy dependence of the conductances
are observed. It is interesting to point out that the chirality of
the states propagating nearby the defect plays no role in this
analysis.

1 Measuring the voltage between leads 3 and 5 gives the same Gxy , as shown
in figure 5(a).
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Figure 6. Two-terminal conductance for the parallel (a) and
perpendicular (b) setups as a function of the Fermi energy. The Hall
conductance for the same configurations is shown in (c) and (d). The
red lines with a shaded area underneath are for the system containing
a random distribution of long-range impurities, as explained in the
main text. The results without disorder are shown for reference with
a gray line. The thick black line corresponds to pristine graphene
without disorder. All the cases were calculated for W1 = 37.4 nm
and W2 = 24.8 nm. The device is threaded by a magnetic flux of
0.013�0 per plaquette (same parameters as in figure 2).

3.4. Role of disorder and strain

A natural question concerns the dependence of these results on
disorder [22, 24]. We have probed with Anderson disorder,
vacancies and long-range impurities. The latter ones were
introduced through a modulation of the on-site energies with
a gaussian profile as in [28, 38, 39]. Anderson disorder
corresponds to the addition of an on-site energy at random on
the lattice with a desired concentration (this can be assimilated
to the change of a carbon atom with one of other species). The
value of this on-site energy is also a random variable, usually
taken as uniformly distributed within the range [−U, U ] where
U measures the disorder strength [28]. In this case, no
significant variations were found in the conductance for all the
samples when choosing at random on-site energies between
±0.1γ0 with a concentration of 0.1 per cent.

Figure 6 illustrates the case of four gaussian long-range
impurities with σ = 15a and intensity U = ±0.2γ0. These
gaussians are centered at most at three σ from the line defect,
i.e. where their effect on transport is at a maximum. Additional
results for other disorder configurations and for the case
of vacancies are included in appendix D. For an arbitrary
setup of the voltage probes like the one in figure 5(b) we
find that it might be quite hard to recover the plateaus in
the non-local conductance Gxy . Thus, achieving values that
are constant within a few percent of e2/h, as observed in
experiments [25], may require high defect densities (of above
0.1 per cent for vacancies). Similar conclusions were reached
by other authors examining the two-terminal conductance

using Anderson disorder on either 5-8-5 defects [22] or more
complex grain boundaries [24].

Therefore, given the high disorder necessary to recover
the plateaus, one may then wonder whether an ingredient
other than disorder plays a role in allowing for the recovery
of the quantum Hall plateaus. Motivated by this question we
explored the effect of mechanical strain localized around the
line defect. The results for a strain applied perpendicular to the
line defect (following [40]) of about 5 per cent and decaying
within a few lattice constants show no important changes in
our observations (see appendix B for further details).

4. Conclusions

We study how a single line defect alters the quantum Hall
response of a graphene sample. Our results highlight the
crucial role played by the geometry, i.e. the relative positions
of the defect and voltage/current probes, and the microscopic
details of the defect which establishes a peculiar energy
dependence of the transport response. Two clearly different
situations arise depending on whether the defect is parallel or
perpendicular to the samples edges. In the former case, the line
defect adds conduction channels fairly localized around it and
new plateaus emerge in the local and non-local conductances.
In the latter case, the line defect short-circuits the chiral
edge states and its influence on the Hall conductance depends
strongly on the placement of the voltage probes. When
they are placed on the same side of the line defect, the Hall
conductance is the same as in pristine graphene. In contrast,
the Hall conductance resembles more closely the two-terminal
conductance only when the voltage probes are located on
opposite sides of the line defect.

In the perpendicular setup, the extended defect acts as
an electrical analog of a beam splitter in optics. Recent
experiments show that 5-8-5 line defects can be grown at a
predetermined location of a suspended graphene sample [10].
These experiments pave the way for the use of 5-8-5 defects
for logical functions and or manipulating the currents flowing
along the chiral edge states. Indeed, the results presented here
suggest that in the Hall regime they can serve as a beam splitter
allowing to steer the conduction through the edge states.

Although we considered 5-8-5 and 5-7-7-5 structures
for the extended defect, the same physics are expected for
other types of boundaries. For the most generic arrangement
of voltage probes/defect, our results hint that even with
a high density of impurities/disorder it might be hard to
recover conductance plateaus in Gxy as the ones observed in
experiments. Therefore, the role of this building block in more
complex geometries, such as those found in poly-crystalline
samples, remains an interesting subject for further study.
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Figure 7. (a) Scheme of the line defect where the hoppings between
the central line with the rest of the sample are denoted by γ ′.
Turning on this parameter γ ′ leads to a hybridization of the
otherwise chiral edge states, as shown in panels (b)–(d). States with
some degree of localization around the defect are shown in red,
others are shown in gray.

Figure 8. Results for the case of the samples subject to mechanical
strain. Two-terminal conductance for the parallel (a) and
perpendicular (b) setups as a function of the Fermi energy. The Hall
conductance for the same configurations is shown in (c) and (d).
The results without strain are shown for reference with a gray line
and those for the pristine case with a solid black line. The inset on
each panel shows the corresponding setup for easier reference. All
the cases were calculated for W1 = 37.4 nm and W2 = 24.8 nm. The
device is threaded by a magnetic flux of 0.013�0 per plaquette.

Appendix A. Hybridization of the edge states and
gaps in the defect’s local density of states

The gaps in the local density of states around the defect can
be explained considering the model in figure 7(a), where the

Figure 9. (a) Scheme of a 5-7-7-5 line defect. The atoms used in
the calculation of the weight w, wup and wdown are marked with full
colors. (b) The bandstructure for a 5-7-7-5 line defect embedded at
the center of a zigzag ribbon. States having a weight (modulus
squared of the probability amplitude) larger than 0.01 on the atoms
around the defect are shown in color scale from white (w = 0) to
black (w = 1). (c) Same as (b) but this time the color scale
corresponds to wup − wdown (>0), that is, states with a weight
predominantly on the upper part of the defect. (d) Same as (b) but
for the partial weight wdown − wup.

central part of the defect is connected to the rest of the sample
through a hopping γ ′. When γ ′ = 0 one has two separate
samples hosting chiral edge states. As soon as γ ′ �= 0,
these chiral edge states become hybridized leading to the gaps
observed in the LDOS around the defect. This is illustrated in
figures 7(b)–(d).

Appendix B. Role of strain

We also check the effect in the conductance of the mechanical
strain applied locally to the defect region. Figure 8 shows the
two-terminal and Hall conductances for a sample subject to a
mechanical strain perpendicular to the line defect of 5 per cent
and decaying within 3a [40]. The results for the case without
strain are also shown for a better comparison. No significant
changes are seen for both the parallel and perpendicular setups
in comparison to the case without strain.
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Figure 10. Results for the case of the 5-7-7-5 line defect.
Two-terminal conductance for the parallel (a) and perpendicular (b)
setups as a function of the Fermi energy. The Hall conductance for
the same configurations is shown in (c) and (d). The results for the
pristine case are also shown with a solid black line. The inset on
each panel shows the corresponding setup for easier reference. All
the cases were calculated for W1 = 37.4 nm and W2 = 24.8 nm. The
device is threaded by a magnetic flux of 0.013�0 per plaquette.

Figure 11. (red line) Two-terminal (G) and Hall conductance (Gxy) for the parallel (samples #1, 2, 5 and 6) and perpendicular setups
(samples #3, 4, 7 and 8) with vacancies (top) or long-range impurities (bottom) as a function of the Fermi energy. The results without
disorder are shown for reference with a gray line and those for the pristine case with a solid black line. The inset on each panel shows the
corresponding setup for easier reference. All the cases were calculated for W1 = 37.4 nm and W2 = 24.8 nm. The device is threaded by a
magnetic flux of 0.013�0 per plaquette.

Appendix C. Role of the microscopic structure of
the extended defect: the case of a 5-7-7-5 line defect

Based on the analysis given in the main text, one is moved to
conclude that the main results reported there do not depend
much on the microscopic details of the line defect but rather
on the geometry of the setup.

To further support this conclusion we repeated our
simulations for a 5-7-7-5 line defect, as represented in
figure 9(a). Our results for the two-terminal conductance and
Hall conductance are shown in figure 10. Figure 9 shows the
same spectral information as figure 3 in the main text for the
5-7-7-5 case. Except for the details of the bandstructure which
impact on the variations of the two-terminal conductance
(figure 10(a) and (b)), the conclusions achieved in the main
text remain valid for this defect. Particularly in the case of the
perpendicular configuration, the ability to switch on and off
the beam splitter by changing the gate voltage holds.

Appendix D. Role of disorder

The influence of different types of disorder in our results were
further scrutinized. Specifically, we have probed Anderson
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disorder, vacancies and long-range impurities. The latter
ones were introduced through a modulation of the on-site
energies with a gaussian profile as in [28, 38, 39]. In the
case of the Anderson defects, no significant changes were
seen in the conductance for all the samples, when choosing
at random on-site energies between ±0.1γ0. The results for
vacancies and long-range impurities are shown in figure 11 for
different disorder configurations. Samples 1–4 correspond to
vacancies taken at random within the sample with a density of
approximately 0.1%. Samples 5–8 are for gaussian impurities
localized around the line defect, where the intensity is chosen at
random from between ±0.2γ0 and the decay length was chosen
to be 15a. For the parallel setup, 4 gaussians are randomly
localized in an area of 350a by 120a (8σ ) around the line
defect; whereas in the perpendicular case, the area is chosen
to be 62a by 120a (8σ ).

These results show that a high density of defects
(approximately 0.1% for vacancies and more than 10%
for Anderson and long-range disorder) tend to destroy the
propagating states along the line defect. As far as the pristine
graphene edge states are not demolished, the conductance of
pristine graphene is partially recovered.
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