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Abstract

We discuss the application of perturbation theory to a system of

particles confined in a spherical box. A simple argument shows that

the particles behave almost independently in sufficiently strong con-

finement. We choose the helium atom with a moving nucleus as a

particular example and compare results of first order with those for

the nucleus clamped at the center of the box. We provide a suitable

explanation for some numerical results obtained recently by other au-

thors.

1 Introduction

In a recent paper Montgomery Jr. et al [1] solved the Schrödinger equation

for a He atom with its nucleus clamped at the origin of a box of radius Rc with
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impenetrable walls. They applied perturbation theory for the case of strong

confinement (sufficiently small Rc) and obtained the first five coefficients of

the expansion (with different degrees of accuracy). One of the conclusions in

that paper was that the interaction between the electrons decreases with the

box radius. The authors illustrated this behavior by means of the overlap

between the wavefunctions for the confined He+ and for the free electron in

the box.

The purpose of this letter is to discuss those numerical results from a more

general point of view. To this end in Sec. 2 we apply perturbation theory

to a system of N particles in a spherical box and discuss the behaviour of

a more general overlap integral. As a particular example, we compare the

energies (corrected through first order) of the He atom when the nucleus is

clamped at the center of the box and when it moves confined in the box.

Finally, in Sec. 3 we comment on the results and draw conclusions.

2 Perturbation theory for strong confinement

We consider a system of N particles of masses mi and charges qi. The

nonrelativistic Hamiltonian operator is

Ĥ = −
h̄2

2

N
∑

i=1

∇2
i

mi

+
N−1
∑

i=1

N
∑

j=i+1

qiqj
4πǫ0rij

(1)

where rij = |ri − rj| is the distance between the pair of particles located at

ri and rj.

If the system is confined in a box of radius Rc with impenetrable walls,
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any solution ψ to the time–independent Schrödinger equation

Ĥψ = Eψ (2)

should vanish when ri ≥ Rc for any given particle i. In order to apply per-

turbation theory in the case of strong confinement Rc → 0 we first convert

the Schrödinger equation (2) into a more convenient dimensionless eigenvalue

equation. We choose a representative particle (say i = 1) and define dimen-

sionless masses m′

i = mi/m1, charges q
′

i = qi/q1 and coordinates r′i = ri/Rc

(∇′

i = Rc∇i). We thus obtain a dimensionless Hamiltonian operator

Ĥd =
m1R

2
c

h̄2
Ĥ = −

1

2

N
∑

i=1

∇′2
i

m′

i

+ λ
N−1
∑

i=1

N
∑

j=i+1

q′iq
′

j

r′ij

λ =
Rc

a
, a =

4πǫ0h̄
2

m1q
2
1

(3)

and the dimensionless eigenvalue equation

Ĥdϕ = ǫϕ, ǫ =
m1R

2
c

h̄2
E =

m1a
2λ2

h̄2
E (4)

The new boundary conditions are ϕ = 0 if any r′i ≥ 1. Note that if the

chosen reference particle is an electron, then m1 = me, q1 = −e and a = a0

is the Bohr radius. The transformation just proposed is a generalization of

the one recently applied to the confined hydrogen atom [2].

It is clear that Ĥd(λ = 0) = Ĥ0
d is the dimensionless Hamiltonian operator

for a system of N free particles in a spherical box of unit radius. Therefore,

we can solve the eigenvalue equation Ĥ0
dϕ

(0) = ǫ(0)ϕ(0) exactly in terms of

products of spherical harmonics and Bessel functions [3]. It may also be

necessary to consider the permutational symmetry of the wavefunction and

add the corresponding spin factors [1].
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For concreteness, let us consider the He atom. We assume that the parti-

cles 1 and 2 are the electrons and the remaining one is the nucleus; that is to

say: m1 = m2 = me and m3 = mn. Obviously, in such a case m′

1 = m′

2 = 1,

m′

3 = mn/me and the unperturbed wavefunction for the ground state is

ϕ(0)(r′1, r
′

2, r
′

3) = 2
sin(πr′1)

r′1

sin(πr′2)

r′2

sin(πr′3)

r′3
[α(1)β(2)− β(1)α(2)] (5)

Note that the present model accounts for the motion of the nucleus and that

the nuclear factor sin(πr′3)/r
′

3 does not appear if this particle is clamped at

the center of the box [1, 4].

If we apply straightforward Rayleigh–Schrödinger perturbation theory we

obtain the well–known expansions

ǫ =
∞
∑

j=0

ǫ(j)λj , ϕ =
∞
∑

j=0

ϕ(j)λj (6)

In particular, for the energy we have

E =
h̄2

m1a2

[

ǫ(0)

λ2
+
ǫ(1)

λ
+ ǫ(2) + . . .

]

(7)

that is a generalization of the result derived by Laughlin [5] and discussed

by Laughlin and Chu [4] and Montgomery et al [1]. Note that equations (6)

and (7) apply to the most general case of a system of N particles (3).

If both ϕ and ϕ(0) are normalized to unity we can easily prove that

∣

∣

∣〈ϕ| ϕ(0)
〉∣

∣

∣ ≤ 1, lim
λ→0

∣

∣

∣〈ϕ| ϕ(0)
〉∣

∣

∣ = 1 (8)

which clearly account for the behaviour of the overlap integral in Fig. 1 of

Montgomery et al [1] for the particular case of the He+. We stress that

Eq. (8) applies to the general case of N particles.
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As an illustrative example we calculate the energy of the helium atom

corrected through first order. When the nucleus is clamped at the origin we

have [1, 4]
ǫ(λ)

λ2
=

9.8696044

λ2
−

7.9645404

λ
(9)

On the other hand, when the nucleus moves the result is

ǫ(λ)

λ2
=

9.870280744

λ2
−

5.358219501

λ
(10)

where we have chosen m′

n = 7296.300me. It is worth noting that the effect of

the nuclear motion is more noticeable on the average potential energy than

on the kinetic energy. [3].

3 Conclusions

We have shown that converting the Schrödinger equation into a dimension-

less eigenvalue one greatly facilitates the application of perturbation theory

to strongly confined systems. In particular this approach clearly shows that

the interaction between the particles becomes negligible as the confinement

increases. In this way we could provide a suitable mathematical basis for

recent numerical calculations on the He atom with a nucleus clamped at ori-

gin. Eq. (8) not only explains the behavior of the overlap integral calculated

by Montgomery et al [1] but also reveals that the same kind of curve should

be expected for any system of particles confined in a spherical box.

We have also shown that the effect of the nuclear motion on the kinetic

energy of the confined atom is not as important as its effect on the average

of the Coulomb interactions. The reason is that the energy of the confined
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atom changes markedly with the location of the clamped nucleus. Therefore,

when it moves there is a sort of average contribution to the potential energy

from all the possible locations inside the box.
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