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Plasmonic Graded-Chains as Deep-Subwavelength Light Concentrators.
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We have studied the plasmonic properties of aperiodic arrays of identical nanoparticles (NPs)
formed by two opposite and equal graded-chains (a chain where interactions change gradually). We
found that these arrays concentrate the external electromagnetic fields even in the long wavelength
limit. The phenomenon was understood by identifying the system with an effective cavity where
plasmonics excitations are trapped between effective band edges, resulting from the change of pass-
band with NP’s position. Dependence of excitation concentration on several system’s parameter was
also assessed. This includes, different gradings as well as NP’s couplings, damping, and resonant
frequencies. In the spirit of the scaling laws in condensed matter physics, we developed a theory
that allows us to rationalize all these system’s parameters into universal curves. The theory is quite
general and can also be used on many other situations (different arrays for example). Additionally,
we also provided an analytical solution, in the tight-binding limit, for the plasmonic response of
homogeneous linear chains of NPs illuminated by a plane wave. Our results can find applications
on sensing, near field imaging, plasmon-enhanced photodetectors, as well as to increase solar cell
efficiency.

PACS numbers: 73.20.Mf, 73.21.-b, 78.67.-n, 42.79.Ek

INTRODUCTION.

Concentration or focusing of electromagnetic fields
(EMFs) has been a goal of great interest almost since
the inventions of lenses. This is due to its potential ap-
plications, which in modern times span from imaging and
sensing to lasing. Traditionally mirrors, lenses, or com-
binations of them, such as resonant cavities @, E], have
been used for this purpose. But the diffractive nature of
electromagnetic waves has always imposed a hard limit to
these devices. There have been several proposals to over-
came this, including superlenses made of negative refrac-
tive index metamaterials ,@], superoscillations ﬂa], and
time reversal focusing ﬂa, |. However, difficulties associ-
ated with them, such as complex designs involving active
materials or the need for an almost absolute control of
the incident EMF, have undermined their development
into concrete applications.

Probably the most successful strategy for subwave-
length, or even deep-subwavelenght, concentration of
light is the exploitation of evanescent waves. All though
predicted a long time ago ﬂg, ], we had to wait until the
end of the 20th century, when we acquired enough control
of matter at nanoscale, to see those predictions turn into
experimental results m@] Despite its success, there
are however certain drawbacks in using evanescent waves
for light concentration, as for example the volume-versus-
confinement problem.

It is known that certain nanostructure presents under
illumination regions of high EMFs or hotspots. Now,
if one want to increase even further the EMFs inside
a hotspot one can sharpen the tips or the region of
the nanoparticle (NP) where concentration takes places.

However, this also reduces the volume of the hotspots
], an effect that can not be neglected if the target
molecule to be sensed is a macromolecule for example, or
the goal is to increase the efficiency of solar cells HE]

Another possibility, involves the use of arrays of NPs
or nanoscopic structures where radiation concentration
occurs inside the system as consequence of the interac-
tion among its different components ] Here, two dif-
ferent situations should be distinguished. The first one
occurs when nanostructures have one or more dimen-
sions approaching the excitation wavelength and thus
it is necessary to consider retardation effects. The con-
cepts behind many of these retardation-based plasmonic
light concentrators are based on scaled radio frequency
antenna designs , @] There are of course other
alternatives, such as the use of aperiodic metallic waveg-
uide arrays ﬂﬂ] The second situation occurs when the
size of the nanostructure is significantly smaller than the
wavelength of the incident light. Here, the entire struc-
ture experiences a uniform electric field at any instant
and then the quasistatic approximation is valid. Exam-
ples of this are given by the use of fractal aggregates
ﬂﬂ]or self-similar chains ﬂﬁ] of subwavelength particles
usually called nanolenses. It is worth noting that in the
mentioned and in many other examples, the lack of peri-
odicity of the arrays seems to be key in EMF’s focusing.

Aperiodic arrays of NPs, sometimes called graded ar-
rays if the parameters describing the array vary in a
graded way, have shown interesting and uniques features.
Such as the appearance of new types of excitations called
gradons ﬂﬂ], or a continuous frequency-depend localiza-
tion of excitations in different part of the system ]

In this work we study a kind of aperiodic array of NPs,
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FIG. 1. Scheme of the system studied, a mirrored graded-
chain of NPs. It consists of two opposite and equal graded-
chain of identical metallic NPs.

that we called mirrored graded-chain of NPs. They are
formed by two equal but opposite graded-chains of NPS,
see Fig. [ Array’s geometry allows it to concentrate
external EMFs, but with the important property that
excitation concentration does not come at the expense of
reducing hotspot’s volume, as in the case of nanolenses.
Through the work we focus on the physics behind the
phenomenon and the effect of different system’s param-
eters on excitation concentration. In the spirit of the
scaling laws in condensed matter physics, we develop the
theory that allows one to build universal curves for the
properties studied. The theory, valid also for other ar-
rays of NPs, requires only arrays made of equal NPs that
can be treated in the quasistatic limit.

The work is organized as follows: In section I we briefly
introduce the method used for the calculations. In sec-
tion IT we develop various aspects of the behavior of lin-
ear chains of equidistant NPs that will result useful in the
next sections. In section III we present the main results
of our work. This section is subdivided into two main
subsections “Nearest-neighbor approximation” and “De-
pendence on system’s parameters®. In the first one we
use a simple version of our system to extract the physics
behind excitation concentration. While in the second
one, we systematically study different aspects that could
affect that. In this last subsection we develop a simple
theory that allows us to build universal curves for the
frequency of the maximum excitation concentration and
the strength of it. There is also a short subsection at
the end ”Comparison with simple graded-chains” where
we briefly compare excitation concentration between mir-
rored and simple graded-chains. Finally, in section IV we
summarize the main conclusions.

COUPLED DIPOLE APPROXIMATION.

In this work we study linear arrays of NPs where the
interactions among them are modeled using the coupled
dipole approximation [26-32]. In this model, each n'"-
NP is described by a dipole moment P, induced by the
electric field produced by the other dipoles m at n, Ey, ,,
and the external electric field at n, ES®!. Assuming a
generic ellipsoidal shape for the NPs, this gives for the

induced dipole moment [12, 131, [32]:

13‘” _ €0V(€ - emcd) EZotal, (1)
[€med + L(€ — €mea)]

where E;Otal = EH,(fmt) + Zix#n En7m, €p is the free space
permittivity, V' is the volume, € is the dielectric constant
of NP’s material, €,0q is the dielectric constant of the
host medium, and L is a geometric factor that depends
on NP’s shape and the direction of F relative to the array
[12].

For a linear array of NPs, transversal and longitudi-
nal excitations, T' and L respectively, do not mix, which
allows us to write E,,_, as |31, 32]:

/L pT/L

T/L _
En,m - _4 a3
T€0€med U, m

(2)
where d,, , is the distance between NPs, and the complex
constant v depends on the wavenumber k of the excita-

tion and the orientation of the NP’s array relative to the
direction of P.

/ygvm = [1 - den,m - (kdn)m)z]eikdn,m
77111,777, — _2[1 — ikdn)m]eikdn,m' (3)

Note that in the quasistatic approximation, kd ~ 0, 7
and vy~ are 1 and —2 respectively.

The dipolar moments P,, and the external electric
fields E¢*t can be arranged as vectors P and F resulting
in:

P = (I — M) ' RE = yE, (4)

where x is the response function, M is the dynamical
matrix and R is the diagonal matrix that rescales the
external applied field according to the shape, volume and
material of the NP.

Assuming a particular model for € in Eq. [ one can
obtain the expressions for the different elements of M and
R. For ellipsoidal NPs and using a Drude-Sommerfeld’s
like model for €, € = € — w?/(w? + iwn), one obtains
131, 132]

Mn,m = _wi(n,m) = _EZ:%Rn,nv (6)
and
Rn,n = _GOVnwg(n)f' (7)

where wy, () is the plasmon frequency of the NP with in-

dex “n”, w is its resonant frequency, '), (w) is its

sp(n)
decay rate, and wi(nm is the coupling between NPs
n and m. The factor f can in principle depend on w,
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FIG. 2. Typical dispersion relation for longitudinal and
transversal excitations of NP’s homogeneous-linear-chains.
Calculations were done assuming only nearest-neighbor in-
teractions, n = 0, and a quasistatic approximation.

for €so # €med, which typically slightly shifts the reso-
nances of the system, see Ref. |31, 32]. However, as we
are mainly interested in extracting general trends of our
system, we will take f as constant for simplicity. For
the same reason, we will consider only the case of equal
NPs with the same resonant frequency for transversal
and longitudinal excitations, and a linear form for T'(w),
i.e. T'(w) = nw, which neglects radiation damping,.
According to the above expressions, the role of wg,, is in
general to set the scale of the problem, which is reflected
as a shift in the spectra or in the dispersion relations.
For this reason and in order to gain generality, from now
on we will only use rescaled variables for the excitation
frequencies, coupling constants, damping terms, R;;, and
the self energy II (see next section) of the linear arrays.
That is, those variables should be understood as w =
wiwg,, wh = we/we,, N = n/w,,, R = Rii/w?,, and
= II/w?, respectively.

sp’

HOMOGENEOUS LINEAR CHAIN OF
NANOPARTICLES.

In this section we discuss different aspects of the behav-
ior of homogeneous linear chains of NPs, a system where
distances among neighboring NPs are equal. The discus-
sions here presented will result useful in the next sections.
In order to obtain simple analytical expressions that will
allow us to understand our problem in simple terms, we
will treat our systems in the quasistatic approximation
and neglect interactions beyond first neighbors.

For an homogeneous linear chain, the dipolar mo-
ment of two NPs can only differ in a phase factor, thus
P, = P,he (mm)4d where d is the distance between
neighboring NPs. Considering only nearest-neighbor in-
teractions and negligible damping terms, one can find the
value of the wave vector ¢ for a given frequency of exci-

tation, i.e. the dispersion relation of our system |26, 30],
w?(q) = 1+ 2w? cos(qd). (8)

Fig. 2l shows an example of this, where it can be seen
that changing the type of plasmonic excitation not only
shrinks the passband, the interval of frequencies for which
Eq. Bl has solution, but it also inverts the curve’s shape
due to a change in the sign of w?. The maximum and
minimum values of the passband are known as band edges
and for this particularly simple example are given by:

Wi(q) = 122, (9)

Now, let us analyze the excitation of a linear array of
NPs illuminated by a plane wave. The electric field of

the external source at NP “n” is
‘Ei(lemt) — EOEeinkzd (10)

where FEj is the modulus of E, E its direction, n =
(...,—1,0,1,2...) the NP’s index, and k.d = kdcos(#)
with 6 being the angle between the NP’s chain and the
incident light. In a homogeneous linear chain of NPs
with only nearest-neighbor interaction one can calculate
analytically all the elements of the response function Y,
defined in Eq. @[30, 33]

m—1 Hl

l=n

where all the self energies II;’s are equal in the limit of
infinite NPs (N — o0)

Mw) =1 [w? — 1+ inw] — (12)

sgn(w? — 1)%\/[w2 —1+inw]® — 4wd,

and

Rn,n
w? — 1+ inw] — 2I(w) "

Xn,n = [ (13)

Therefore, when the whole chain is illuminated, the dipo-
lar moment P, of a given NP can be calculated from:

P =3 " xom
:( nnE(T/L)) {1+ i ( ik d)m

m=1

Eﬁft(T/L)

+ e k= d (14)

m:l

which yields

plr/L)




where EéT/ L) is the transversal or one of the longitudinal
components of FyFE.

Fig. Blshows an example of a linear homogeneous array
of NPs illuminated perpendicular to the chain. As can
be seen, the analytical solution overlaps the numerical
results. The maximum of each spectrum occurs at one
of the band edges, the lower one for longitudinal excita-
tions, negative w2, and the higher one for transversal ex-
citations, positive w2. This behavior can be understood

in terms of Eq. 4l in the limit of small 7. For example

in the case of longitudinal excitations the fraction ( %)

is exactly “1” at the lower band edge and exactly “-1” “at
the higher band edge. That means that two consecutive
terms of Eq. [I4] contribute constructively in the former
case and destructively in the latter one (the other way
around for transversal excitations). In more physiccal
terms, that means that the absorption of light by two
consecutive nanoparticles interfere contructively or de-
structively if the excitation frequency is one or the other
band edge. Furthermore, the density of states has peaks
only at the band edges, so only there it is expected a con-
siderable absorption of the external field. In Fig. Bl we
can also notice that the height of the peaks for T and L
excitations are approximately the same as that of an iso-
lated NP, note that the normalization factor is precisely
the maximum value of |P|? of an isolated NP. The small
differences in the peaks’ high are due to the frequency de-
pendence of the damping terms. This is also reasonable
as all NPs are being excited and absorb in the same way
and the resulting excitation must be distributed without
a preferential direction through the array.

Finally, it is useful to briefly discuss the effect of sev-
eral deviations from the ideal model considered above.
As can be found in several references [26-32], the effect
of taking into account all orders of interparticle couplings
is essentially a widening of the passband plus a shifting of
its center. Retardation effects on the other hand, have a
stronger influence on the properties of the chain, driving
the appearance of new resonances and valleys product
of constructive and destructive interferences in the inter-
particle couplings. Those effects are stronger at higher
frequencies and when the size of the problem (NP’s radii
or interparticle distances) is not negligible compared with
the wavelength of the excitation. However, in this work
we will focus on systems with the appropriate scale such
as to safely neglect these retardation effects. At the end
of the last section we will retake this issue. The presence
of defects in the chain, such as NPs of different radii
or inhomogeneous NP’s separations, induces the appear-
ance of localized states, which correspond to collective
excitations of a reduced number a NPs whose resonance
generally lies outside the passband [30].
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FIG. 3. Square dipolar moment, |P|?>, of a NP in a

homogeneous-linear-chain as function of the square frequency

of the external field, w?. The wave vector of the external

field is perpendicular to the chain with F longitudinal (L) or
transversal (T) to it. The nearest-neighbor approximation as
well as the quasistatic approximation are considered, n = 0.01
and w2 = —0.1 and 0.05 for L and T excitations respectively.
All curves are normalized to the maximum value of |P|? of an
isolated NP with = 0.01. Numerical results correspond to
|P|? of the central NP of a finite array of 81 NPs.

MIRRORED GRADED-CHAIN OF
NANOPARTICLES.

Now that we have discussed some relevant aspects of
linear arrays of equidistant NPs, we can focus on under-
standing the effect of changing from homogeneous inter-
actions to slightly graded couplings. As shown in Fig. [1I
the system studied consists of an inhomogeneous linear
array of metallic NPs where the distance between neigh-
boring NPs incresases from the center to the ends of the
array while the size and shape of NPs are kept constant.
Two different models for distance’s increasing are studied

balm!

o(1 +[n|B)

model 1 (Exponential)
model 2 (Linear)

(16)

d, =d
d, =d
where o and [ are the incremental factors, n = 0 cor-
responds to the central NP, and we have simplified the
notation for d by replacing dy, ny1 (or d_y, —(n41)) by dn
(or d_p,).

We will see that this type of systems focus the external
electromagnetic field on the central NPs. In what follows
we will first analize our system in the nearest-neighbor
approximation. Then, we will disscus the effect of taking
into account different aspects that approach our simple
model to a more realistic situation, but always trying to
find general trends in its behavior that can result useful
for designing potential applications.
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FIG. 4. |P|* vs w? for different NPs in a mirrored graded-
chain of NPs (see inset). Nps’ distances are changed according
to model 1 (Eq. ) with o = 1.035. The system is illumi-
nated perpendicularly to the array with E longitudinal to the
chain. Nearest-neighbor approximation as well as the qua-
sistatic approximation are considered. We used w? = —0.1,
n = 0.01, and the total number of NPs is 81. All curves are
normalized to the maximum value of |P|? of an isolated NP
with n = 0.01.

Nearest-neighbor approximation.

Fig. M shows an example of the “spectrum” (where
spectrum stands for |P|? vs w?) of the studied system.
As we can see, now the maximum of the “spectrum® of
the central NP is slightly shifted from the band edge po-
sition toward the center of the passband. New resonances
appear, especially for NPs far from the center, but more
interestingly, there is a considerable increase of the peak’s
height of the central NPs together with a decrease of it for
NPs away from the center. Indeed, not only the height
of the spectrum is increased but also its total area.

Fig. Blshows a 3D color map of |P|? vs w? and NP’s po-
sition. The plot presents a typical seagull’s contour with
well resolved resonances around the middle that slowly
turns into a continuum toward the edges. The general
shape of the plot can be understood by following the ap-
proach of treating the system as “locally” homogeneous
[21, [24]. That means that even though the properties of
the array change continuously with NP’s position, these
changes are smooth enough to treat the system locally as
an homogeneous linear array. Thus, we can define a po-
sition dependent band edge at every NP’s position. The
continuous green lines of Fig. [l mark exactly that. Note,
the almost perfect matching between the green line and
the maximum of the excitation for NPs away from the
center.

Xiao et.al. [24] studied infinite linear arrays of NPs
and harmonic oscillators with graded interactions in a
given direction, which would be equivalent to take only
one half of our system (see Fig. [[). The key difference

n (index of the NP)

FIG. 5. (Color online) - 3D plot of |P|*> vs w? and NP’s
position in the array. Conditions are the same as in Fig. [
Continuous green lines show the band edges of the local equiv-
alent homogeneous chains (see text and Eq. [@)). Grey dashed
lines mark the three lowest eigenvalues of M for longitudinal
excitations.

between their and our case is that here an excitation at a
given frequency can not travel indefinitely in a given di-
rection, even with n = 0. For example, take an excitation
that start at the crossing between the grey dashed line at
the highest frequency and the descending green line that
correspond to the lowest passband edge (the lower left
one). This excitation can travel through the chain only
to the right (propagation to the left will put the excita-
tion outside the passband). This excitation can continue
traveling but only until it reaches the other crossing with
the band edge, the one at the right. Beyond that point
the excitation would be again outside the passband. This
implies that excitations are necessarily trapped between
the crossing with the band edges and thus the system
acts as an effective optical cavity.

As it is well known, optical cavities can increase enor-
mously electromagnetic fields inside them due to coherent
accumulation of excitations. This explains not only the
concentration of excitations in our system but also the
discrete nature of resonances around the center of the
system. Obviously, due to finite damping, excitations
that has to travel distances greater than a characteristic
decay length to interfere with themselves will not present
this “optical cavity” effect. This explains why the system
behaves as homogeneous linear chains for NPs far apart
from the center.

Calculation of cavity’s resonant frequencies is not that
simple in our system as the effective cavity changes its
length with frequency and its group velocity with posi-
tion. However one can always calculate numerically the
eigenvalues of M. Grey lines in Fig. Bl show the real part
of the three lowest eigenvalues of M. Those are the val-
ues at which the resonant condition occurs. Naturally
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FIG. 6. The three first normal modes of a mirrored graded-
chain of NPs. Conditions are the same as in Fig. [l

not all of them are bright modes as the excitation field,
a plane wave perpendicular to the array, can not excite
anti-symmetric modes for example. The eigenmodes cor-
responding to those eigenvalues are shown in Fig. [l Note
that the lowest eigenmode has, as expected, its maximum
at the center of the array which explains why the high-
est concentration of radiation occurs around the central
NP. For transversal excitation, modes are similar but P,
changes its sign between neighboring sites. The spectra
are also similar as well as the 3D plots but, as expected,
the peaks for the different NPs appear close to their high-
est band edges (with |w)2((L)/2| = |w)2((T)|). Besides that,
the only difference is that peak’s heights are lower due to
a higher damping (I’ = nw).

Dependence on system’s parameters.

In this section, we will consider different factors that
deviate the system from the simple model discussed pre-
viously. In all the figures shown, we have taken | P2,
the maximum value of |P|? of the central NP, as an in-
dicator of excitation concentration. Another possibility
could have been, for example, to take the area under the
curve of the spectra of |Py|? vs w?. However, as the re-
sults proved to be qualitatively the same, we will not
discuss the last one.

Fig. [0 shows an example of the response of a graded-
chain of NPs under the same condition as in Fig. [6 but
considering all interactions among NPs, not only first
neighbors. Qualitatively the behavior of the system is
essentially the same. The differences are that the concen-
tration of radiation is slightly increased and the peak’s
positions are shifted towards lower frequencies, both are
better appreciated in the lower left sub-figure. The shift-
ing is expected as the band edges of NP’s waveguides are
red-shifted when considering all interactions among NPs
and longitudinal excitations[26-32]. Apart from that, the
only difference is that NPs of the end of the chain (NP’s
index -40 and 40 in the plot) do not show yet the response
of isolated NPs as in Fig. This is also reasonable as
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FIG. 7. Upper figure - The same as Fig. Blbut o = 1.01 and
all interactions are considered. Lower left figure - Vertical
cuts of the upper figure at n = 0, 3, and 40 (same as Fig.
[ but under the present conditions). Lower right figure -
Horizontal cut of the upper figure at w? = 0.78 (response of
the system at constant frequency of excitation).

the effective interaction between these NPs and the rest
of chain is larger when we consider interaction beyond
first neighbors. Thus, a larger array would be required
to observe that.

The lower right sub-figure of Fig. [0 shows the square
dipolar moment of different NPs of the chain for a fixed
frequency of excitation. Note, how quickly excitation
concentration decays when moving away from the central
NPs. This effect is interesting because the system, which
is a 1-D planar structure, behaves similarly to the tips of
a SNOM though |10]. A phenomenon that, in principle,
can be used for near field spectroscopies.

Fig. B is an example of the convergence of |Py|? ..,
the maximum value of |P|? of the central NP, with the
total number of NPs in the array. Note that a graded-
chain of only 20 or 40 NPs, depending on w2, shows a
better concentration of external excitation than any finite
or infinite chain of equidistant NPs. Interestingly, both
models for graded-chains, see Eq. I8 yield almost the
same result for the values of o and 8 used. Those values
correspond roughly to the optimal ones (see Fig. [@). The
reason for that is simple. Even though a graded-chain of
NPs is always better than a chain of equidistant NPs,
the optimal one corresponds surprisingly to an array of
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FIG. 8. Maximum value of |P|? of the central NP of arrays
with different length (N). Three values of w? are used: -0.25,
-0.1 and -0.05 with n = 0.01. blue continuous lines, mirrored
graded-chains where distances are incremented exponentially
with a equal to 1.005, 1.02, and 1.02. Red dotted lines, the
same but distances are incremented linearly with § =1 — a.
Black dashed lines, homogeneous linear chains of NPs. Lowest
curves correspond to smallest w?2.

almost equidistant NPs, i.e. a and § close to 1 and 0
respectively. Expanding d,,/dy around o = 1 for the
exponential model, gives

"z 1+ n(a—1)+0(a?). (17)
Thus,

dn(a)|modell ~ dn(ﬂ = — 1)|model2 (18)

For that reason, hereafter we will exclusively discuss the
results for d, given by one of them, the exponential
model.

Let us now discuss the effect of a on excitation con-
centration. It is clear from Fig. [ that there should be
an optimal value of a between 1 and oo, as a = 1 corre-
spond to equidistant NPs and a = co to an isolated NP.
Fig. @ shows precisely that. However, the optimal value
of «v is very close to 1 as discussed. Indeed, the bigger the
coupling (w?), the closer to 1 results this optimal value.

The position of the peak of | Py(w)|?, w2, also changes
with @. At a = 1, it corresponds to the position of
the lower band edge of the equivalent homogeneous NP’s
chain. At a = oo it is 1, which corresponds to the value
of an isolated NP. Fig. [0lshows this behavior. As can be
seen in the figure different couplings give different curves.
However, all curves can be rescaled to a single universal
one by means of a simple linear transformation, see Fig.
[[dl This behavior can be understood by analyzing how
the eigenvalues of the M matrix, Eq. M change with «.
First, we have to rewrite the matrix M as:

M = w2M’ + (1 — il'(w))I (19)
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FIG. 9. Maximum value of |P|? of the central NP of a mir-
rored graded-chain as function of a (distances change expo-
nentially with “n”). Calculations are converged with respect
to N and n = 0.01.

where the matrix M’, defined through its elements as
M, ,, =0 and Mj, ,, = (do/dy.m)°, depends only on the
geometry of the array. For example for d,, given by the

3
exponential model, M;, ,, = 1/ ( mel 04'”) . Clearly a
matrix U that diagonalize M also dlagonalize M’ which

implies:

D = w2D' + (1 — inw)I (20)

where U™'MU = D and U~'M'U = IV, being D and D’
the diagonal matrices of the eigenvalues of M and M’
respectively. Therefore, the eigenvalues of M which give
the position of system’s response maxima are given by
the eigenvalues of a matrix that only depends on the
geometry of the array (« in our case) and w? through

Winax (W3, @) = Wil (@) + 1 (21)

where Dy /n is the lowest eigenvalue of M’ for longitudinal
excitations or the highest one for transversal excitations,
and it depends only on « in our case.

Similarly, one can find the universal behavior of | Py
by noticing that the eigenvectors of M also depend only
on the geometry of the array. Using Eq. dl we can write

n—ZUnl

Now, as all NPs are the same R,,, ., = Ro and the system
Er(smt) _

| 2

U LRy BT 292
D L l,m ( )

can be treated in the quasistatic approximation

FEy, then
B Z @) 3 Ui (@)
o —@wm>ﬂ—wd
By using this equation one can in principle calculate any

property of interest of our system by knowing its geomet-
ric contributions, U and (D’), and the rescale parameters

(23)
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FIG. 10. Position of the spectrum’s peak of |P|? vs w?, w2 ax,

for the central NP of a mirrored graded-chain as function of a.
Calculations are converged with respect to N and n = 0.01.
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FIG. 11. Same as Fig. [[0]but using a rescaled square resonant
frequency of the central NP.

Ry, w2, and 1 which do depend on the material, size and
shape of individual NPs. Under certain conditions the
expression can be simplified even further. For example,
one can assume that the main contribution to the above
summation at w? = w2 is given by [ = 0/N. Then the
following relation holds

-1
Po(w?, 1,0) P |P00/8 2o Uy m (24)
IRo?|Eol> Pt

where the numerator on the right hand side depends only
on the geometry of the array (a in our case). Fig.
shows the validity of this equation for different values of
w2 and a. We can see that the convergence is excellent
especially for large values of a or high couplings.

By interpreting the system as an effective cavity, we
can easily understand the deviations of Eq. For (a)s
close to 1, the curves that represent the band edges as
function of NP’s positions, see for example the continuous
green line of Fig. B becomes flater which will make the
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FIG. 12. Same as Fig. @lbut using a rescaled maximum square
dipolar moment of the central NP.

eigenvalues of M to collapse. The curvature of these lines
depend on both w? and . The smaller the o and/or w?
the less pronounced the curvatures and the less separated
the eigenvalues of M. Therefore, it is reasonable to see
deviation of Eq. for a close to 1 and small w2.

Fig. shows an example of the variation of |Py|2,.
with 1 which gives an almost perfect 1/n? dependence as
expected. At large (n)s, compared with the separation
among eigenfrequencies, the approximation in Eq.
obviously breaks down which is the origin of the small
deviations at large (n)s.

It is interesting to highlight that Eqs. and 21] (or
some equivalent) are valid beyond the particular model
treated here of mirrored graded-chains. In particular Eq.
21 (or the equivalent one for other P;s and its corre-
sponding Dy ;s) is valid for any system of equal NPs in
the quasistatic approximation, while Eq. also requires
values of 77 smaller than the eigenfrequencies’ separation,
i.e. well defined resonances. Retardation effects affects D
and the numerator of Eq. Thus, in a sense, they mod-
ify the geometry or the effective geometry of the array.
Regretfully this turns the clean linear relation between

Dj, /N and w2 into a complex non-linear problem as

now D/ = D' (e, kodp, w), see Eq. Anyway, provided
the necessary conditions are met, Eqs. 2Iland [24] (or even
Eq. 23in the case of not well resolved resonances) can be
used to find universalities in the behavior of any system
of interest even if we can not solve it analytically.
Returning to the particular system studied here, it is
important to address the question of how sensitive is our
proposed structure to defects in the array. Fig. [4 shows
how | Py|? changes when imperfections are introduced into
the array. In the upper figure we changed randomly the
distances between NPs (d2®" = d%'4+ Ad) by using a nor-
mal distribution to sample Ad/d%d. In the lower figure
we did the same but changing NP’s resonance frequency.
The width of the normal distribution used to sample the
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FIG. 13. Maximum square dipolar moment of the central NP

of a mirrored graded-chain as function of . « = 1.02 and

w2 = —0.1. Green line is a fit to a 2 function.

distances (or resonant frequencies) is what is indicated
in the x axis as “rmsd of d,,” (“rmsd of W%P(n) 7). We
run 10 calculations for every condition and calculate the
average value of |Py|? and its standard deviation, which
is indicated as an error bar in the plots. We can see that
the system exhibits a good fault tolerance. For up to 3%
or 5% of noise the energy concentration remains almost
the same. Being, the fault tolerance to defects in the
distances (d,,) better than that to the resonant frequen-
cies (wgp(n)). This tolerance to defects approaches our
proposal to its implementation. Furthermore, it is im-
portant to highlight that when energy concentration is
based on retardation effects, systems result, in general,
very sensitive to defects in its components.

Finally, in order to study retardation effects but with-
out resorting to particular examples, with a given value
of d, wsp, etc..., we define kg as.

ko = wsp/c (25)

where c is the velocity of light, and rewrite kd in Eq. B
as

kd = w(dn_’m/do)(kodo) (26)

where w is as usual the renormalized excitation frequency
(the true w divided by wg.) and kodp is the parameter
that will account for retardation effects. Fig. shows
an example of the consequences of increasing retardation
effects. If kodp is still small, we see a plateau and then a
smooth decreasing of energy concentration on the central
NP. When retardation effects increase even further there
are, as expected, very narrow resonances at some precise
values of kody that produce a high concentration of the
external excitations. However, the resonances are so sen-
sitive to the specific value of kg and dy that any defect
in the distances or a shift in the frequency of excitation
would destroy it. Furthermore, at a fixed frequency of
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FIG. 14. Upper figure -Average value and root-mean-square
deviation (rmsd) of |Pp|2 ., for mirrored graded-chains with
random defects in d,,. We used a normal probability distribu-
tion to sample the random defects in d,. The X-axis shows
the rmsd of d,, and the height of the vertical bars the rmsd
of the values of |Py|? obtained. o = 1.02, w? = —0.1,and
n = 0.01. - Lower figure - The same but considering ran-
dom defects on the resonant frequency of individual NPs.

excitation, increasing kodp is equivalent to enlarge the
whole system which is contrary to our goal, to develop
nanostructures that focus external fields in the smallest
possible region.

Comparison with simple graded-chains.

Finally, in this subsection we compared the excitation
concentration of mirrored graded-chains with that of sim-
ple graded chains. A simple graded-chain corresponds to
one half of the system discussed above, equivalent to con-
sider only NPs with indexes from 0 to (N — 1)/2 in Fig.
[ for example. Fig. shows excitation concentration in
terms of the maximum value of |P;|? vs NP’s positions
for a sufficiently large chain. The figure can be compared
with Fig. B for large Ns as the same three pairs of w?
and « values where used. As expected, simple graded-
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FIG. 16. Maximum square dipolar moment as function of
NP’s position for simple graded-chains. The total number of
NPs is 41 and n = 0.01.

chains also behave as resonant cavities. However, they
present lower excitation concentrations relative to that
of mirrored graded-chains, especially for high w? values.
Furthermore, the position of excitation’s maximum along
the chains depends on the interaction strength, which
makes them harder to control.

CONCLUSIONS.

We have studied a kind of nanostructure not previously
reported, up to our knowledge, that we called mirrored
graded-chain of NPs. We showed that they are able to
concentrate or focus light even when system’s sizes are
negligible compared with the wavelength of the external
excitation. The phenomenon was understood by inter-
preting the system as an effective cavity where plasmon-
ics excitations are trapped between effective band edges,
consequence of the change of the passband with NP’s
positions.
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Dependence of excitation concentration on several sys-
tem parameters was also assessed. Including, different
models for distances changing, the degree of changing of
distances with position, as well as NP’s couplings, damp-
ing, and resonant frequencies. A method to build uni-
versal curves for the property of interest was developed
to understand all these system’s parameters. The key
idea is based on splitting system’s response into geomet-
ric components, that in general need to be evaluated nu-
merically, and other system’s parameters which will be
used to rescale the property of interest. The method is
quite general and can be used on many other situations
as in principle it only requires arrays made of identical
particles (nano- or not) well described in the quasistatic
limit. Note also the similarity between Eq. @ and the re-
sulting equations for a set of classical coupled harmonic
oscillators [34] or the dynamic of a single particle in quan-
tum mechanics [30,134]. Anyway, provided the mentioned
conditions are fulfilled, the proposed method can result
especially useful for situations where system’s complexity
limits the possibility of analytical solutions but general
trends were anyhow necessary.

There are a number of applications where mirrored
graded-chains of NPs can be useful. In the case of sen-
sors, it can help to solve the problem of hotspot’s volume
vs intensity. It is known that electromagnetic fields be-
come more intense inside hotspots when the curvature of
a NP is more pronounced or when we stack increasingly
small NPs in what is known as nanolenses. However,
the volume that enclose these hotspots is reduced at the
same time and this effect can be so drastic that not even
a single molecule can fit into the hotspot. With our pro-
posal, we are increasing the electromagnetic fields not
by sharpening a single NP or using nanolenses, but by
tuning appropriately the interactions among NPs. An-
other possibility is to use our system for multi-frequency
simultaneous sensing as it possessed several resonances
physically separated.

Mirrored graded-chains can also be used for near field
spectroscopies without an actual tip. In this case the sys-
tem would act as an effective tip where electromagnetic
fields are much higher when the analyte is close to the
center of the array and negligible if the analyte is moved
away from it. Alternatively it can be used to calibrate
more standard near-field-spectroscopic devices.

Its application to solar cells would require a more com-
plex design of the array as one generally need to concen-
trate the electromagnetic fields on a 3D volume. One
possibility is to use arrays made of multiple 2-D layers
where the interaction between layers changes gradually
and the active medium surrounds the NPs that form the
central layers [16]. Alternatively, one can use the direct
light-to-heat conversion mechanism mediated by conduc-
tive nano-particles. The dramatic light concentration
produced by nanostructures such as the one proposed
here, induces vaporization of the host medium without



the requirement of heating the liquid volume to the boil-
ing point [35].

Finally, one can also use the proposed structure for
plasmon-enhanced photo-detectors, helping to reduce the
size of the photo-detector. This would result in increased
speed, decreased noise, and reduced power consumption
[13].
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