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Yield gaps are defi ned as the diff erence between pro-
duction levels over a specifi ed scale of interest (Evans 
and Fischer, 1999; Van Ittersum and Rabbinge, 1997). 

In rainfed cropping agroecosystems there is a common, oft en 
large, yield gap between attainable and actual yields (Hochman 
et al., 2013). Attainable yield represents yield under water and 
nutrient-limiting conditions but without impacts of reducing 
factors like pest, diseases, etc; it can be used as a reference value 
in agroecosystems where crops go through water limiting peri-
ods during their growing cycle as is the case in many rainfed 
agroecosystems, and it relates to the best current management 
practices (Hochman et al., 2012). Attainable yield is soil type 
dependent as it relates to soil properties like water holding capac-
ity (Van Ittersum et al., 2013). Actual yield is the production 
level obtained under production conditions where not only water 
and nutrients reduce yield, but also many other factors like pests, 
diseases, erroneous management practices, etc. (Lobell et al., 
2009). Actual yield is the lowest production level used for yield 
gap calculation. Th is latter production level is regulated by envi-
ronmental constraints under common management practices 
and is usually lower than attainable yield (Cassman et al., 2003).

Yield gap identifi cation for particular crops and production 
regions provides a framework to prioritize research and policy 
eff orts to narrow it (Tittonell et al., 2008), and in consequence 
to meet the continued rise in global food demand (Lobell et al., 
2009). Yield gap analysis was focused on its quantifi cation (Lobell, 
2013) and spatial pattern description (Hochman et al., 2013), but a 
better understanding of the environmental factors that defi ne it is 
required to develop improved management practices to narrow it.

Some causal relationships between yield gaps and climate or 
management factors were detected previously, but only a few also 
included soil properties. Wheat yield gap was positively associ-
ated to rainfall in western Australia (Anderson, 2010) and cen-
tral United States (Patrignani et al., 2014). Also the rice (Oryza 
sativa L.) yield gap was reported to be greater in humid environ-
ments of Sub-Saharan Africa (Sileshi et al., 2010). Regarding the 
management factors, rice yield gap decreased when fi elds were 
fully irrigated in Cote d’Ivoire (Becker and Johnson, 1999) and 
also with N fertilization according to relief position in Th ailand 
(Boling et al., 2011). Finally, a minority of works also looked for 
causal relationships between soil properties and yield gap, for 
instance wheat yield gap increased with larger soil evaporation 
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ABSTRACT
As global grain demand is expected to keep on rising, productive 
but underachieving regions like the Argentine Pampas play a 
key role. Reduction of yield gaps in these regions would allow an 
increase in global food production. Th e objectives were to model 
the spatial patterns of the wheat (Triticum aestivum L.) yield gap 
in the Pampas and relate it to environmental factors. Th e study 
comprised an area of approximately 45 Mha during a 40-yr 
interval. Attainable yield was estimated by a stochastic frontier 
production function adjusted on statistical data generated at 
county scale. Yield gap was calculated for each combination of 
climate and soil variables as the diff erence between attainable 
yield and the average yield estimated using an artifi cial neural 
network (ANN) model. Yield gap was then modeled by another 
ANN using as inputs climate and soil factors. Average yield 
gap was 865 kg ha–1 (25% of average attainable yield), ranging 
from 740 kg ha–1 (26%) in humid environments to 1140 kg ha–1

(42%) under semiarid ones during the last 5 yr. Yield gap could 
be adequately modeled with an ANN (R2 = 0.745, RMSE = 
144 kg ha–1). Th e model showed that soil factors deeply impacted 
yield gap and minimum values were obtained in soils with 
medium to high organic C contents and available water storage 
capacity. Yield gap and a soil productivity index developed locally 
were negatively correlated. Th e methodology developed for yield gap 
analysis can be used for other crops and regions.
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Core Ideas
• Yield gap calculation combined two modeled yield levels, applying 

a frontier production function and an artifi cial neural network.
• Climate partially defi ned yield gaps; in semiarid environments 

these were largest.
• Soil properties explained 50% of yield gap variability at regional scale.
• Soil organic carbon and available water holding capacity inter-

acted positively defi ning a minimum yield gap.
• Yield gap reducing eff orts should be focused in low productivity soils.
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(Sadras and Angus, 2006) and with increasing soil N at sowing 
(Peake et al., 2014) in semiarid Australia.

National statistics information is usually published at county 
scale and can represent the actual yield production level (Egli and 
Hatfield, 2014). For yield gap analysis, estimation of attainable 
yield production level is required. Attainable yield can be estimated 
by process-based models (Grassini et al., 2011) but in many areas 
validation can be difficult due to the lack of quality data. It can 
be estimated as well by the stochastic frontier production func-
tion (Aigner et al., 1977; Meeusen and Van den Broeck, 1977). 
Attainable yield estimated with the frontier function represents 
the maximum value of the dependent variable for a determined set 
of independent variables (Pesaran and Schmidt, 1999) and thus 
results from the combination of these variables and obtained under 
current limiting conditions (Neumann et al., 2010; Patrignani et 
al., 2014). When actual is lower than attainable yield, this is caused 
by production inefficiency (Coelli et al., 2005). The error term of 
the frontier function term is split into inefficiency and a stochastic 
component (Coelli et al., 2005). The latter may be caused by statisti-
cal noise of data errors and uncertainties inherent to reporting and 
sampling of information. An advantage of the frontier function is 
the consistent use of one data set of national statistics yield informa-
tion for attainable yield determination (Neumann et al., 2010).

Even if there have been attempts of finding causal relations 
between yield gaps and independent variables, to our knowledge 
no yield gap empirical model has been developed yet. Artificial 
neural networks (ANNs) have become a popular statistical 
technique because they can be used to construct an explicative 
yield gap model. This technique simulates the neural working of 
the human brain and does not require an a priori data structure 
(Özesmi et al., 2006). Predictions have significantly smaller 
errors than the more traditional linear regression models for 
yield prediction (Alvarez, 2009). The relations that link input 
data (independent variables) to output data (yield gaps) are 
obtained and implemented in an iterative calibration procedure 
(Schaap et al., 1998). Complex input–output relations are mod-
eled using ANN as these are capable of detecting patterns and 
learning relationships comprised of curvilinear effects and inter-
action between variables (Dai et al., 2011).

The vast fertile Argentine plain called Pampas (Hall et al., 1992) 
plays a key role in the international food security situation as the 
agricultural area for export increased its production during the last 
four decades (FAOstat, 2015; Imhoff et al., 2004). Rainfed wheat 
production in this region started a century ago and has the larg-
est spatial coverage, both under humid and semiarid conditions 
(Hall et al., 1992), and concentrates 95% of national production 
(MinAgri, 2015). Because of the wide spatial distribution of this 
crop in the Pampas across areas with contrasting climate and soil 
characteristics it offers a good opportunity for studying environ-
mental factor impacts on the yield gap. Underperforming regions 
like the Pampas with favorable rainfed conditions represent good 
opportunities to improve yields and bridge the gap between attain-
able and actual yields (Cassman, 1999; Foley et al., 2011).

Although the wheat yield gap has not been determined in the 
Pampas in local studies, some global-scale research has addressed 
this region and some coarse comparisons can be made. A wheat 
yield gap of 15% was calculated for Argentina as the difference 
between modeled attainable yield and actual yield based on statis-
tical data without the identification of possible factors influencing 

the magnitude (Liu et al., 2007). Other studies estimated attain-
able yield using the highest values from historical statistical records 
and calculated a wheat yield gap rounding 40% for the whole 
Pampas (Licker et al., 2010; Mueller et al., 2012). Regarding the 
spatial distribution of this yield gap, some contradictory results 
were found. One of these estimations reported that the average 
maize (Zea mays L.)–wheat–rice gap decreased from 30 to 50% 
in the humid portion of the region to approximately 10% in some 
semiarid areas; implying that in the semiarid environments of the 
Pampas actual yield levels are close to the attainable (Mueller et al., 
2012). Using a stochastic frontier production function approach 
and statistical data, a yield gap of approximately 50% was also esti-
mated for Argentina and with larger yield gaps in the more humid 
environments of the Pampas (Neumann et al., 2010). Using spatial 
datasets around the year 2000 larger yield gaps in the semiarid 
portion of the Pampas were also detected (Licker et al., 2010). A 
common result of all previous global scale yield gap estimations 
for wheat is that yield gap in the Pampas was much larger than in 
some other important production regions of the World (Licker et 
al., 2010; Mueller et al., 2012; Neumann et al., 2010).

Due to the large scale of all this previous research, the 
resolution of the database used was low or incomplete and soil 
property information was barely accounted for. This study thus 
aimed to model the spatial patterns of the wheat yield gap in the 
Pampas and relate it to environmental factors. The focus was 
to analyze possible effects of soil properties on the yield gap by 
separating them from climate influences.

MATERIALS AND METHODS
Study Region

The Argentine Pampas (28° S and 40° S and 57° W and 68°W) 
comprises a approximately 60 Mha temperate vast plain, with a flat 
or slightly rolling relief, where the natural vegetation consists of 
grasslands with dominant graminaceous plant species (Hall et al., 
1992). Mean annual temperature ranges from 23°C in the North 
down to 14°C in the South. Annual rainfall varies from 1200 to 
200 mm following a Northeast–Southwest gradient. The majority 
of the soils are fertile and well-drained, mainly Mollisols, formed 
on loess-like materials (Alvarez and Lavado, 1998). Rainfed crops 
are widespread in the Pampas, mostly in the humid and semiarid 
portions where annual rainfall exceeds 500 mm. The humid por-
tion corresponds to the eastern side of the region and includes the 
northeastern areas were annual rainfall can exceed 1000 mm while 
the semiarid portion is located at the western side were annual 
rainfall is low and variable. Approximately 65% of the area, on well 
drained soils, is under agricultural use, and the most important 
grain crops are soybean [Glycine max (L.) Merr.], corn, and wheat 
(MinAgri, 2015). In this area forage crops are rotated with grain 
crops. The area under wheat represents approximately 10 to 15% 
of the whole agricultural surface, depending on the year. Only 
after approximately 1995 fertilization became a common practice 
but application rates compared to other countries are low (FAO, 
2004). The natural fertility of soils combined with the short crop-
ping history, where annual crop production was alternated with 
livestock production on leguminous pastures, sustained this low 
input scenario (Alvarez et al., 2015). Usually a fallow period of 
approximately 3 mo, from April to June, preceded wheat cultiva-
tion. Wheat growing cycle starts in June or July, depending on the 
sowing date, and ends in December with crop harvest.
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Database Description
Wheat yield data of 150 counties were calculated using 

national statistics on annual grain production and harvested area 
per county covering a time interval of 40 yr, specifically 1967 to 
2006 (MinAgri, 2015). These counties were distributed along the 
provinces of the Pampas of Buenos Aires, Córdoba, Entre Ríos, 
La Pampa, and Santa Fe, where wheat is a common crop rota-
tion component. The covered area was of approximately 45 Mha 
which represents about 75% of the Pampas and where 95% of 
the national wheat production is generated. Forty of these coun-
ties were discarded because hydromorphic soils dominated and 
<30% of the total county area was under wheat production dur-
ing the comprised time interval. Because of enormous differences 
in county areas, the largest county was up to 30 times larger than 
the smallest one; data were aggregated for processing and statisti-
cal analysis. This spatial aggregation resulted in the generation of 
41 geographic units of 1 ± 0.5 Mha as was previously described 
(De Paepe and Álvarez, 2013). The aggregation was performed 
accounting for relief, type of landscape, and dominant soil classes 
of the subregions of the Pampas described in previous works 
(Alvarez and Lavado, 1998; Hall et al., 1992). Weighted averages 
of county yield, climate, soil, and management information were 
calculated for all variables to aggregate information up to the 
geographic unit scale.

Climate records of monthly maximum and minimum tem-
perature and rainfall covering the 1967 to 2006 time interval 
from approximately 80 weather stations well distributed over the 
study area and its surroundings, were obtained from the Servicio 
Meteorológico Nacional (SMN, 2015) and the Instituto Nacional 
de Tecnología Agropecuaria (INTA, 2015). County-scale averages 
of these three climate variables were spatially interpolated with 
good results using the inverse distance weighting method using the 
Spatial Analyst extension of ArcGIS 9.1 (ESRI) as was reported 
previously (De Paepe and Álvarez, 2013). This spatial interpolation 
method consists of assigning values to unknown points calculated 
as weighted averages of the values available at the known points, 
specifically the meteo-stations in our analysis (Zimmerman et 
al., 1999). In total 960 interpolation maps were generated and 
monthly temperature was calculated as the average of maximum 
and minimum monthly values. Estimated climate variables were 
validated with measured information at 30 meteo-stations spread 
across the Pampas. The best estimation performance was obtained 
for maximum and minimum temperature and a difference of 5% 
was detected when comparing measured with estimated rainfall 
values, probably due to the large variability of rainfall (De Paepe 
and Álvarez, 2013). The crop growing cycle was split into a vegeta-
tive growing phase, from July to September, and a flowering-to-
maturity phase, from October to November. Both crop phases 
were preceded by a fallow period before crop seeding took place, 
during April to June.

Potential evapotranspiration (PET) was calculated with 
a modified version of the Penman formula (Linacre, 1977) 
using the estimated monthly temperature and rainfall. Locally 
adjusted kc coefficients (a crop coefficient that accounts for dif-
ferences in crop type, cultivar, and development stage that should 
be considered when assessing evapotranspiration) were applied 
to estimate wheat PET (Doorenbos and Pruitt, 1977; Totis and 
Perez, 1994). A kc coefficient of 0.5 was assumed for the fallow 
period as no coefficients for this period were available. Ratios of 

rainfall to PET were calculated monthly and also integrated per 
crop phases like in a previous study (Alvarez, 2009).

The photothermal quotient was estimated for the critical crop 
period of 1 mo before wheat crop anthesis as the ratio of incom-
ing radiation and mean temperature above 4.5°C as described 
in Fischer (1985). Anthesis dates along the 150 counties varied 
with latitude from 30 September in the North to 10 November 
in the South, this was accounted for taking published informa-
tion from experiments (Magrin et al., 1993). A locally devel-
oped modification of the Hunt et al. (1998) model was used to 
estimate atmospheric transmittance (Alonso et al., 2002) and 
solar radiation at the top of the atmosphere was calculated with 
RadEst 3.00 algorithms (Donatelli et al., 2003). These methods 
were described in detail previously (Alvarez, 2009).

Descriptions and corresponding influence areas from more than 
1000 soil profiles published in the soil surveys of the provinces 
of Buenos Aires, Córdoba, Entre Ríos, La Pampa, and Santa Fe 
were used to spatially aggregate information up to the geographic 
unit scale as was described previously (De Paepe and Álvarez, 
2013). The following soil variables were included in the analysis: 
organic C, textural composition, pH, carbonate C, and depth to 
petrocalcic horizon when present within the upper 1 m of the soil 
profile. Soil variables were described per genetic horizons and were 
modeled in layers of 25 cm up to 1 m depth by fitting functions 
with Table Curve WD (Systat Software) with good results (R2 > 
0.90) and the models used were generally of the exponential or the 
potential type. Using the method of Álvarez and Lavado (1998) 
soil information at the profile level was aggregated to the carto-
graphic scale, and afterward to the county and geographical unit 
scale accounting for corresponding influence areas. As the soil sur-
veys used for data acquisition were performed mainly during the 
1960 to 1980 period; soil organic C content data obtained from 
those surveys was used for yield gap modeling during the first years 
of our analysis (1967–1976). Organic C data generated during a 
recent soil sampling during 2007–2008 (Berhongaray et al., 2013) 
was used as the representative county soil C content at the end of 
the analyzed interval (1997–2006). For intermediate time periods 
linear interpolation was used for organic C estimation.

Soil available water storage capacity (SAWSC) was calculated 
as the difference between estimated soil field capacity, at a matric 
potential of –0.033 MPa, and wilting point, at a matric potential 
of –1.50 MPa using the Rawls et al. (1982) equations. The effects 
of the linear regression equations described by Rawls et al. (1982) 
included sand, clay, and organic matter percentages for field 
capacity estimation and clay and organic matter percentages for 
wilting point estimation. These equations were used to calculate 
SAWSC per layer of 25 cm to the upper 1 m of the soil profile or 
up to the upper limit of the petrocalcic horizon when it appeared 
in the first meter of the soil profile. Gravimetric water was trans-
formed to volumetric water using bulk density values estimated 
by the Rawls (1983) method that used organic matter percentage 
and mineral bulk density derived from soil textural composition. 
In a previous work it was detected that this bulk density estima-
tion method overestimated soil density of soils of the Pampas by 
4% (Berhongaray et al., 2013); therefore a uniform correction 
factor of 0.96 was applied to all estimated values.

The management factors included in the analysis were fer-
tilizer rate, tillage system, and relative genetic improvement. 
An official survey performed on more than 3000 farms with 
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fertilizer rate data corresponding to the 2002 to 2006 interval 
was available (RIAN, 2015). Mean N and P county rates were 
estimated as the mean applied fertilizer rate by all the farmers 
per county included in the survey. Fertilizer rate information 
was not available for about 20% of the counties therefore it was 
estimated using the information from nearby counties with the 
inverse distance weighting factor mentioned earlier. As no past 
data were available, the national fertilizer consumption trend 
was used to estimate past fertilizer rates (Alvarez et al., 2015).

Predominant tillage system per decade and area of the Pampas 
was obtained from expert opinion (M. Taboada, G. Studdert, A. 
Bono and C. Quintero, personal communications, 2014). Tillage 
systems accounted for were: conventional tillage (moldboard or 
disk plow) and conservation tillage (harrow disk, chisel tillage, 
and no-till). The fraction of county under each tillage system was 
calculated based on this information and aggregated to the unit 
scale. Genetic improvement was estimated accounting for the 
spatial distribution of potential yield that represents the biophysi-
cal yield ceiling at a given location achieved under nonlimiting 
water and nutrient conditions (Evans and Fischer, 1999) and serves 
as a proxy of the mentioned improvement as no other factor can 
be reducing yield. Potential yield, estimated with CERES-Wheat, 
was obtained from a map elaborated by Magrin (2004) at regional 
scale and all values were calculated relative to the maximum. 
Using the locally estimated average annual genetic improvement 
of 0.74% yr–1 (Calderini et al., 1995), past potential yield was 
estimated per geographic unit by linear interpolation. By this 
procedure the evolution of relative potential yield across time and 
space was calculated in the Pampas. This new variable was used for 
subrogating the factor genetic improvement in our analysis.

Attainable Yield

Frontier functions were originally developed for economet-
ric analysis to calculate firm efficiencies (Aigner et al., 1977; 
Meeusen and Van den Broeck, 1977) and were applied to esti-
mate attainable yields (Battese and Coelli, 1995). Inefficiency of 
agricultural production results in yield values that differ from 
attainable yields as these are located under the limit defined by 
the frontier function. Statistical noise, caused by data errors and 
uncertainties, is estimated along with the inefficiency (Coelli et 
al., 2005). In frontier analysis, the Cobb–Douglas function is the 
most widely used model (Battese and Coelli, 1995):

qi = b xi + ni- µi  [1]

where, for our analysis, qi is the attainable yield of a unit (i = 1, 
2, …, 41); b is the vector of the unknown parameters, xi is a vec-
tor that comprises the independent variables; ni is a random (i.e., 
stochastic) error to account for statistical noise that can be posi-
tive or negative with zero mean; and µi is a non-negative variable 
associated with the technical inefficiency and is independent of 
ni. The symmetric random error term ni comprises the statistical 
noise which arises from unnoticed omission of relevant variables 
in vector xi and measurement errors. Frontier function outputs 
are limited from above by the random or stochastic variable exp 
(xì  b + ni). The term µi represents a decrease in yield that results 
from management factors that are insufficient or not applied 
properly or environmental constraining conditions. Estimated 
attainable yields can lie above or below the deterministic frontier 

function depending on the ni error term. The model is fitted 
using maximum log likelihood methods. The attainable yield fit-
ted using the frontier function to our yield data set is equivalent 
to the attainable yield concept and represents the best attained 
yield for a combination of production factors. Soil factors used 
as independent variables for estimating attainable yield were 
soil organic C, SAWSC, clay, silt, and sand content, pH, and 
soil inorganic C at different layers. Climate factors tested in the 
frontier function were monthly temperature, monthly rainfall, 
monthly PET, the ratio rainfall/PET, photothermal quotient 
and radiation during crop critical period, and the weighed com-
bination of climate variables during fallow, crop vegetative, and 
flowering periods. Time was also used as an independent variable 
subrogating the effect of technology improvement because all 
management factors tested in the analysis were autocorrelated 
(see below). A positive coefficient in the final model indicated 
that the tested variable had a positive influence on the dependent 
variable; a negative coefficient indicated the opposite. The model 
was estimated using FRONTIER 4.1 software (Coelli, 1994).

Yield Gap Quantification and Modeling

Yield gap at the geographic unit scale was calculated as the differ-
ence of: (i) attainable yield–statistical observed yield and (ii) attain-
able yield–mean ANN yield derived from a previously developed 
regional yield estimation model (De Paepe and Álvarez, 2013). 
Mean ANN yield comprised the average wheat yield estimated 
with a local fitted ANN model. It included the same combinations 
of environmental factors for attainable yield determined with the 
frontier function. A data set of 1640 yield gap values was calcu-
lated. These yield gaps were used later as dependent variable for the 
development of a yield gap estimation model using again the ANN 
method for evaluating regional soil and climate factor impacts.

When testing ANNs as modeling methods for regional yield 
gap, the gap was the output and the same variables tested for 
defining attainable yield were used as inputs. Tested network 
architecture comprised three neuron layers: input, hidden, and 
output. Linear transfer functions were used from the input layer 
to the hidden layer and also from the output layer to the network 
output, and sigmoid functions connected the hidden to the output 
layer (Lee et al., 2003). A feed-forward ANN was used as this type 
of network was proven to be suitable for yield analysis at vari-
ous scales (Kaul et al., 2005). Supervised learning procedure for 
weight fitting was performed with the back propagation algorithm 
(Rogers and Dowla, 1994). Network architecture simplification, 
scaling methods, learning rate, and epoch size were similar to those 
described by Alvarez (2009) and De Paepe and Álvarez (2013). 
Selected independent variables had a sensitivity ratio greater than 
one according to a sensitivity analysis (Miao et al., 2006). The 
data set was partitioned into 50% for training, 25% for validation, 
and 25% for testing to avoid over learning (Özesmi et al., 2006). 
Models were adjusted with the training set and early stopping of 
weight fitting was achieved when the R2 of the validation set was 
lower than the R2 of the training set (Kleinbaum and Kupper, 
1979). The test set was used for an independent model validation. 
Artificial neural networks were fitted using Statistica Neural 
Networks (version 2011, Stat Soft.).

Yield gap was related to regional productivity by plotting it 
against a soil productivity index developed in the Pampas for 
wheat (De Paepe and Álvarez, 2013). This normalized index 
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represented the historical yield production per geographic unit of 
the Pampas modeled at regional scale by a previously developed 
ANN model that included defining soil and climate factors. 
Regression and correlation analysis were performed for searching 
associations between variables testing significance by the F test 
(P < 0.05). Model performances were compared using R2 and 
root mean squared error (RMSE) (Kobayashi and Salam, 2000). 
Possible differences between the R2 values were tested by a specific 
test using Fisher’s Z transformation (Kleinbaum and Kupper, 
1979). Both the attainable yield and yield gap were graphically 

presented by maps using Quantum GIS Development Team 
(2015). Sensitivity analysis of the effects of environmental factors 
on the yield gap was performed as indicated in Alvarez and Grigera 
(2005) for estimating their effects on the gap.

RESULTS
The rainfall/PET ratio during the fallow and crop cycle showed 

a marked longitudinal spatial pattern with values as high as 1.5 in 
the East side to 0.6 in the West border of the region (Fig. 1A). As 
the photothermal quotient was related to temperature it followed 

Fig.	1.	Geographical	distribution	of:	(A)	the	average	rainfall/potential	evapotranspiration	(PET)	corresponding	to	fallow	and	crop	growing	
cycle	periods,	(B)	photothermal	quotient	during	the	crop	critical	period,	(C)	average	soil	organic	C	content	in	the	upper	50	cm	of	the	
soil	profile	for	the	total	time	series	accounted	for,	and	(D)	soil	available	water	storage	capacity	up	to	1-m	depth.	The	blank	sections	
correspond	to	areas	within	the	Pampas	where	wheat	was	not	an	important	crop	and	therefore	were	not	accounted	for	in	this	analysis.	
The	presented	information	corresponds	to	the	1967	to	2006	period.
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a North–South gradient but its variation was much lower than the 
rainfall/PET ratio (Fig. 1B). No temporal trends along the 40 yr 
study period were detected in temperature and radiation during 
the crop growing cycle. For example, average temperature during 
the growing cycle in the 1967 to 1972 period was 15.8°C and in 
the 2001 to 2006 period 15.7°C, meanwhile average radiation was 
16.0 MJ m–2 d–1 and 15.7 MJ m–2 d–1, respectively.

The soil organic C content had a spatial variation associated 
to the rainfall/PET ratio (R2 = 0.30, P < 0.05) (Fig. 1C). Soils of 
humid environments had larger C contents than under semiarid 
conditions. Conversely, SAWSC presented a different spatial 
variation, being greater in the North of the Pampas, in areas with 
higher temperature, but the association between both variables 
was weak (R2 = 0.08, P < 0.05) (Fig. 1D).

Fertilizer application started in the 1990’s in the Pampas with 
average rates rounding 5 to 10 kg N ha–1 reaching 80 kg N ha–1 
in some geographical units during the last years of this analysis. 
As N and P rates were highly correlated (R2 = 0.83, P < 0.05) we 
used only N data to represent regional fertilizer use. Nitrogen 
rates showed a significant positive trend with time (Table 1). 
Conventional tillage dominated in the past but in recent years in 
more than 50% of total cropped area crops were produced under 
conservation tillage practices. Conservation tillage use and 
genetic improvement were also correlated with time (Table 1). 
Consequently, as all three management factors considered in this 
analysis were correlated among them and with time we could not 
isolate effects from each other and used only time as a surrogate 
of all these variables, considering it as a variable descriptive of 
management improvement.

A frontier function could be fitted for defining attainable yield 
which included significant b parameters for the variables time 

and some climate and a soil variable (Table 2). Coefficients were 
positive in all cases indicating that these independent variables 
affect attainable yield positively. Sensitivity analysis showed that 
time had the largest impact on attainable yield, followed by the 
climate variables and SAWSC.

Attainable yield estimated with the frontier model ranged 
from 1820 to 3900 kg ha–1. The relation between attainable 
and observed yield had an intercept different from zero and a 
slope equal to one (R2 = 0.453; P < 0.05). As expected, attain-
able yields were generally larger than observed yields, with the 
exception of approximately 5% of the cases (Fig. 2A). These 
cases belong mainly to a humid subregion of the Pampas that 
corresponded to environments with very high productivity. 
When comparing attainable against mean ANN yields a similar 
trend was observed (R2 = 0.679, P < 0.05) but in only two cases 
mean ANN yield was greater than attainable yield (Fig. 2B). 
Dispersion, calculated as the difference between maximum and 
minimum values, decreased in the following order: attainable < 
mean ANN modeled < observed yields (Fig. 3A, 3B, 3C). Slopes 
of these relations were similar implying that yield increases per 
year showed the same pattern in observed, mean ANN mod-
eled, and attainable yield. Because of these results, further com-
parisons were performed only between attainable and ANN 
yield. Attainable yields were greater and yield gaps smaller in 
high productivity soils (Fig. 4A, 4B). Variability of attainable 
yields did not show a marked pattern while yield gap variability 
decreased where the soil productivity was larger. Spatial analysis 
showed that the largest estimated attainable yields corresponded 
to the southeastern portion of the Pampas with average values of 

Table	2.	Coefficients	for	the	parameters	of	the	yield	frontier	
function	at	the	geographic	unit	scale	(n	=	1640).

Parameter	and	variable Coefficient SE P > z
b1	Year 37.3 1.173 0.00
b2	SAWSC† 2.32 0.35 0.00
b3	Rainfall/PET	fallow‡ 163.8 21.2 0.00
b4	Rainfall/PET	vegetative	growth§ 210 25.2 0.00
b5	Photothermal	quotient¶ 419 47.7 0.00
†	SAWSC,	soil	available	water	storage	capacity	0	to	100	cm	(mm).
‡	PET,	potential	crop	evapotranspiration	from	April	to	June.
§	Potential	crop	evapotranspiration	from	July	to	September.
¶	During	crop	critical	period	(MJ	m–2	d–1	°C–1).

Fig.	2.	Attainable	yields	vs.	(A)	observed	yields	and	vs.	(B)	mean	artifical	neural	network	(ANN)	yields.

Table	1.	Pearson	correlation	coefficients	between	time,	manage-
ment-related	variables,	and	crop	yield.	All	significant	at	P	<	0.05.†

Variable Time Yield N	fert.
Conserv.	
tillage

yr –––––	kg	ha–1	––––– %
Yield,	kg	ha–1 0.612
N	fert.	kg	ha–1 0.834 0.647
Conserv.	tillage,	% 0.766 0.534 0.724
Genetic	improve.,	% 0.681 0.679 0.683 0.482
†	Fert.,	fertilizer;	Conserv,	conservation;	Improve.,	improvement.
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3100 kg ha–1 while the lowest values corresponded to the semi-
arid portion with an average of 2600 kg ha–1 (Fig. 5A). Yield gap 
presented an opposite spatial trend (Fig. 5B).

The yield gap could be modeled by an ANN model (R2 = 
0.745; RMSE = 144 kg ha–1, P < 0.05) (Fig. 6A, 6B). The fitted 
network had six neurons in the hidden layer and a good general-
ization capacity as no significant differences were detected in R2 
between training + validation and test sets. Slopes of observed 
vs. estimated values were not different from 1 and ordinates were 
equal to 0 (P < 0.05). Selected input variables were: time, soil 
organic C (0–50 cm), SAWSC (0–100 cm), average rainfall/
PET during fallow and crop growing periods, and photother-
mal quotient. Contributions of other variables on the yield gap 
prediction were not significant over this model. All the inputs 
showed curvilinear effects and strong interactions. This regional 
model allowed estimating input impacts on the yield gap. When 
rainfall/PET ratio was one yield gap had the lowest value and 
with smaller and larger climate ratios it increased. Soil variables 
interacted and a minimum yield gap was detected at medium to 
high values of organic C and SAWSC (Fig. 7). Under an average 
climate scenario, represented by average rainfall/PET and photo-
thermal quotient values per geographic unit corresponding to the 
1967 to 2006 period, this optimal yield gap rounded 300 kg ha–1 
in units where soil organic C content was 60 to 70 t ha–1 in com-
bination with a SAWSC ranging 120 to 150 mm. The yield gap 
increased to more than 1000 kg ha–1 in soils with a high organic 
C content and low SAWSC or vice versa.

DISCUSSION
We disentangled some of the factors that determine wheat 

yield gap in the Pampas by combining frontier analysis and an 
ANN approach. The analysis relies on the integration of bio-
physical factors at regional scale for modeling attainable yield, 
average yield, and the yield gap between these production levels. 
As available data on crop production were generated at county 
scale from field surveys, and as in these datasets uncertainties 
were previously detected (Paruelo et al., 2004; Sadras et al., 
2014), the information was aggregated up to groups of counties 
with similar area, to eliminate outliers and decrease variability 
(Bakker et al., 2005; Grassini et al., 2015). Conversely, climate 
and soil data were estimated using information from 960 climate 
interpolation maps and 1000 modeled soil profiles of seven soil 
variables accounting for their influence area. The uncertainty of 
these estimations was small, rounding for example approximately 
5% for the variable soil organic C (Berhongaray et al., 2013). 
Because of the wide range of climate and soil properties included 
in the analysis, environmental factor effects could be weighted 
under very contrasting combinations.

A limitation arose when addressing management effects on 
the yield gap. Detailed management information is lacking in the 
Pampas as was previously detected in other regional assessments 
(Neumann et al., 2010). Consequently, we were forced to use a 
combination of the available present information at regional scale, 
national time trends, and expert knowledge to estimate present 
and past management factors. Fertilizer rate, conservation tillage 

Fig.	3.	Time	trends	of	(A)	attainable,	(B)	mean	artifical	neural	network	(ANN),	and	(C)	observed	yields	for	the	study	period	of	40	yr	
(1967–2006).

Fig.	4.	Association	between	a	soil	productivity	index	and	(A)	average	attainable	yield,	and	(B)	the	average	yield	gap.	The	soil	productivity	
index	was	developed	locally	and	defined	wheat	yield	related	to	environmental	factors.
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use, and genetic improvement were the management factors that 
we attempted to split into independent variables but due to the 
high correlation between them and with time we could not deter-
mine their individual eff ects. Th e only alternative was using time 
as a variable that partially surrogated management improvements 
as was done previously by others (Lobell and Burke, 2010).

Th e frontier model allowed a simple estimation of attainable 
yield based on available national statistics. Th e estimated values 
resulted from the highest attained yields for each combination of 
climate and soil conditions during a determined year. Th e constant 
term was not signifi cant and therefore no assumptions had to be 
made (Singh et al., 2003). Th e method assumed that yield reduc-
ing factors like frosts, diseases, etc. were absent. Considering that 
under production conditions these reducing factors are usually 

present at diff erent intensities, it seemed reasonable to assume 
that their impact was minimal when the attainable yield produc-
tion level was reached (Egli and Hatfi eld, 2014). Attainable yields 
increased in deep soils with large SAWSC when climate condi-
tions were favorable for the crop. Th is resulted in greater attain-
able yields in soils with larger productivity. Attainable yields were 
also time dependent showing a strong infl uence of technological 
improvements on wheat yield in the Pampas.

We used a new yield gap estimation approach by subtracting a 
mean ANN modeled yield from the attainable yield production 
level. Th is modeled mean ANN yield represented the expected 
average yield for combinations of environmental variables. Its use 
reduced the variability in the yield gap estimation and eliminated 
some inconsistencies detected when comparing observed and 

Fig.	6.	Relation	between	observed	and	estimated	yield	gap	for	the	training	+	validation	(A)	the	test	data	set	(B).

Fig.	5.	(A)	Average	estimated	attainable	wheat	yield	and	(B)	average	yield	gap.	The	presented	information	corresponds	to	the	1967	to	
2006	period.
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attainable yield, given that larger observed yields were detected 
in some areas when compared to attainable yields. These incon-
sistencies have been observed in other studies with process based 
model estimations compared to observed yields and were attrib-
uted to system misspecifications (e.g., soil, climate), incorrect 
reported yields, or model constraints (Carberry et al., 2013; Van 
Ittersum et al., 2013). As these inconsistencies disappeared in our 
data set when using mean ANN yield for yield gap calculation 
it seemed more probable that in our case they were produced by 
a bias in the available observed yield data set. Yield gap size and 
its trends in different subregions of the Pampas were generally 
similar, both using the observed or the mean ANN yield (data 
not shown), but the yield gap based on the modeled mean ANN 
yield was less affected by unknown extreme reducing factors and 
possible errors that impacted the reported observed yield values.

Attainable yield and yield gap were negatively correlated 
(R2 = 0.18, P < 0.01). In the geographic units of the Pampas 
were optimal climate conditions in combination with large soil 
productivity resulted in large estimated attainable yield levels 
during most of the years resulting in lower yield gaps. Conversely, 
where attainable yield levels were reached only during some years 
because of variable and low-rainfall conditions combined with 
low soil productivity yield gaps were larger. Similar results, that 
is yield gaps were larger where actual yields were lower, have been 
reported in other wheat production regions of Europe (Abeledo 
et al., 2008) and Asia (Lu and Fan, 2013) but, conversely, another 
study found no relation between wheat yield gap and yield levels 
in Australia (Peake et al., 2014).

For the 2002 to 2006 time interval mean yield gap of wheat in 
the Pampas was 865 kg ha–1 (25% of the attainable yield produc-
tion level) and varied between 200 and 1800 kg ha–1 depending on 
the geographic unit. During the mentioned time interval it ranged 
from 26% in humid environments to 42% in semiarid ones. The 
semiarid western portion of the Pampas and the very humid 
northeastern border had the lowest attainable yields and the largest 

yield gaps. This spatial pattern may be partially attributed to the 
high rainfall variability of the semiarid Pampas (Hall et al., 1992) 
that can explain why average yields largely differ from attainable 
yields. In the northeastern geographic units excessive rains can 
induce wheat diseases (Annone, 2001) and lodging problems (De 
San Celedonio et al., 2014), meanwhile under semiarid environ-
ments favorable years allow yields to get close to attainable yield 
but rainfall variability leads to high yield gaps many years.

By applying a similar approach than ours, that is by calculat-
ing differences between attainable yield estimated by frontier 
analysis fitted on statistical data and observed yields, Neumann 
et al. (2010) reported a yield gap that ranged from 500 to 
2000 kg ha–1 in the major part of the Pampas. This reported 
yield gap showed a relatively similar spatial pattern than that of 
our study. The results of the estimated yield gap of the Pampas 
and that of Neumann et al. (2010) tended to be greater in low 
productivity areas decreasing in favorable environments, and 
contrast with results from Mueller et al. (2012) that estimate 
greater yield gap in the semiarid-low productivity semiarid 
Pampa. The discrepancy may be the consequence of the different 
level of detail in the baseline information used for the analysis.

To our knowledge, this was the first time that an ANN model 
was used as a tool for identifying some of the regional yield gap 
environmental controlling factors. Beyond the very strong effect 
of the rainfall/PET ratio, which accounted for 46% of the yield 
gap variability, as revealed by a sensitivity analysis, soil properties 
also regulated it, accounting for 52% of its variability. Minimum 
yield gaps were modeled for combinations of soil organic C 
contents and SAWSC for which maximum wheat productivity 
was detected in the Pampas (De Paepe and Álvarez, 2013). Yield 
gap increases not only in low productivity areas but especially in 
low productivity soils located in the semiarid and in the upper 
humid East areas. There are only a few reports of measurable 
effects of soil properties on yield gap. For example, in the semi-
arid Pampas when the water retained in soils increased the yield 
gap decreased in sunflower (Helianthus annuus L.) (Grassini et 
al., 2009) and yield gaps of maize grown with inorganic fertilizer 
in Sub-Saharan Africa decreased when clay contents were below 
20% or above 40% (Sileshi et al., 2010). The results of our study 
suggested that reducing yield gap efforts must be focused in the 
Pampas with low productivity soils. Soil available water storage 
capacity is a property that suffers only minimum changes by 
management but soil C can be deeply impacted by agricultural 
practices, for instance through crop rotations. Local studies have 
determined that increasing the proportion of perennial forage 
crops in rotations (Studdert et al., 1997) or replacing soybean by 
other crops like corn, that leave more residues in the soil (Álvarez 
et al., 2011), can increase the soil organic C content. In our study 
the wheat yield gap was significantly affected by soil organic C 
but it is not probable that wheat yield has a significant impact on 
soil C because this crop accounts for no more than 10 to 15% of 
rotation time (Caride et al., 2012), thus the main contributors to 
soil C are the other rotation components as stated above.

The present study represents the first attempt to disentangle 
the effects of soil and climate variables on the wheat yield gap 
in the Pampas using a combination of frontier analyses and 
ANN approaches. This methodology can be applied to other 
crops and regions. The modeling methods, although statistically 
demanding, can be performed when only statistical yield data 

Fig.	7.	Interaction	between	the	two	soil	variables,	soil	available	
water	storage	capacity	and	organic	C,	which	partially	determine	
wheat	yield	gap	in	the	Pampas.	Isolines	indicate	identical	yield	
gaps	for	the	combination	of	both	variables.	Numbers	on	the	lines	
show	yield	gap	values	(kg	ha–1).
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are available and are simpler than process based models. They do 
not require a parameterization and validation process and the 
information needed can be obtained from common soil surveys, 
climatic records, and national statistics.

CONCLUSIONS
A novel approach was applied in this analysis for yield gap calcu-

lation combining two modeled yield values, a frontier yield, and an 
average ANN yield, to avoid large variability observed in national 
statistic yield information. The results showed that yield gap and 
its geographical pattern was not only associated with climate 
factors but also largely with soil factors and this could be very well 
modeled by an ANN method. More than 50% of the gap vari-
ability was explained by two soil variables: organic C and SAWSC. 
Yield gap modeling allowed the identification of a positive interac-
tion between these soil variables that defined a minimum yield gap 
at average values. The combination of very low or high values of 
C and SAWSC leads to gap increases. Lowest yield gaps matched 
soils with a large productivity while low productivity soils were 
associated to the largest yield gaps.
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