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Abstract

The non-crossing rule for the energy levels of a parameter-dependent

Hamiltonian is revisited and a flaw in a commonly accepted proof is re-

vealed. Some aspects of avoided crossings are illustrated by means of

simple models. One of them shows the close relationship between avoided

crossings and exceptional points.

1 Introduction

It is well known that the potential energy curves of diatomic molecules do not

cross (in fact, they even avoid each other) when the states have the same sym-

metry. This property of the electronic energies, commonly known as the non-

crossing rule, has proved useful for the interpretation of many experiments in

molecular spectroscopy and photochemistry [1, 2]. The theoretical explanation

outlined by Teller [3], and typically reproduced in most textbooks on quantum
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chemistry [4,5], was criticized by Razi Naqvi and Byers Brown [6]. After arguing

that such a proof is based on a non sequitur the authors proposed an alternative

justification of the non-crossing rule. Their argument is closely related to the

Hellmann-Feynman theorem [7] in its more general off-diagonal form [8–12].

As a result of a recent investigation on non-Hermitian Hamiltonians we were

led to revise the proofs on the non-crossing rule and the purpose of this paper

is to put forward our analysis and discussion of the arguments given by Razi

Naqvi and Byers Brown [6]. In section 2 we derive similar equations by means

of the off-diagonal Hellmann-Feynman theorem [8–12] (and references therein).

In section 3 we illustrate the main theoretical conclusions by means of two

simple examples. Finally, in section 4 we summarize the main results and draw

conclusions.

2 The off-diagonal Hellmann-Feynman theorem

The starting point is the time-independent Schrödinger equation

Hψn = Enψn. (1)

It follows from 〈ψm|H |ψn〉 = 〈ψn|H |ψm〉∗ and E∗

m = Em, where * stands for

complex conjugation, that

(Em − En) 〈ψm |ψn〉 = 0. (2)

From this expression we conclude that 〈ψm |ψn〉 = 0 when Em 6= En. This

textbook result is well known but we write it here because it will be useful later

on.

If H depends on a parameter λ, then the eigenfunctions and eigenvalues will

depend on this parameter too. If we differentiate equation (1) with respect to λ

and then apply the bra 〈ψm| from the left we obtain the well known off-diagonal

Hellmann-Feynman relation [8–12]

〈ψm|H ′ |ψn〉 = E′

n 〈ψm |ψn〉+ (En − Em) 〈ψm |ψ′

n〉 , (3)
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where the prime denotes differentiation with respect to λ.

Suppose thatEm andEn approach each other and cross at λ0: lim
λ→λ0

(Em − En) =

0. When λ 6= λ0 〈ψm |ψn〉 = 0 by virtue of equation (2) and because of conti-

nuity we should also have

lim
λ→λ0

〈ψm |ψn〉 = 0. (4)

It follows from this equation and (3) that

〈ψm|H ′ |ψn〉 (λ0) = lim
λ→λ0

〈ψm|H ′ |ψn〉 = 0. (5)

Without this condition the approaching energy levels will not cross giving rise

to an avoided crossing that looks like an energy-level repulsion. Since the two

levels approach each other and then move apart the quantity (En − Em)
2
should

exhibit a minimum at some λ = λm. This particular value of the parameter is

determined by the condition

E′

n(λm)− E′

n(λm) = 0 (6)

If the symmetries of ψm and ψn are different, then equation (5) holds for all λ

and nothing prevents the approaching energy levels from crossing.

Throughout the discussion above we have tacitly assumed that the symmetry

of H is the same for all λ (at least in the neighbourhood of λ0 under analysis).

In other words, we have assumed that both H and H ′ have the same symmetry.

Suppose that the point group [13, 14] that describes the symmetry of H is G

when λ 6= λ0 and G0 when λ = λ0 and that the order h of G is smaller than

the order h0 of G0. Under such conditions the dimension of the subspaces of

H(λ0) may be greater than those for H( λ 6= λ0) and we therefore expect

some level crossings at λ = λ0. Obviously, equation (5) applies to those states

that become degenerate at this point. Razi Naqvi [15] took into account such

symmetry changes in a discussion of the crossing of potential-energy surfaces of

polyatomic molecules.

It is clear that no further discussion is necessary for proving equation (4)

that was required for deriving equation (5) from (3). However, Razi Naqvi and
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Byers Brown [6] criticized the continuity argument implied by equation (4).

In order to discuss the additional steps in their proof we first derive another

equation. If we differentiate the eigenvalue equation for ψm with respect to λ

and apply 〈ψn| from the left we arrive at an equation similar to (3):

〈ψn|H ′ |ψm〉 = E′

m 〈ψn |ψm〉+ (Em − En) 〈ψn |ψ′

m〉 . (7)

Subtracting the complex conjugate of equation (7) from equation (3) we obtain

(En − Em)
′ 〈ψm |ψn〉+ (En − Em) 〈ψm |ψn〉′ = 0, (8)

which is obviously the derivative of equation (2) with respect to λ. When

lim
λ→λ0

(Em − En) = 0 equation (8) reduces to

[E′

n(λ0)− E′

m(λ0)] 〈ψm |ψn〉 (λ0) = 0. (9)

Razi Naqvi and Byers Brown [6] considered two electronic states ψ1 and

ψ2 of a diatomic molecule such that the corresponding electronic energy levels

E1(R) and E2(R), where R is the internuclear distance, cross at R = R0. They

derived an equation similar to (9) that reads:

[E′

1(R0)− E′

2(R0)]
〈

ψ0
1

∣

∣ψ0
2

〉

= 0, (10)

where ψ0
1 and ψ0

2 are the electronic states atR = R0. They invoked this equation

to prove that
〈

ψ0
1

∣

∣ψ0
2

〉

= 0 (11)

if E′

1(R0) 6= E′

2(R0). The reason of this circumlocution was their concern about

the continuity argument expressed in the statement: “It will be well to pause

here momentarily and discuss the implications of Equation (11). Our demand

that the two potential curves intersect at R0, forces us, to conclude that the

overlap integral must vanish even when E1 = E2. It is tempting to argue that,

since 〈ψ1 |ψ2〉 = 0 for all R in the vicinity of R = R0, it seems likely, on account

of continuity, that it would also be true at R0. However, this argument is not

only unnecessary but misleading, for we know that degenerate eigenfunctions
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need not be orthogonal; indeed we can choose them at will and make them to

be non-orthogonal, if we so desire.” The reader may convince himself that the

argument leading to equation (4) clearly implies that we do not choose those

functions “at will” because the states at R = R0 are just the ones that result

from the limit R → R0 and, therefore, should remain orthogonal.

In order to prove that equation (11) holds even when E
(j)
1 (R0) = E

(j)
2 (R0),

j = 0, 1, . . . , n, provided that E
(n+1)
1 (R0) 6= E

(n+1)
2 (R0), the authors differenti-

ate equation (10) with respect to R as many times as necessary [6]. However,

it is obvious that equation (10) is valid only for R = R0 because we have dis-

carded a term from the general equation valid for all R (see (8)). In order to

carry out this proof correctly we should differentiate an equation like (8) as

many times as necessary which is equivalent to differentiating an equation sim-

ilar to (2) with respect to R just one more time. More precisely, if we define

∆(R) = E1(R) − E2(R) and S(R) = 〈ψ1 |ψ2〉 (R) then equation (2) becomes

∆(R)S(R) = 0. Differentiating it n+1 times with respect to R and substituting

R0 for R we obtain

n+1
∑

j=0

∆(j)(R0)S
(n+1−j)(R0) = ∆(n+1)(R0)S(R0) = 0, (12)

from which it follows that S(R0) = 0 when ∆(n+1)(R0) 6= 0. In addition to being

simpler and clearer, this argument is free from the flaw in the additional steps

of the proof attempted by Razi Naqvi and Byers Brown [6]. However, in our

opinion this discussion is unnecessary because, as argued above, lim
R→R0

S(R) = 0

always applies when lim
R→R0

∆(R) = 0.

3 Examples

In section 2 we mentioned the possibility that the symmetry of the system may

change at λ = λ0. In order to illustrate this point here we choose an extremely

simple model, the quantum-mechanical harmonic oscillator

H = − ∂2

∂x2
− ∂2

∂y2
+ kx2 + λy2, k, λ > 0. (13)
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The eigenvalues and eigenfunctions of this dimensionless Hamiltonian operator

are given by

Emn =
√
k(2m+ 1) +

√
λ(2n+ 1), m, n = 0, 1, . . . ,

ψmn(x, y) = φm(x, k)φn(y, λ), (14)

respectively, where φm(q, k) is an eigenfunction of the one-dimensional harmonic

oscillator HHO = − ∂2

∂q2
+ kq2.

When λ 6= λ0 = k the symmetry of the system is described by the Abelian

point group C2v that exhibits only one-dimensional irreducible representations

[13, 14]. Therefore, its states are expected to be nondegenerate, except for

accidental degeneracies that may occur when
√

λ/k is rational. On the other

hand, when λ = λ0 we have an isotropic two-dimensional oscillator so that

its symmetry is described by the full two-dimensional rotation group. Since

all its eigenstates ψm+j n−j , j = −m,−m + 1, . . . , n are degenerate we expect

and infinite number of crossings at λ = λ0. Obviously, the off-diagonal matrix

elements

〈ψmn|H ′ |ψm+j n−j〉 = 〈φn| y2 |φn−j〉 δmm+j , (15)

vanish when λ = λ0 in agreement with the argument given is section 2.

The second example is even simpler but most interesting in some respects.

In this case we choose a two-level system given by the matrix representation

H =





−1 + z −1

−1 1− z



 . (16)

The diagonal elements intersect at z = 1 but the eigenvalues

E1 = −
√

z2 − 2z + 2, E2 =
√

z2 − 2z + 2, (17)

exhibit an avoided crossing as shown in Figure 1. Figure 2 shows that the

off-diagonal matrix element ψt
1.H

′.ψ2, where ψ1 and ψ2 are the two column

eigenvectors of H, non only does not vanish but even exhibits a maximum

precisely at z = 1.
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It is well known that avoided crossings are associated to exceptional points in

the complex plane [16–19]. Present case is not an exception as the eigenvalues

(17) obviously cross in the complex z-plane at z = 1 ± i. By means of the

change of variables z = 1+ig we obtain a parity-time-symmetric non-Hermitian

Hamiltonian [20]:

K =





ig −1

−1 −ig



 , (18)

with eigenvalues

E1 = −
√

1− g2, E2 =
√

1− g2. (19)

In this case the eigenvalues are real for all |g| < 1 (unbroken parity-time (PT)

symmetry [20]) approach each other as g → ±1, coalesce at the exceptional

points g = ±1 and become a pair of complex conjugate numbers for |g| > 1

(broken PT symmetry). This behaviour is shown in Figure 3. At the exceptional

points the two eigenvectors are linearly dependent [16–19].

It is most interesting to consider the more general case in which z = x +

iy that leads to an Hermitian Hamiltonian when y = 0 and a PT-symmetric

one when x = 1. Figure 4 shows that ℜE(x, y) is given by two intersecting

surfaces that leave a hole where they do not touch. The intersection of the whole

composite surface with the plane (x, 0, z) yields the curves shown in figure 1 for

the Hermitian Hamiltonian (16). On the other hand, the intersection with the

plane (1, y, z) yields the curve in figure 3 for the eigenvalues of the PT-symmetric

Hamiltonian (18), where y = g.

4 Conclusions

The arguments put forward by Razi Naqvi and Byers Brown [6] are basically

correct, except for the discussion of the orthogonality of the states at the crossing

point R = R0. In the first place, there is no problem with the orthogonality of

the states at this point if one chooses them to be the result of the limit R → R0.

Such states are not at all arbitrary and conserve their orthogonality even at the

point of degeneracy. If one had any doubt about the orthogonality of the states
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at the crossing point one could in fact prove it as shown in equation (12) that

is an improvement on the argument given by those authors that leads to the

correct answer but is based on an inadequate equation.
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