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We prove the weighted boundedness for a family of integral operators T;, on Lebesgue spaces and local BM O
type spaces. To this end we show that 7, can be controlled by the Calderén operator and a local maximal
operator. This approach allows us to characterize the power weighted boundedness on Lebesgue spaces.
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1 Introduction

In this paper we will study the weighted boundedness for a family of integral operators on different spaces of
functions. To be more specific, forn > 1 and 0 < @ < n, we define T, by

B f(y)
Tf (x) = A =yl e

These operators were introduced in [6]. In that article the authors proved the boundedness on L?(R) in order to
get the main results concerning a family of maximal operators on the three dimensional Heisenberg group. In [3]
it was proved that this family of operators is of type (p, p) for 1 < p < oo and of weak type (1, 1) on R".
Weighted boundedness for a more general family of operators is studied in [7]. The authors used the unweighted
results already known to prove the weighted boundedness of type (p, p) for 1 < p < oo and of weak type (1, 1)
for a wide family of weights in A . They also proved an appropriate weighted estimate from a subset of L> (&™)
into BM O (w). Additionally, the boundedness of this type of operators on the Hardy spaces H? is studied in [8].
In this article we prove the weighted boundedness on Lebesgue spaces for the operators T, defined above, and
we do this in a different way that in [7]. We bound 7, with the Calder6n operator and a local maximal operator,
and then we use the known results for these. This method allows us to obtain at the same time the weighted and
unweighted boundedness. This approach leads us to characterize the boundedness of T, for power weights.
Finally, based on the articles [1] and [4], we prove the boundedness of T,, from a subset of a local BM O (w)
type space into BM O (w). This result improves the one in [7].
In Section 2 we recall some definitions and preliminary results that will be needed in this paper. In Section 3
we state our results and we give the necessary definitions. Finally, in Section 4 we prove our results.

2 Preliminaries

It is well known that a weight is a locally integrable and non-negative function, and the Muckenhoupt class A,
1 < p < o0, is defined as the class of weights w such that for all balls B

< ! / )( ! f 'l)p1 c, ifl @2.1)
— o)l — | o <C, ifl<p<oo, .
|B| Jp |B| Jp
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906 E. Ferreyra and G. Flores: Weighted estimates for integral operators on local BM O type spaces

B
% < Cessinfo(x), if p=1, 2.2)
where w(B) = [, @. Also Ao = U, o, Ap-
Other weight classes were introduced to analyze the boundedness of different operators. In this article we
define some of these classes.
In [2], the authors consider the classical Hardy operator P and its adjoint Q given by

1 _ f()
Pr = [ s ortw= | a

|x]" yizlx V1"

’

and the Calderén operator S defined as S = P + Q. They prove a characterization of the weights for which §
is of weighted type (p, p), 1 < p < oo, and of weighted weak type (1, 1), by a single condition. The weight
class denoted A, o, consists of the weights satisfying the conditions (2.1) and (2.2) respectively, but only for balls
centered at the origin.

In [5] the authors analyze weighted boundedness for a local maximal operator. For this, they introduce local
balls as follows: for 0 < k < 1, a ball B(z, r) centered at z with radius r is a k-local ball if 0 < r < k|z|. Denote
by O the family of all these balls and define a local Hardy-Littlewood maximal operator by

1
My joc f(x) = sup —/ Ifl, x eR"\ {0}
BeO;:xeB |B| B

Then, they characterize the class of weights for which My . is of weighted type (p, p), | < p < 0o, and of
weighted weak type (1, 1). This class of weights denoted A, 4 1., consists of the weights satisfying the conditions
(2.1) and (2.2) respectively, but only for k-local balls. After that, they also prove that A x joc = A 110 fOr any
0 < k, ! < 1. Therefore, this class of weights is denoted by A, ;o and Ao joc = Ul§p<oo Aploc.

Remark 2.1 In both articles [2] and [5], some known properties of A, were also analyzed for A, ;,. and A, o.
Also, some counterexamples are provided.

Continuing with the analysis of the local maximal, the boundedness of M; ;,. on a weighted local BM O space
were investigated in [1] and [4]. For this, the authors define a ball B(z, r) to be a sub-k-critical ball whenever
r < k|z|, a k-critical ball if r = k|z| and a supra-k-critical ball if r > k|z| and does not contain zero. In this
context, the weight is a locally integrable and non-negative function w on R” \ {0}.

Definition 2.2 BM Oy ;,.(w) is the space of functions f locally integrable on R" \ {0} that satisfy the conditions
ﬁs) /, s |f — [zl < C; forall sub-k-critical balls B, and #B) /, 5 | f] < Caforall k-critical or supra-k-critical balls.

o(
Here f5 = ‘lﬁfo.

In [1], the authors prove that M; ;. is bounded from BM Oy j,.(w) into itself if and only if w € Ay joc.

3 Main results

For simplicity, we denote M;,. = M%,loc‘ Throughout this paper ¢ and C will denote positive constants, not
necessarily the same at each occurrence.

The following lemma shows that T, is pointwise controlled by the Calderén operator and the local maximal
operator Mj,..

Lemma 3.1 Let f € L}, .(R") be non-negative, then

loc
Tolf('x) = C(Sf(x) + Mlocf('x) + Mlocf(_x))’
where C depends on o and n.
Using the characterization of weighted boundedness for S and M), proved in [2] and [5], we obtain.

Theorem 3.2 Ifw € A, ;,c N A, o = A, and satisfies o(—x) < Cw(x) foralmostall x € R", then the operator
T, is of weighted strong type (p, p) for | < p < 0o, and of weighted weak type (1, 1) if p = 1.

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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An important class of weights is that of power weights of the form w(x) = |x|?.

It can be seen that a power weight € A, if and only if € A, 5. On the other hand, it is known that: for
1 < p < oo, then w(x) = |x|” € A, if and only if —n < B < n(p — 1), and w(x) = |x|f € A; if and only if
—n<pB=<0.

It is easy to prove that T, f (x) > ¢Sf(x), where ¢ only depends on the dimension n. Then, using this fact and
Theorem 3.2, we obtain:

Corollary 3.3 Let w be a power weight and let 1 < p < oo. The operator T, is of weighted strong type (p, p)
if and only if w € A,,. The operator T, is of weighted weak type (1, 1) if and only if w € A;.

Next, consider T, from the space
L¥(w™) = {f € Lipe ®") | fo™ |, = 1l 1) < 00}

into BM O(w), where BM O (w) denotes the space of functions f € L), .(R") such that ﬁ el f = fel =C
for all balls B.

For this, we first take into account the boundedness of the Hardy operator P and its adjoint Q from a space of
functions containing L>(w™").

Definition 3.4 Let  be a weight, we define the set BMy(w) as the functions f € L], (R") such that

loc
1
m/BUc(xﬂdx < Cy,
for all balls B centered at zero.

If v € Ay, we can define || £l g1,y = inf{C;}, where the infimum is taken over all constants C; satisfying
Definition 3.4. In this way |- s, («) 15 @ norm on BM(w). It is immediate that || f || gy, () < I.f Iz (,-1) for all
f e L®(w™"), thus L®(0™") € BMy(w).

On the other hand, since |Qf (x)| and |T, f(x)| are infinity for a constant function f, we cannot expect the
boundedness of these operators over all the space L™ (w™"). Therefore we define

Ly (o) ={f € L®w ") : 1Qf(x0)| < oo for some xo}
and
E(BMy(w)) = {f € BMy(w) : |Qf (x0)| < oo for some x}.

Proposition 3.5 Ifw € A then there exists C > 0 such that

(D) 1Pfllw1y) < CIf paty(w) for all f € BMy(w).
(i) 1Qf lgpmo(w) < C Ifllpay(w) for all f € E(BMo(w)).

These properties for P and Q will allow us to give another proof of the next result, already proved in [7].

Theorem 3.6 If w € A, and satisfies w(—x) < Cw(x) for almost all x € R", then there exists ¢ > 0 such that
1T fllgpo(w) < €l fllpe(or forall f € LE(o™h).

Now, we introduce a suitable local BM O type space.

Definition 3.7 Let  be a weight, then BM O(w) is the space of functions f € L (R") satisfying

loc

(i) f € BMo(w).
(>ii) ﬁfB |f — fel < Cy, forall B= B(xg,r)with0 <r < é|xo|.

If o € Ay, we can define on BMOy(w) the norm

If Il Bar0g(w) = IF{C1 + Co},

where the infimum is taken over all constants C; and C, satisfying the conditions (i) and (ii) of Definition 3.7,
respectively.

www.mn-journal.com © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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It is clear that L™ (w~!') € BMO(w) N BMy(w) C BM Oy(w). Moreover, it can be seen without difficulty
that

BMO(w) N BMy(w) = BM Oy(w). (3.1)
For the same reason as before, we define

E(BMOy(w)) = {f € BMOy(w) : |Qf (xo)| < oo for some xo € R"}.
We now state our main result.

Theorem 3.8 Let f € E(BMOy(w)). If o € Ay and satisfies o(—x) < Cw(x) for almost all x € R", then
Tof € BMO(w). Moreover; there exists ¢ > 0 independent of f such that | T, f | syro(w) < ¢ 1 fllgroy(w)-

This theorem provides an improvement of the result given by Theorem 3.6. Indeed, if @ = 1 the function
defined on R by ho(x) = log ﬁ for x € (1, 3), and ho(x) = O otherwise, satisfies kg € E(BMO()(a))) but
ho ¢ Loo(a)il).

Remark 3.9 Considering (3.1), we make a brief comparison between the BMy(w), BM Oy(w) and BM O (w)

spaces in the 1-dimensional case with w = 1.

Let

1 1
log— if|x| < 1,
folx) =1 Vx =1 and go(x) = g x| &l

0 otherwise, 0 otherwise.

ifx e (1,2),

It can be seen that fy € BMy(w) but fo ¢ BMO(w), so fo ¢ BMOy(w). After that, go € BMO(w) but gy ¢
BMj(w). Therefore, the inclusions BM Oy(w) C BMy(w) and BM Oy(w) C BM O(w) are strict, and the B My (w)
and BM O (w) spaces are different in the sense that there is no inclusion among them.

4 Proofs

In this section we use some properties of A, weights, including the doubling condition and the reverse Holder
inequality (RHI), among others.

As usual, the Hardy-Littlewood maximal operator will be denoted by M. Given E, a subset of R”, we denote
by E° its complement in R” and y, its characteristic function. A(z,r, R), with 0 < r < R, denotes the annulus
centered at z with radii » and R.

Remark 4.1 If w is a weight and E is a bounded measurable set in R”, then ess Einfa) < I_IIE\ f £ - Therefore, if

w € A| we have
w(B) |E| : o\
——~>—— < (C(essinfw ) | essinfw <C,
|B| o(E) B E
for all balls B and any set E C B with positive measure.

Proof of Lemma 3.1 Letx 0. We call U; = B(0, |x|) N B(x, ) n B¢(—x, &) and U, =
B(0, |x]) N B(x, %) NB°(—x, %) We decompose the operator 7, as follows

T f () = Tuto, £)(6) + T, 1)) + T (XB(X,.;)f) () + T, (XB( X)f) (). @D

—x,

IfyeUlthen|x—y|z%and|x+y|zm,andso

TQ(XU] f)(x) < cPf(x). 4.2)
If y € U then |x — y| > ‘él‘andlx+y| = %',andso
T (xo, ) (x) < cOf (x). (4.3)

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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Now, if y € B(x, 4l) then |x + y| > |x], and so

2
/ fy) dy < ! / o) 4
a(e2) il + oy S T o) e
c > 1 /‘
= — f(y)dy
|x|n « JXZ; (2 ']|x|>a 27 x| <|x—y| <277 |x| (44)
=1
< cMj,e f(x) Z Sn=a)
j=1
= CMlocf( )

x|

Similarly, if y € B(—x, 7) then |x — y| > |x|, and so

)
d M()C - . 45
fB(—nE) oyl 4y = f(=x) (4.5)

Therefore, using (4.2), (4.3), (4.4) and (4.5), and replacing in (4.1), we conclude the proof of the lemma. O

Proof of Proposition 3.5. Part (i) isimmediate. For part (ii), let f € E(BM(w)) and w € Ay,
then we want to prove that Qf(x) is well defined for all x # 0. Indeed, let xo € R”" such that Qf (xo) is finite.
Then [Qf (x)| = QI fI(xo) < oo for |x| = |xol. If O < [x] < |xol, then

_ f()
|0f(x)] = /|| o dy‘
) ) 0
B /|xo>.v|>|x [yl" dy'+‘/>-|>|xo [yl dy'
1
< /B oo 1O+ 07 )

1
< I awy(o) e (BOO [xol)) + |0 (x0)| < oo.

Now, let > 0 and v € R” such that |v| = r, then

Lf ()l
— d dyd
/;’(O,r) |Qf(x> Qf(v>| *= ~/(;<|x<r /l;r<y|<r |y|n Y

B If(y)l( >
B /(;<|y<r |y|n /;3(0,)'|) o dy

< C £l pasyor) @(B(O, 7).

Therefore,

1

o(B(0.7)) /Bm,r) |0f () = QF )] dx = CIf Nuto - 46)

Now, we consider the ball B(a, r) withr > % > 0and v € R” satisfying |v| = 3r. Since B(a, r) C B(0, 3r),
using (4.6) and Remark 4.1, we have

1
w(B(a.r))
- w(B(0,3r)) 1
~ o(B(a,r)) o(B(0,3r))
= C S Bmy(w) -

/B( 10£()— 0rw]ax

/ 107 (x) — Of (v)] dx
B(0,3r)

www.mn-journal.com © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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In contrast, if we consider B(a,r) with 0 <r < ‘12' and v € R” such that |v| = |a| +r, then B(a,r) C

B(0, |a| +r), |x| > |a| — r for x € B(a,r), and |a| — '“' . Thus, using Remark 4.1
1 1
- _ d -
@ 1270 - 270 w(B(a 5l

/ / ();)| dydx
(1 }" (a,r) Jdlal—r<lyl<lal+r |y|

|Ba,r‘ 1

< w(B(a,r)) (ja| —r)" /.V|<Ia|+r Lf(y)ldy

la] +r\"
C U f g ) (|a| —r)

= C 1S 1 Bao(w)

Mdy‘dx

x|<|yl<la|+r |Y|

IA

0

Proof of Theorem 3.6. Let f e Lgo(co"). By Proposition 3.5 and Lemma 3.1, we have T, f €
L} (R"). We make a similar decomposition as we did in the proof of Lemma 3.1. Let K, (x,y) = |[x — y| ™ -
|x + y| "t andU:B(O,%lxl)ﬂBC( I’C‘)OB”( Ix‘) then

T, f(x) = QF () = Tty £)() + Tu (e, ) )0 + T () £) ()

1
—/ —f(yn) dy+f (Ka(x,y) - ,l)f(y)dy-
wi<lyl<2px 1Y Iyl> 31| |yl

In a similar manner as the proof of Lemma 3.1, we obtain

Ta (0 £) () + T () £ (6) + T (X 5 £) (%) = / i) dy'

lel<lyl<3pe) Y17

= C<P|f| (%x) + Mloc|f|(x) + Mlu<'|f|(_x))
< C(MIfI(x) + M| f|(—x)).

By the mean value theorem and w € A, we have

| o) FO) (Kol =

Lf ()l
d
Be(0.21x) |yl

< Clx|

w(y)
Be(0.21x) |yl

= Clfllo Zm/ “’fnyfl d

x[27 <|y|<3|x|2i+! ly

= Clfllze(oy Ixl

S LIl
< Clf o) Z o(y)dy
= @) =g
< Cllfllwy @(x).
Now, using that w satisfies w(—x) < Cw(x) for almost all x € R”, we obtain

ITuf — Of lpniw ) < C (||M<|f|)|!mw4> F MDY ey + ||f||Loo<wf.>),

where (Mf)Y(x) = Mf(—x). Thus, by Proposition 3.5 we have proved the theorem. O

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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Before proceeding to the proof of Theorem 3.8 we state some results that we need.
In [1], the version on RT = (0, 0o) of the following two lemmas is established (see Lemmas 3.1 and 3.3). We
claim that the same proofs, with some obvious modifications, can be adapted to this setting.

Lemma 4.2 If w € Aco joc then BM Oy 1oc(w) = BM Oy j,c(®) for any 0 < k, 1 < 1, with norms and equiva-
lence constants depending on w, k and l.

Lemmad4.3 Letw e A, joc and 0 < k < 1. For 1 <r < p/, there exists a constant Cy, depending onr, k and
the A, i 1oc constant of o, such that if f € BM Oy joc(w) then

r

l -
<_w(B)fB|f(x)—fB|’w“ (x)dx) < Celf 13m0y ()

for all sub-k-critical balls B.

Remark 44 Let we€ A; and f € BMOy(w). It is not difficult to see that f € BM Oy (@) and
1 1 p0g (@) = Ck I f 1gp0y(w)> TOT k = é By Lemma 4.2, this statement holds for all 0 < k < 1.

Let € C*°(R) such that 0 < ¢ < 1, supp(y¥) = [—3, 3] and yr(¢) = 1 for t € [—1, 1]. We define

v (1x e = 1) f(y)
R X — y¥|x 4yt

Vo f(x) = dy, x #0.

If f is non-negative, then V, f < T, f. Consequently, by Theorem 3.2, V,, is of type (p, p) with respect to the
Lebesgue measure for 1 < p < oo.
The following lemma is the key to Theorem 3.8.

Lemma 4.5 If w € Ay, then V, is bounded from BM Oy(w) into itself.

Proof. Let f € BMOy(w) and let fy = %.
We will prove first that the bounded oscillation condition (ii ) of Definition 3.7 holds for V,, f. Let B = B(xo, r)
with radius 0 < r < §|x0|, we want to prove

1
me |Va f (x) — c|dx < C I flgaog(o) - 4.7

for some constant ¢ depending on f and B; and C depending on w and n.
We decompose f as

=0 =T8)Xs + (f = fB)Xpye T+ f8=Fi + L2+ f

where 2B = B(xo, 2r).
First, consider V,, f;. Since w € Ay, then it satisfies RHI with exponent s > 1. Thus w® € A;. We choose g > 1
and y > 1 such that s = ” 1 . Using that V, is of type (¢, q) for 1 < g < oo and the Holder inequality, we

obtain
2 )

IA

IA

I/\
S f\ E
\_/ <=
N e e
= =
| |
e
= 2
g €
i J
z _Q
< —
= N
N
S— T
s, S
N—— I
3 3
= N—

2B
B‘f vq ﬁ
l | </ | fas — fol" "'~ ) </ ws) : (4.8)
2B

www.mn-journal.com © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Now, we analyze each term of the last expression in (4.8). Applying Lemma 4.3, the doubling property for the
wights in A, and Remark 4.4, we have

1
7

|B|$ — i lyq>qu< S)yq
(L= parto [ o

s

=B oy i (222))
REE—) vq v
= C!)(B) BM Oy 1oc(w) [2B|
LI S J DI SO
< C|B|v 7 viw(B) it £ 1531000
=C ”f”BMOo(w) . 4.9)

For the second term, we use that »® € A,,, the doubling property and Remark 4.4. Then

|B|$ _ vq lyq)qu< v)yl'

w(3)</23|f23 ol /23“’
L )( ) _
w(B)(/;Bw /2860 | f2B — fBl

<C'B"'L'|2B|l . /If sl
= SN 4 — — J2B
w(B) |B| Jg

LI
< CIBI7 " N f I BMOy soe ()
= ClIflIBmoy(w) - (4.10)

Next, consider V,, f>. Let x € B = B(xq, r),
|Ve fol6) = Ve fol0)| = /R | 201K e, ) [0 (117 e = y1) = v (bxol ™ o = y1) [ dy

+ [ 12O (ol ™ o = y1) [ Ka(x. y) = Ka(xo. y)| dy. (.11

We again analyze each term.

We note that if x € B, then I|xo| < |x| < Zlxol. If ¥ (Jx|~"|x — y|) # 0 then y € B (x, 3|x|). Further-
more, if y € B (x, |x|), then ¥ (Jx|~'|x — y|) = 1. Thus, if |y (Jx|~"x — yI) — ¥ (lxo|~'|xo — yI)| # 0, then
y € Q=B (x, 31x]) U B (x0. 31x0l) ] N [B (x, 11x]) U B (x0, 3lx0l) ]. Now, if y € @\ B (xo, 3|x0]), then
ly —xol <y — x|+ |x — xo| < $lx|+r < LIx0l. And if y € B(xo, 3|x0l), then |y — xo| < $|xol. Hence  C
B (xo, %|x0|) = By. Next, applying the mean value theorem, we obtain

[ (Ix17 % = y1) = ¥ (Ixol ™ 1xo — )|

[x =yl Ixo—yl
< |1/x/<s>|‘ -
| x| [ X0l
§C< | N e P T Ixo—yID
|x| |x] |0l |x]

p
<C—.

[xo]

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com



Math. Nachr. 288, No. 8-9 (2015) / www.mn-journal.com 913

We also observe that if y € 2, then |x — y| > c|xp| and |x + y| > c|xg|. Therefore, we have

| () 1Ka(x, 9) [ (1217 x = yI) = ¥ (Ix0] ™ 1xo — yI) | dy

RH
r 1
—— | [f(y)ldy
|xol |xo] Bo
e 104 4.12)
=0 2ly)lay. .
|xol | Bol JBg,

Next, we choose a natural number jy such that 27 < dy|xo| < 29*'r where dy = 11. We denote L; =
B(xo,2/r) for j =0,1,2,..., jo,s0 L; C By. Then

Jo
|f = f5l < 1f = fal 4 1 f5, = fr |+ Y\ fu, = fu, |

j=1

C Jo C
slf—f3|+—/ \f = fal + \f = ful
L, L, ’ ; [Lj1lJe,.,

Jo

C C
— — — — — 1.l 4.13
<If f30|+|BO|/BU|f fB(]|+j§:]j|Lj|/L]|f fi,l (4.13)

Since Bpand L;, j =0, 1,2, ..., jo,aresub-z-critical balls, using (4.13), Remark 4.4 and m(2 +Jjo) < (1 +dp),
we obtain

r 1 r w (B /o w(L;
C [ f2] < Crom I f 1 a100(w) (2 (Bo) +Z ( 1)>

1xol [Bol Ja, Bl =L,
r . .
< C—I1flgmoy(w) (ess 1nfa)) 2+ jo)
|xol B
< Clflgmoy(w) essBinfa). (4.14)
Therefore, by (4.12)
[ |fz<y)|Ka(x,y>‘w('x - y') - w("“’ - y')‘dydx
w(B) Jp Jrs x| |xo]
<C ﬂ £l inf.
=SB Tl Baoy(w) ess infew
= Cliflymoo(w) - (4.15)
We now estimate the second term of (4.11). Applying the mean value theorem, we have |Ka (x,y) — Ko (x0, y)| <
C |V|:(j3|+1 < Cr=pr- Thus

ﬁ /B /Rn | 21 (1%l ™" x0 = ¥1) | Ka (x, ¥) = Ka(x0, ¥)|dy dx

<C”|B| / |f2(9)] dy
~ o(B) B(x0. L x0l) [y — xol"*!

r|B| Lf () — f5l
=C—— ————d
w(B) fA(xo,zr,ml) iy —xo

2
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We choose j; a natural number such that2/'r < %|x0| <20t Wecall A; = A (x0,2/7'r,2/r),L; = B(x,2/r)
with j =1,2,..., ji and A = A(xo, 2/, 2!). Then
B
c r| |‘/’ If(y) fﬁld
C()(B) A(ro 2r, ‘)0‘) |y_-)‘70|n+
r|B| f 1f(y) = fal |f(y) — /8l
<cl2L dy+ [ X0,
w(B) Z |)’—xol”+1 a |y = xo|"H!
BRI L [ 5= fatt g [ 17 = gl
=" o(B) = (zjr)nJrl A B (2j]r)n+1 " B
SYHLIN o [t s [ g
= : — JB —X B
w(B) P 271L;| L; 2J'|B(x0,%)| B(xo, 20l
Arguments similar to those leading to (4.13), (4.14) and (4.15) give
Bl | 7
+
iy quu/ f— fal |B(xo,x7°)|/3(xo,*0 \f = fsl
|B| Ji 1 J
<C - — fL. — f1.
< w(B)[;‘Mj'/L/ (If ful+ L fL,l|>
1
+ STBO Dy, (F = P+ U 3 = S
S CUSNBMO 1oe () o(B) |:Z 2J|L | + 2—];—|
(B (xo, M)
e R AL AN
|B(xo, )]
Ji 1 .
= ClflBmoy(w) Z<§+21>+2 : (4.16)

j=1

Then by (4.11), (4.15) and (4.16) we have proved

1
W/B |Va fo(x) = Vi fo(x0) | dx < C U f | a0y ()

Next, consider V,, f3.
Y (lxl7 x = yl) f3
Vi) = | U =5
re [x — y|*lx + yl

V(|5 —2l)
_f3/.n ﬁ—z|a||§—‘+Z|n70‘

-5 V(|R(er) = R(u)))
B |R(er) — R(u)mR(el) + R(u)|

n—o
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el —u
=f3/ v (ler —ul) du
re ler — ul®ley + ul"

— £ / WD)y

0.4) VP 2er + v

where we made the change of variables z = R(u) with R the rotation such that R(e;) = x|x| !, e; = (1,0, ...,0).
By (4.8), (4.9), (4.10), (4.11), (4.15) and (4.16) we have

1
_B)/B | Voo (x) = Vi fa(x0) = Vo f3(x)|dx

1
_B)/B|Vaf1(x)|dx+m/;|Vaf2(x)— Vafz(x0)|dx

= Cliflgmoy(w)

Namely, (4.7) is proved.
Now we will prove that the bounded mean condition (i) of Definition 3.7 holds for V, f. Let B = B(0, r),
r > 0, we want to prove

1
i /B Vo f (0)]dx < C 1 f garonger -

for some C depending on w and n.
If x € B and 'X “ < 3, then |y| < 2r, and

1 I (xx = y))
— o d dyd
w(B)/BWf(’C)’x< // =yl oy

1 (117 1 = yl)

=—— 1 Ifyl dxdy
o(B) Jg ) B 1x — y|¥lx 4 y|re
1 v (lxl e =yl
<—— 1 IfI ( ~ ,,L dxdy.
w(B) Jop B 1x = yl¥lx +yl

x| x—
The proof will be completed if f B % dx < C for 0 < |y| < 2r. To this end, let R be the rotation such

that R(e;) = y|y|~' and make the change of variables R(u) = x|y|~". Then, if ¥ (Ju|~"'|u — e1]) # 0, it follows
that 0 < ¢y < |u] < ¢y and |u + e;| = ¢ > 0. Thus

x| Yx — ul"Hu—e
/ ¥ (Ix]™x = yl) dxi/ v (Jul ™" i) du
B 1x — y|[*lx + y["— AO.co.cr) 1 —er|*u + e "

1
< C/ ——du <C.
A(O,L‘O.q) |I/l - el|a

g
Proof of Theorem 3.8. Let f € E(BMOy(w)) and let x # 0. We define U = B(0, 2|x[) N
B¢(x, 5y N Be( = x, &l). Then
Taf(x) - Vaf(x) - Vn—af(_x) - Qf(x)

= (e ) - [ id Co )

Al ) e =yl + e

_ ¥ (1x1~"x + 1)
/A(_x ) T — Iy — () dy

Lf
402

f(y)dy
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1
[ e [ (K- o) ras.
ri=lyl<dixl 1Y Iyl=3 1| |yl

Since w € Ay, then

B ¥ (Ix "l = y1)
Ta(XUf)(x) /A(x,",") |x_y|a|x+y|nfa

ERE

_/A(_x v (I~ +y1) f(y)dy_/l /) dy‘

) |x =yl 4y NEEEbI

X
X7

f(y)dy

1
Cc— d
scoo | oy OIS

< Ca)(x) ||f||BM00(w) '

Arguments similar to those in the proof of Theorem 3.6, imply

1 [e.¢] 1
alX, - dy| <C _ d
‘/w;u <K (x,y) |y|n>f(y) y| < ;21(21 ] AV<;|x2i+llf(y)l y

|x])"
Therefore,
|| Taf - Votf - (anaf)v - Qf“sz;((U—l) <C ”f”BMOO(w) .

Thus, by Proposition 3.5, Lemma 4.5 and since w(—x) < Cw(x) for almost all x € R", we have proved the
theorem. O

< Co () 1 I aty(ar) -
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