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Abstract In real-world applications, knowledge bases consisting of all the available infor-
mation for a specific domain, along with the current state of affairs, will typically contain
contradictory data, coming from different sources, as well as data with varying degrees of
uncertainty attached. An important aspect of the effort associated with maintaining such
knowledge bases is deciding what information is no longer useful; pieces of information
may be outdated; may come from sources that have recently been discovered to be of low
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quality; or abundant evidence may be available that contradicts them. In this paper, we
propose a probabilistic structured argumentation framework that arises from the extension
of Presumptive Defeasible Logic Programming (PreDeLP) with probabilistic models, and
argue that this formalism is capable of addressing these basic issues. The formalism is
capable of handling contradictory and uncertain data, and we study non-prioritized belief
revision over probabilistic PreDeLP programs that can help with knowledge-base mainte-
nance. For belief revision, we propose a set of rationality postulates — based on well-known
ones developed for classical knowledge bases — that characterize how these belief revision
operations should behave, and study classes of operators along with theoretical relationships
with the proposed postulates, including representation theorems stating the equivalence
between classes of operators and their associated postulates. We then demonstrate how our
framework can be used to address the attribution problem in cyber security/cyber warfare.

Keywords Argumentation · Belief revision · Probabilistic reasoning · Cyber security

Mathematics Subject Classification (2010) 68T30 · 68T27 · 68T37

1 Introduction

We begin by motivating our work, describing the most related work from the literature,
introducing the cyber-attribution problem, and clarifying the contribution of the paper.

1.1 Motivation

In many real-world applications, knowledge bases consisting of all the information that is
available about a specific domain, along with all the available information about the cur-
rent state of affairs, will typically contain contradictory data. That is because the knowledge
base will have been constructed using data from different sources that disagree. This data
will also, typically, contain some measure of uncertainty. Thus, key problems that need to
be addressed by formalisms for knowledge representation are the ability to handle contra-
dictory information and to perform inference in the presence of uncertainty. In addition, in
many cases it is necessary to update the knowledge in the knowledge base: for instance,
pieces of information may be outdated, may come from sources which have recently been
discovered to be of low quality, or there may be abundant evidence available that contra-
dicts these pieces of information. In such cases, the knowledge base needs to be updated
accordingly. A good example of how all of these requirements come together is provided
by the scenario of determining the culprit of a cyber attack, an example that we will use
in some detail to illustrate the ideas we develop in this paper. Here we provide a quick,
motivating, sketch. The basic information in the scenario comes from a variety of different
sources that only have a partial view of the domain, and since these sources disagree, having
contradictory information in the knowledge base is unavoidable. In a cyber attack, it is not
uncommon for the attacker to leave some false pieces of evidence with the goal of mislead-
ing the investigation, adding further contradictory information. None of the evidence that is
gathered after an attack is conclusive, so there is uncertainty in the information that must be
handled. Finally, since in responding to an attack new information is added to information
that was gathered after previous attacks, it is necessary to update the knowledge base. In
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particular, if new information contradicts old information, it may be necessary to perform
belief revision to recover consistency of some parts of the knowledge-base.1

From this discussion we distill the requirements on any knowledge representation forma-
lism that will be used in real-world applications. Such a formalism must be able to:

1. represent contradictory and uncertain information;
2. answer queries on a knowledge base; and
3. handle revisions to the knowledge base.

This paper presents a formalism called DeLP3E that meets all these requirements. A
DeLP3E model consists of two parts, an environmental model (EM) and an analytical model
(AM), which represent different aspects of a scenario. The idea is that the analytical model
contains all the background information that is available for the analysis of the scenario. We
envisage that this information is a combination of ontological information about the world,
for example (to take the old example), “Tweety is a penguin”, “penguins are birds” and
“penguins do not fly”, and commonsense information that is relevant, for example “birds
generally fly”. As can be seen from this small example, the AM can be inconsistent, and
so we will choose a formal model for the AM that can cope with inconsistency. The envi-
ronmental model is intended to contain evidence that has been collected about a specific
situation (an instance of the more general model in the AM) about which queries will be
answered. In the classic example, “Tweety is a penguin” would be an element of the EM, but
the EM can also be more subtle than this, allowing for the representation of uncertain infor-
mation. If we did not know for sure that Tweety was a penguin, but just had some suggestive
evidence that this is so, we could, for example include in the EM the fact that “Tweety is a
penguin” has a probability of 0.8 of being true. The EM is not limited to facts — we could
also choose to model our evidence about Tweety with “Tweety is a bird” and “Tweety is
black and white” and the rule that “Black and white birds have a probability of 0.8 of being
penguins”. A more complex pair of EM and AM, which relates to our motivating cyber
security example, is given in Table 1.

The languages used in the AM and the EM are related through an annotation function
(AF), which pairs formulae in the EM and the AM. Reasoning then consists of answering a
query in the AM — when the AM is inconsistent, this will involve establishing the relevant
consistent subset to answer the query computing the probability of the elements of the EM,
and, through the annotation function, establishing the probabilities that correspond to the
answer to the initial query. Thus, in the Tweety example, to answer a query about whether
Tweety can fly, the AM would reason about this truth or falsity of the proposition “Tweety
flies”, the AF would identify which elements of the EM relate to this query, and the EM
would provide a probability for these elements. The probability of the answer to the query,
in this case either “Tweety flies” or “Tweety does not fly”, could then be computed. The
inference of this probability is what we call entailment.

In our vision, DeLP3E is less a specific formalism and more a family of formalisms where
different formal models for handling uncertainty can be used for the EM, and different logi-
cal reasoning models can be used for the AM. In this paper, to make the discussion concrete,
we make some specific choices. In particular, the EM is based on Nilsson’s Probabilistic

1Below we discuss why we might want to carry out belief revision in a formalism that has the ability to
handle some forms of inconsistency
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Table 1 Examples of the kind of information that could be represented in the environmental and analytical
models in a cyber-security application domain

Environmental model (EM) Analytical model (AM)

Malware X was compiled on a system Malware X was compiled on a system in

using the English language. English-speaking country Y.

Country Y and country Z are Country Y has a motive to launch a

currently at war. cyber-attack against country Z

Malware W and malware X were created Malware W and malware X are related.

in a similar coding style.

Country Y has a significant Country Y has the capability to

investment in math-science-engineering conduct a cyber-attack.

(MSE) education.

Logic [32], and the AM is based on the PreDeLP argumentation model from [30]. At the
heart of PreDeLP is the notion of presumptions, elements of the knowledge base that can be
presumed (assumed) to be true. This makes for a very natural connection to the EM, where
the presumptions are the elements of the AM that connect (through the annotation function)
to elements of the EM (as do the other elements of the AM). Thus, the presumptions will
have a probability associated with them, and this is then used to establish the probability of
the answer to the initial query.

This discussion has covered the requirement for DeLP3E to deal with inconsistency and
uncertainty, and identified the need for inference. The final requirement is for the ability to
revise the knowledge base, in particular the ability to perform belief revision in the sense
of [1, 16, 17]. Given that belief revision is concerned with maintaining the consistency of
a set of beliefs and that DeLP3E is built around an argumentation system that can handle
inconsistency, at first glance it might not be obvious why belief revision will be required
if these become inconsistent. However, on more reflection, it is clear that all three parts
of a DeLP3E model — the environmental model, the analytical model, and the annotation
function — may require revision, at least in the instantiation of DeLP3E that we consider
here. The EM is underpinned by probability theory, and this places the constraint that the
set of propositions used in the EM be consistent (a constraint that would not necessarily
exist if we were to use a different uncertainty handling mechanism). The AM is built using
PreDeLP, and though there can be inconsistency in some elements of a PreDeLP model,
the strict rules and facts used to answer a specific query must be consistent, and so belief
revision is required (if we built the AM using an argumentation system that only included
defeasible knowledge, as in [36], belief revision would not be required). Finally, though
there is never a strict requirement for belief revision of the AF, as we will discuss later,
providing the ability to revise the annotation function can help us to avoid revising other
aspects of the model, and this can be helpful.

1.2 Related work

The work that is closest to that reported here has been carried out in the intersection of belief
revision and argumentation, and the work carried out in the combination of structured argu-
mentation approaches with formalisms for probabilistic reasoning. We now discuss these
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two points of contact with the existing literature; since, to the best of our knowledge, the
combination we tackle in our work is completely novel, it is important to note that this
discussion is necessarily short.

Belief revision studies changes to knowledge bases as a response to epistemic inputs.
Traditionally, such knowledge bases can be either belief sets (sets of formulas closed under
consequence) [1, 16, 17] or belief bases [20, 21] (which are not closed); since our end
goal is to apply the results we obtain to real-world domains, here we focus on belief
bases. In particular, our knowledge bases consist of logical formulas over which we apply
argumentation-based reasoning and to which we couple a probabilistic model. The con-
nection between belief revision and argumentation was first studied in [6]; see [12] and
the further developments in [9]. Since then, the work that is most closely related to our
approach is the development of the explanation-based operators of [11]. The main differ-
ence between that line of work and the one developed here arises from the interaction in our
model between classical and probabilistic formalisms; to the best of our knowledge, this has
not been tackled in the literature on combining argumentation and belief revision.

The study of argumentation systems together with probabilistic reasoning has recently
received a lot attention, though a significant part of this recent work has concentrated on
the combination of probability and abstract argumentation [14, 23, 28, 46]. There have,
however, been several approaches that combine structured argumentation with models for
reasoning under uncertainty; the first such approach to be proposed was [19]2 and several
others followed, such as the possibilistic approach of [4], and the probabilistic logic-based
approach of [24]. Similar to the difference between our approach and others on argumen-
tation and belief revision, the main difference between these works and our own is that
here we separate knowledge into the environmental model and the analytical model, where
one part captures the probabilistic knowledge, and the other part the models knowledge
that is not inherently probabilistic. This allows for a clear separation of interests between
the two kinds of models. This approach is based on the similar approach developed for
ontological languages in the Semantic Web (see [18], and references therein). The basic
differences with that work is that the non-probabilistic part of the knowledge base corre-
sponds to a classical ontology that is not inconsistency-tolerant, and that belief revision has
not (again, to the best of our knowledge) been investigated in that formalism or others of its
kind.

1.3 Application to the cyber-attribution problem

Cyber-attribution — the problem of determining who was responsible for a given cyber-
operation, be it an incident of attack, reconnaissance, or information theft [39] — is an
important issue. The difficulty of this problem stems not only from the amount of effort
required to find forensic clues, but also the ease with which an attacker can plant false
clues to mislead security personnel. Further, while techniques such as forensics and reverse-
engineering [2], source tracking [47], honeypots [44], and sinkholing [37] are commonly
employed to find evidence that can lead to attribution, it is unclear how this evidence is
to be combined and reasoned about. In some cases, such evidence is augmented with nor-
mal intelligence collection, such as human intelligence (HUMINT), signals intelligence

2Krause et al. [26], which pre-dates [19], dealt with combining structured argumentation with abstract
uncertainty measures and did not explicitly handle probability.
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(SIGINT) and other means — this adds additional complications to the task of attributing a
given operation.

In essence, cyber-attribution is a highly-technical intelligence analysis problem where
an analyst must consider a variety of sources, each with its associated level of confidence,
to provide a decision maker (e.g., a system administrator or Chief Information Officer)
with insight into who conducted a given operation. Indeed, while previous cyber-attribution
approaches only consider a single source of information, our approach takes into account
multiple sources of information due to its ability to deal with inconsistency. As it is well-
known that people’s ability to conduct intelligence analysis is limited [22], and due to the
highly technical nature of many cyber evidence-gathering techniques, an automated reason-
ing system would be best suited for the task. Such a system must be able to accomplish
several goals:

– Reason about evidence in a formal, principled manner, i.e., relying on strong computa-
tional and mathematical foundations.

– Consider evidence for cyber attribution associated with some level of uncertainty
(expressed via probabilities).

– Consider logical rules that allow for the system to draw conclusions based on certain
pieces of evidence and iteratively apply such rules.

– Consider pieces of information that may not be compatible with each other, decide
which information is most relevant, and express why.

– Attribute a given cyber-operation based on the above-described features and provide
the analyst with the ability to understand how the system arrived at that conclusion.

The fit between these requirements and the abilities of DeLP3E led us to develop an
extended example based around cyber-attribution3 as a way of showcasing the functionality
of DeLP3E. This example is given in Section 5.

1.4 Contribution of the paper

The main contribution of this paper is to present the DeLP3E framework, which com-
bines structured argumentation and probability, and to discuss in detail how to perform
belief revision in the context of this model. To our knowledge, this is the first paper
to address the combination of structured probabilistic argumentation and belief revi-
sion. The paper brings together and extends the results of two papers that discussed
structured probabilistic argumentation in respect to its application in cyber security —
[40], which introduced the DeLP3E formalism (referred to there as P-PreDeLP) and
annotation-function based belief revision, and [41], which studied a special case of the
entailment query and showed how the framework can be applied to a cyber-attribution
problem. Neither of these works include the more general entailment queries covered
here in Section 3.3, the discussion of determining consistency from Section 4.1, or
the AM-based belief revision introduced in Section 4.3. Further, this work includes
complete proofs for all major theoretical results, as well as enhanced and expanded
examples.

3The causality is a little more complicated than this sentence suggests. Indeed the cyber-attribution problem
was the original motivation for the development of DeLP3E, and elements of the example evolved along with
the formalism.
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1.5 Structure of the paper

The structure of the paper broadly follows the three requirements identified above. First,
in Section 2 we introduce the environmental and analytical model described above, where
the environmental model makes use of Nilsson’s probabilistic logic [32] and the analytical
model builds upon PreDeLP [30]. The resulting framework is a general-purpose probabilis-
tic argumentation language DeLP3E, which stands for Defeasible Logic Programming with
Presumptions and Probabilistic Environment. This is formally laid out in Section 3. That
section also studies the entailment problem for DeLP3E. Section 4 then provides the meat of
the paper, discussing belief revision for the environmental model, the analytical model and
the annotation function focusing on the study of non-prioritized belief revision operations.
The paper suggests two sets of rationality postulates characterizing how such operations
should behave, one for the analytical model and one for the annotation function (as we
show, revising the environmental model is not sufficient to restore consistency). These pos-
tulates are based on the well-known approach proposed in [20] for non-prioritized belief
revision in classical knowledge bases — and studies two classes of operators and their theo-
retical relationships with the proposed postulates, concluding with representation theorems
for each class. Section 5 then walks through an extended example of the use of DeLP3E in
the context of cyber-attribution. Section 6 concludes.

2 Preliminaries

This section presents the main componenets of the DeLP3E framework, the environmental
model and the analytical model.

2.1 Basic language

We assume sets of variables and constants, denoted with V and C, respectively. In the rest
of this paper, we will follow the convention from the logic programming literature and
use capital letters to represent variables (e.g., X, Y,Z) and lowercase letters to represent
constants.

The next component of the language is a set of predicate symbols. Each predicate symbol
has an arity bounded by a constant value; the EM and AM use separate sets of predicate sym-
bols, denoted with PEM,PAM, respectively — the two models can, however, share variables
and constants.

As usual, a term is composed of either a variable or a constant. Given terms t1, ..., tn and
n-ary predicate symbol p, p(t1, ..., tn) is called an atom; if t1, ..., tn are constants, then the
atom is said to be ground. The sets of all ground atoms for the EM and AM are denoted
with GEM and GAM, respectively.

Given a set of ground atoms, a world is any subset of atoms — those that belong to the
set are said to be true in the world, while those that do not are false. Therefore, there are
2|GEM| possible worlds in the EM and 2|GAM| worlds in the AM; these sets are denoted with
WEM and WAM, respectively. In order to avoid worlds that do not model possible situations
given a particular domain, we include integrity constraints of the form oneOf(A′), where
A′ is a subset of ground atoms. Intuitively, such a constraint states that any world where
more than one of the atoms from set A′ appears is invalid. We use ICEM and ICAM to denote
the sets of integrity constraints for the EM and AM, respectively, and the sets of worlds that
conform to these constraints is denoted with WEM(ICEM) and WAM(ICAM), respectively.



P. Shakarian et al.

Finally, logical formulas arise from the combination of atoms using the traditional con-
nectives (∧, ∨, and ¬). As usual, we say that a world w satisfies formula f , written w |= f ,
iff: (i) If f is an atom, then w |= f iff f ∈ w; (ii) if f = ¬f ′ then w |= f iff w �|= f ′;
(iii) if f = f ′ ∧ θ ′′ then w |= f iff w |= f ′ and w |= θ ′′; and (iv) if f = f ′ ∨ θ ′′ then
w |= f iff w |= f ′ or w |= θ ′′. We use the notation formEM , formAM to denote the set of
all possible (ground) formulas in the EM and AM, respectively.

Example 1 Thus, the following are terms

a b c d e f p(X)

g h i j k p(a)

and the following are formulae using those terms:

a d ∧ e k

b f ∧ g ∧ h

c i ∨ ¬j

2.2 Environmental model

The EM is used to describe the probabilistic knowledge that we have about the domain. In
general, the EM contains knowledge such as evidence, uncertain facts, or knowledge about
agents and systems. Here we base the EM on the probabilistic logic of [32], which we now
briefly review.

Definition 1 Let f be a formula over PEM, V, and C, p ∈ [0, 1], and ε ∈ [0, min(p, 1−p)].
A probabilistic formula is of the form f : p ± ε. A set KEM of probabilistic formulas is
called a probabilistic knowledge base.

In the above definition, the number ε is referred to as an error tolerance. Intuitively, the
probabilistic formula f : p±ε is interpreted as “formula f is true with probability between
p−ε and p+ε”. Note that there are no further constraints over this interval apart from those
imposed by other probabilistic formulas in the knowledge base. The uncertainty regarding
the probability values stems from the fact that certain assumptions (such as probabilistic
independence between all formulae) may not hold in the environment being modeled.

Example 2 Consider the following set KEM:

f1 = a : 0.8 ± 0.1 f4 = d ∧ e : 0.7 ± 0.2 f7 = k : 1 ± 0
f2 = b : 0.2 ± 0.1 f5 = f ∧ g ∧ h : 0.6 ± 0.1 f8 = a ∧ b : 0.4 ± 0.1
f3 = c : 0.8 ± 0.1 f6 = i ∨ ¬j : 0.9 ± 0.1

Throughout the paper, we also use K′
EM = {f1, f2, f3}

A set of probabilistic formulas describes a set of possible probability distributions Pr over
the set WEM(ICEM). We say that probability distribution Pr satisfies probabilistic formula
f : p ± ε iff:

p − ε ≤
∑

w∈WEM(ICEM),w|=f

Pr(w) ≤ p + ε.

A probability distribution over WEM(ICEM) satisfies KEM iff it satisfies all probabilistic
formulas in KEM.
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Given a probabilistic knowledge base and a (non-probabilistic) formula q, the maximum
entailment problem seeks to identify real numbers p, ε such that all valid probability dis-
tributions Pr that satisfy KEM also satisfy q : p ± ε, and there does not exist p′, ε′ s.t.
[p − ε, p + ε] ⊃ [p′ − ε′, p′ + ε′], where all probability distributions Pr that satisfy KEM

also satisfy q : p′ ± ε′. In order to solve this problem we must solve the linear program
defined below.

Definition 2 Given a knowledge base KEM and a formula q, we have a variable xi for each
wi ∈ WEM(ICEM). Each variable xi corresponds with the probability of wi occurring.

– For each fj : pj ± εj ∈ KEM, there is a constraint of the form:
pj − εj ≤ ∑

wi∈WEM(ICEM) s.t. wi |=fj
xi ≤ pj + εj .

– We also have the constraint:
∑

wi∈WEM(ICEM) xi = 1.

– The objective is to minimize the function:
∑

wi∈WEM(ICEM) s.t. wi |=q xi .

We use the notation EP-LP-MIN(KEM, q) to refer to the value of the objective function in
the solution to the EM-LP-MIN constraints.

The next step is to solve the linear program a second time, but this time maximizing the
objective function (we shall refer to this as EM-LP-MAX) — let � and u be the results of
these operations, respectively. In [32], it is shown that:

ε = u − �

2
and p = � + ε

is the solution to the maximum entailment problem. We note that although the above linear
program has an exponential number of variables in the worst case (i.e., no integrity con-
straints), the presence of constraints has the potential to greatly reduce this space. Further,
there are also good heuristics (cf. [25, 42]) that have been shown to provide highly accurate
approximations with a reduced-size linear program.

Example 3 Consider KB K′
EM from Example 2 and a set of ground atoms restricted to those

that appear in that program; we have the following worlds:

w1 = {a, b, c} w2 = {a, b} w3 = {a, c} w4 = {b, c}
w5 = {b} w6 = {a} w7 = {c} w8 = ∅

and suppose we wish to compute the probability for formula q = a ∨ c.
For each formula in KEM we have a constraint, and for each world above we have

a variable. An objective function is created based on the worlds that satisfy the query
formula (in this case, worlds w1, w2, w3, w4, w6, w7). Solving EP-LP-MAX(K′

EM, q) and
EP-LP-MIN(K′

EM, q), we obtain the solution 0.9 ± 0.1. Hence, EP-LP-MAX(K′
EM, q) can be

written as follows:

max x1 + x2 + x3 + x4 + x6 + x7 w.r.t. :
0.7 ≤ x1 + x2 + x3 + x6 ≤ 0.9

0.1 ≤ x1 + x2 + x4 + x5 ≤ 0.3

0.8 ≤ x1 + x3 + x4 + x7 ≤ 1

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = 1

From this, we can solve EP-LP-MAX(K′
EM, q) and, after an easy modification, EP-LP-

MIN (K′
EM, q), and obtain the solution 0.9 ± 0.1.
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2.3 Analytical model

The analytical model contains information that a user may conclude based on the infor-
mation in the environmental model. While the EM contains information that can have
probabilities associated with it, statements in the AM can be either true or false depending
on a certain combination (or several possible combinations) of statements from the EM.

For the AM, we choose to represent information using a structured argumentation frame-
work [34] since this kind of formalism meets the representational requirements discussed in
the introduction. Unlike the EM, which describes probabilistic information about the state
of the real world, the AM must allow for competing ideas. Therefore, it must be able to rep-
resent contradictory information. The algorithmic approach we shall later describe allows
for the creation of arguments based on the AM that may “compete” with each other to
answer a given query. In this competition — known as a dialectical process — one argu-
ment may defeat another based on a comparison criterion that determines the prevailing
argument. Resulting from this process, certain arguments are warranted (those that are not
defeated by other arguments), thereby providing a suitable explanation for the answer to a
given query.

The transparency provided by the system can allow knowledge engineers and users of
the system to identify potentially incorrect input information and fine-tune the models or,
alternatively, collect more information. In short, argumentation-based reasoning has been
studied as a natural way to manage a set of inconsistent information — it is the way humans
settle disputes. As we will see, another desirable characteristic of (structured) argumentation
frameworks is that, once a conclusion is reached, we are left with an explanation of how we
arrived at it and information about why a given argument is warranted; this is very important
information for users to have.

The formal model that we use for the AM is Defeasible Logic Programming with Pre-
sumptions (PreDeLP) [30], a formalism combining logic programming with defeasible
argumentation. Here, we briefly recall the basics of PreDeLP— we refer the reader to [15,
30] for the complete presentation. Formally, we use the notation

�AM = (Θ, Ω, Φ, Δ)

to denote a PreDeLP program, where Ω is a set of strict rules, Θ is a set of facts, Δ is a set
of defeasible rules, and Φ is a set of presumptions. We now define these constructs formally.

Facts (Θ) are ground literals representing atomic information or its negation, using strong
negation “¬”. Note that all of the literals in our framework must be formed with a predicate
from the set PAM. Note that information in the form of facts cannot be contradicted. We will
use the notation [Θ] to denote the set of all possible facts.

Strict rules (Ω) represent non-defeasible cause-and-effect information that resembles an
implication (though the semantics is different since the contrapositive does not hold) and are
of the form L0 ← L1, . . . , Ln, where L0 is a ground literal and {Li}i>0 is a set of ground
literals. We will use the notation [Ω] to denote the set of all possible strict rules.

Presumptions (Φ) are ground literals of the same form as facts, except that they are not
taken as being true but rather are defeasible, which means that they can be contradicted.
Presumptions are denoted in the same manner as facts, except that the symbol –≺ is added.
We note that the presumptions cannot be treated as special cases of the defeasible rules. The
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intuition of the presumption is that outside of other criteria, arguments with more presump-
tions should be defeated by arguments with less presumption which is not necessarily the
case if the presumption is expressed as a defeasible rule. As shown in [30] the treatment of
presumptions in this manner also necessitates an extension to generalized specificity. See
[30] for further details.

Defeasible rules (Δ) represent tentative knowledge that can be used if nothing can be
posed against it. Just as presumptions are the defeasible counterpart of facts, defeasible rules
are the defeasible counterpart of strict rules. They are of the form L0 –≺ L1, . . . , Ln, where
L0 is a ground literal and {Li}i>0 is a set of ground literals. In both strict and defeasible
rules, strong negation is allowed in the head of rules, and hence may be used to represent
contradictory knowledge.

Even though the above constructs are ground, we allow for schematic versions with
variables that are used to represent sets of ground rules. In Fig. 1, we provide an example
�AM of a ground knowledge base. (Fig. 7 on Page 42 gives an example of a non-ground
knowledge base.)

Arguments Given a query in the form of a ground atom, the goal is to derive arguments
for and against its validity — derivation follows the mechanism of logic programming [29].
Since rule heads can contain strong negation, it is possible to defeasibly derive contradictory
literals from a program. For the treatment of contradictory knowledge, PreDeLP incorpo-
rates a defeasible argumentation formalism that allows the identification of the pieces of
knowledge that are in conflict and, through the previously mentioned dialectical process,
decides which information prevails as warranted. This dialectical process involves the con-
struction and evaluation of arguments, building a dialectical tree in the process. Arguments
are formally defined next.

Definition 3 An argument 〈A, L〉 for a literal L is a pair of the literal and a (possibly
empty) set of the AM (A ⊆ �AM) that provides a minimal proof for L meeting the following
requirements: (i) L is defeasibly derived from A; (ii) Ω ∪ Θ ∪ A is not contradictory; and
(iii) A is a minimal subset of Δ ∪ Φ.

Literal L is called the conclusion supported by the argument, and A is the support of the
argument. An argument 〈B, L〉 is a subargument of 〈A, L′〉 iff B ⊆ A. An argument 〈A, L〉
is presumptive iff A ∩ Φ is not empty. We will also use Ω(A) = A ∩ Ω , Θ(A) = A ∩ Θ ,

Fig. 1 A ground argumentation framework
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Δ(A) = A∩Δ, and Φ(A) = A∩Φ. For convenience, we may sometimes call an argument
by its support. (e.g. argument A instead of argument 〈A, L〉.

Our definition differs slightly from that of [43], where DeLP is introduced, as we include
strict rules and facts as part of arguments — this is due to the fact that in our framework, the
components of an argument can only be used in certain environmental conditions. Hence, a
fact may be true in one EM world and not another, and so different sets of strict rules and
facts may be applicable to different arguments. This is in contrast to DeLP when the same
set of strict rules and facts can be applied to any argument and so do not have to be explicitly
listed.. We discuss this further in Section 3 (page 16).

Definition 4 A literal is derived from an argument if it appears as a fact or a presumption in
the argument or appears in the head of a strict rule or a defeasible rule where all the literals
in the body of that strict rule or defeasible rule are derived from that argument.

Example 4 Figure 2 shows example arguments based on the knowledge base from Fig. 1.
Note that 〈A5, u〉 is a sub-argument of 〈A2, s〉 and 〈A3, s〉.

Given an argument 〈A1, L1〉, counter-arguments are arguments that contradict it. Argu-
ment 〈A2, L2〉 is said to counterargue or attack 〈A1, L1〉 at a literal L′ iff there exists a
subargument 〈A, L′′〉 of 〈A1, L1〉 such that the set Ω(A1) ∪ Ω(A2) ∪ Θ(A1) ∪ Θ(A2) is
inconsistent.

Example 5 Consider the arguments from Example 4. The following are some of the attack
relationships between them: A1, A2, A3, and A4 all attack A6; A5 attacks A7; and A7
attacks A2.

A proper defeater of an argument 〈A, L〉 is a counter-argument that — by some criterion
— is considered to be better than 〈A, L〉; if the two are incomparable according to this cri-
terion, the counterargument is said to be a blocking defeater. An important characteristic of
PreDeLP is that the argument comparison criterion is modular, and thus the most appropri-
ate criterion for the domain that is being represented can be selected; the default criterion
used in classical defeasible logic programming (from which PreDeLP is derived) is gener-
alized specificity [45], though an extension of this criterion is required for arguments using
presumptions [30]. We briefly recall this criterion next — the first definition is for gen-
eralized specificity, which is subsequently used in the definition of presumption-enabled
specificity.

Definition 5 (Generalized Specificity) Let �AM = (Θ, Ω, Φ, Δ) be a PreDeLP pro-
gram and let F be the set of all literals that have a defeasible derivation from �AM. An

Fig. 2 Example ground arguments from the framework of Fig. 1
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argument 〈A1, L1〉 is preferred to 〈A2, L2〉, denoted with A1 �PS A2 iff the two following
conditions hold:

(1) For all H ⊆ F , Ω ∪ H is non-contradictory: if there is a derivation for L1 from
Ω ∪ H ∪ DR(A1), and there is no derivation for L1 from Ω ∪ H , then there is a
derivation for L2 from Ω ∪ H ∪ DR(A2).

(2) There is at least one set H ′ ⊆ F , Ω ∪ H ′ is non-contradictory, such that there is a
derivation for L2 from Ω ∪ H ′ ∪ DR(A2), there is no derivation for L2 from Ω ∪ H ′,
and there is no derivation for L1 from Ω ∪ H ∪ DR(A1).

Intuitively, the principle of specificity says that, in the presence of two conflicting lines
of argument about a proposition, the one that uses more of the available information is more
convincing. Considering the Tweety example again; there are arguments stating both that
Tweety flies (because it is a bird) and that Tweety doesn’t fly (because it is a penguin).
The latter argument uses more information about Tweety — it is more specific because it is
information that Tweety is not just a bird, but is a penguin-bird, the subset of birds that are
penguins — and is thus the stronger of the two.

Definition 6 (Presumption-enabled Specificity [30]) Given PreDeLP program �AM =
(Θ, Ω, Φ, Δ), an argument 〈A1, L1〉 is preferred to 〈A2, L2〉, denoted with A1 � A2 iff
any of the following conditions hold:

(1) 〈A1, L1〉 and 〈A2, L2〉 are both factual, which is an argument using none of the
presumptions or defeasible rules and 〈A1, L1〉 �PS 〈A2, L2〉.

(2) 〈A1, L1〉 is a factual argument and 〈A2, L2〉 is a presumptive argument, which is an
argument using at least one of the presumptions or defeasible rules.

(3) 〈A1, L1〉 and 〈A2, L2〉 are presumptive arguments, and

(a) Φ(A1) ⊂ Φ(A2) or,
(b) Φ(A1) = Φ(A2) and 〈A1, L1〉 �PS 〈A2, L2〉.

Generally, if A and B are arguments with rules X and Y , respectively and X ⊂ Y , then
A is stronger than B. This also holds when A and B use presumptions P1 and P2, resp., and
P1 ⊂ P2.

Example 6 The following are some relationships between arguments from Example 4,
based on Definitions 5 and 6.

A1 and A6 are incomparable (blocking defeaters);
A6 � A2, and thus A6 defeats A2;
A5 and A7 are incomparable (blocking defeaters).

A sequence of arguments called an argumentation line thus arises from this attack rela-
tion, where each argument defeats its predecessor. To avoid undesirable sequences, which
may represent circular argumentation lines, in DELP an argumentation line is acceptable
if it satisfies certain constraints (see below). A literal L is warranted if there exists a
non-defeated argument A supporting L.

Definition 7 ([15]) Let �AM = (Θ, Ω, Φ, Δ) be a PreDeLP program. Two arguments
〈A1, L1〉 and 〈A2, L2〉 are concordant iff the set Θ ∪ Ω ∪ A1 ∪ A2 is non-contradictory.
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Definition 8 ([15]) Let Λ be an argumentation line. Λ is an acceptable argumentation line
iff:

(1) Λ is a finite sequence.
(2) The set ΛS , of supporting arguments is concordant, and the set ΛI of interfering

arguments is concordant.
(3) No argument 〈Ak, Lk〉 in Λ is a subargument of an argument 〈Ai , Li〉 appearing

earlier in Λ (i < k)

(4) For all i, such that the argument 〈Ai , Ki〉 is a blocking defeater for 〈Ai−1,Ki−1〉, if
〈Ai+1,Ki+1〉 exists, then 〈Ai+1,Ki+1〉 is a proper defeater for 〈Ai,Ki〉.

Clearly, there can be more than one defeater for a particular argument 〈A, L〉. Therefore,
many acceptable argumentation lines could arise from 〈A, L〉, leading to a tree structure.
The tree is built from the set of all argumentation lines rooted in the initial argument. In a
dialectical tree, every node (except the root) represents a defeater of its parent, and leaves
correspond to undefeated arguments. Each path from the root to a leaf corresponds to a dif-
ferent acceptable argumentation line. A dialectical tree provides a structure for considering
all the possible acceptable argumentation lines that can be generated for deciding whether
an argument is defeated. This tree is called dialectical because it represents an exhaustive
dialectical4 analysis for the argument in its root. For a given argument 〈A, L〉, we denote
the corresponding dialectical tree as T (〈A, L〉).

Given a literal L and an argument 〈A, L〉, in order to decide whether or not a lit-
eral L is warranted, every node in the dialectical tree T (〈A, L〉) is recursively marked
as “D” (defeated) or “U” (undefeated), obtaining a marked dialectical tree T ∗(〈A, L〉) as
follows:

1. All leaves in T ∗(〈A, L〉) are marked as “U”s, and
2. Let 〈B, q〉 be an inner node of T ∗(〈A, L〉). Then 〈B, q〉 will be marked as “U” iff every

child of 〈B, q〉 is marked as “D”. The node 〈B, q〉 will be marked as “D” iff it has at
least a child marked as “U”.

Given an argument 〈A, L〉 obtained from �AM, if the root of T ∗(〈A, L〉) is marked as
“U”, then we will say that T ∗(〈A, h〉) warrants L and that L is warranted from �AM. (War-
ranted arguments correspond to those in the grounded extension of a Dung argumentation
system [7].) There is a further requirement when the arguments in the dialectical tree con-
tain presumptions — the conjunction of all presumptions used in even levels of the tree must
be consistent. This can give rise to multiple trees for a given literal, as there can potentially
be different arguments that make contradictory assumptions.

We can then extend the idea of a dialectical tree to a dialectical forest. For a given literal
L, a dialectical forest F(L) consists of the set of dialectical trees for all arguments for L. We
shall denote a marked dialectical forest, the set of all marked dialectical trees for arguments
for L, asF∗(L). Hence, for a literal L, we say it is warranted if there is at least one argument
for that literal in the dialectical forest F∗(L) that is labeled as “U”, not warranted if there
is at least one argument for the literal ¬L in the dialectical forest F∗(¬L) that is labeled as
“U”, and undecided otherwise.

With this, we have a complete description of the analytical model, and can go on to
describe the DeLP3E framework.

4In the sense of providing reasons for and against a position.
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3 The DeLP3E framework

DeLP3E arises from the combination of the environmental model �EM, and the analyti-
cal model �AM; the two models are held together by the annotation function. This allows
elements from the AM to be annotated with elements from the EM. These annotations
specify the conditions under which the various statements in the AM can potentially be
true.

3.1 Definition

Intuitively, given �AM, every element of Ω ∪ Θ ∪ Δ ∪ Φ might only hold in certain worlds
in the set WEM — that is, they are subject to probabilistic events. Therefore, we associate
elements of Ω ∪ Θ ∪ Δ ∪ Φ with a formula from formEM . In doing so, we can in turn
compute the probabilities of subsets of Ω ∪ Θ ∪ Δ ∪ Φ using the information contained in
�EM, as we describe shortly. The notion of an annotation function associates elements of
Ω ∪ Θ ∪ Δ ∪ Φ with elements of formEM .

Definition 9 An annotation function is any function af : Ω ∪ Θ ∪ Δ ∪ Φ → formEM . We
use [af ] to denote the set of all annotation functions.

Figure 3 shows an example of an annotation function.
We will sometimes denote annotation functions as sets of pairs (f, af(f )) in order to

simplify the presentation. Function af may come from an expert’s knowledge or the data
itself. Choosing the correct function and learning the function from data is the topic of
ongoing work.

We also note that, by using the annotation function, we may have certain statements that
appear as both facts and presumptions (likewise for strict and defeasible rules). However,
these constructs would have different annotations, and thus be applicable in different worlds.
We note that the annotation function can allow AM facts and strict rules to be true in some
EM worlds and false in others – this is why we include facts and strict rules as part of an
argument in our framework.

Example 7 Suppose we added the following presumptions to our running example:

φ3 = l –≺

φ4 = m –≺

and suppose we extend af as follows:

af (φ3) = a ∧ b

af (φ4) = a ∧ b ∧ c

Fig. 3 Example annotation function
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So, for instance, unlike θ1, φ3 can potentially be true in any world of the form:

{a, b}

We now have all the components to formally define a DeLP3E program.

Definition 10 Given environmental model �EM, analytical model �AM, and annotation
function af , a DeLP3E program is of the form I = (�EM, �AM, af ). We use notation [I]
to denote the set of all possible programs.

The next step in the definition of DeLP3E is to explore entailment operations. In an
entailment query, we are given an AM literal L, probability interval p ± ε, and DeLP3E
program I , and we wish to determine if L is entailed by I with a probability p±ε. However,
before we can formally define this entailment problem, we define a warranting scenario to
determine the proper environment in question and the entailment bounds (Section 3.2). This
is followed by our formal definition and method for computing entailment in Section 3.3.

3.2 Warranting scenario

In DeLP3E, we can consider a world-based approach; that is, the defeat relationship among
arguments depends on the current state of the (EM) world.

Definition 11 Let I = (�EM,�AM, af ) be a DeLP3E program, argument 〈A, L〉 is valid
w.r.t. world w ∈ WEM iff ∀c ∈ A, w |= af(c).

We extend the notion of validity to argumentation lines, dialectical trees, and dialectical
forests in the expected way (for instance, an argumentation line is valid w.r.t. w iff all
arguments that comprise that line are valid w.r.t. w).

Example 8 Consider worlds w1, . . . , w8 from Example 3 along with the argument 〈A5, u〉
from Example 4. This argument is valid in worlds w1, w2, w3, w4, w6, and w7.

We also extend the idea of a dialectical tree w.r.t. worlds; so, for a given world w ∈ WEM,
the dialectical (resp., marked dialectical) tree induced by w is denoted with Tw〈A, L〉 (resp.,
T ∗

w 〈A, L〉). We require that all arguments and defeaters in these trees be valid with respect
to w. Likewise, we extend the notion of dialectical forests in the same manner (denoted with
Fw(L) and F∗

w(L), resp.). Based on these concepts, we introduce the notion of warranting
scenario.

Definition 12 Let I = (�EM,�AM, af ) be a DeLP3E program and L be a literal formed
with a ground atom from GAM; a world w ∈ WEM is said to be a warranting scenario for
L (denoted w �war L) iff there is a dialectical forest F∗

w(L) in which L is warranted and
F∗

w(L) is valid w.r.t. w.
We note that for a world w not being a warranting scenario for L, is not the same as

being a warranting scenario for ¬L. For that we need a dialectical tree F∗
w(L′) in which L′

is warranted and F∗
w(L′) is valid w.r.t w where L′ = ¬L

Example 9 Considering the arguments from Example 8, worlds w3, w6, and w7 are
warranting scenarios for argument 〈A5, u〉.
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3.3 Entailment in DeLP3E

In this section, we use the idea of a warranting scenario to formally define our entail-
ment problem. We first notice that the set of worlds in the EM where a literal L in the
AM must be true is exactly the set of warranting scenarios — these are the “necessary”
worlds:

nec(L) = {w ∈ WEM | (w �war L)}.
Now, the set of worlds in the EM where AM literal L can be true is the following —

these are the “possible” worlds:

poss(L) = {w ∈ WEM | w ��war ¬L}.

Example 10 Following from Example 8, we have that:

nec(u) = {w3, w6, w7} and poss(u) = {w1, w2, w3, w4, w6, w7}.

Definition 13 We define for(w) = ∧
a∈w a∧∧

a /∈w ¬a, which denotes the formula that has
w as its only model. Also, we extend this notation to sets of words: for(W) = ∨

w∈W for
(w).

Definition 14 (Entailment) Given DeLP3E program, I = (�EM,�AM, af ), AM literal L

and probability interval p±ε, we say that I entails L with probability p±ε iff all probability
distributions Pr that satisfy �EM satisfy for(nec(L)) : p ± ε and for(poss(L)) : p ± ε.

We will also refer to the tightest bound [p − ε, p + ε] such that I entails L with a
probability p ± ε as the “tightest entailment bounds.” The intuition behind the above def-
inition of entailment is as follows. Let � be the maximum value for p − ε and u be the
minimum value for p + ε before we can no longer say that I entails L with probability
p ± ε. In this case, we can define probability distributions Pr−poss , Pr+poss , Pr−nec, Pr+nec as
follows:

– Pr−poss satisfies �EM and assigns the smallest possible probability to worlds in for
(poss(L)).

– Pr+poss satisfies �EM and assigns the largest possible probability to worlds in for
(poss(L)).

– Pr−nec satisfies �EM and assigns the smallest possible probability to worlds in for
(nec(L)).

– Pr+nec satisfies �EM and assigns the largest possible probability to worlds for(nec(L)).

We only need to compare Pr−poss(poss(L)) and Pr−nec(nec(L)) for finding the lower bound
since Pr+poss(poss(L)) ≥ Pr−poss(poss(L)) and Pr+nec(nec(L)) ≥ Pr−nec(nec(L)). Simi-
lar reasoning holds for the case of finding the upper bound. Thus, we get the following
relationships:

� = min
(
Pr−poss(poss(L)),Pr−nec(nec(L))

)
(1)

u = max
(
Pr+poss(poss(L)),Pr+nec(nec(L))

)
(2)
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However, we note that as nec(L) ⊆ poss(L) we have the following:

� = Pr−nec(nec(L)) (3)

u = Pr+poss(poss(L)) (4)

We note that (2) and (4) is equivalent to the belief and plausibility values of L defined in
the Dempster-Shafer theory [38].

Hence, the tightest possible entailment bounds that can be assigned to a literal can be no
less than the lower bound of the probability assigned to the necessary warranting scenarios
and no more than the probability assigned to the possible warranting scenarios. Hence, we
can compute the tightest probability bound such that L is entailed (denoted PL,Pr ,I ) as
follows:

�L,Pr ,I =
∑

w∈nec(L)

Pr−nec(w), uL,Pr ,I =
∑

w∈poss(L)

Pr+poss(w)

�L,Pr ,I ≤ PL,Pr ,I ≤ uL,Pr ,I

Thus, in interval form we have:

PL,Pr ,I =
(

�L,Pr ,I + uL,Pr ,I − �L,Pr ,I
2

)
± uL,Pr,I − �L,Pr ,I

2
.

Now let us consider the computation of tightest probability bounds for entailment on
a literal when we are given a knowledge base KEM in the environmental model, which
is specified in I , instead of a probability distribution over all worlds. For a given world
w ∈ WEM, let for(w) = (∧

a∈w a
) ∧ ( ∧

a /∈w ¬a
)

— that is, a formula that is satisfied
only by world w. Now we can determine the upper and lower bounds on the probability of
a literal w.r.t. KEM (denoted PL,I) as follows:

�L,I = EP-LP-MIN

⎛

⎝KEM,
∨

w∈nec(L)

for(w)

⎞

⎠

uL,I = EP-LP-MAX

⎛

⎝KEM,
∨

w∈poss(L)

for(w)

⎞

⎠

�L,I ≤ PL,I ≤ uL,I

Hence, PL,I =
(
�L,KEM + uL,I−�L,I

2

)
± uL,I−�L,I

2 .

Example 11 Consider argument 〈A5, u〉 from Example 8. We can compute Pu,I (where
I = (�′

EM,�AM, af )).
Note that for the upper bound, the linear program we need to set up is the one shown in

Example 3. For the lower bound, the objective function changes to: min x3 + x6 + x7. From
these linear constraints, we obtain:

Pu = 0.7 ± 0.2

In the following, we study the problem of consistency in our framework, which is the
basis of the belief revision operators studied later on.
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4 Belief revision in DeLP3E programs

Even though our framework relies heavily on argumentation and reasoning under uncer-
tainty, inconsistency in our knowledge base can still arise. For instance, the knowledge
encoded in the environmental model could become contradictory, which would preclude any
probability distribution from satisfying that part of the knowledge base. Even on the argu-
mentation side, despite that fact that argumentation formalisms in general are inconsistency
tolerant, there may be problems with inconsistency. For example, it would be problem-
atic for DeLP3E if the set of strict facts and strict rules were contradictory, and the set of
contradictory elements all arise under the same environmental conditions.

4.1 Consistency of DeLP3E programs

In this section, we first explore what forms of inconsistency can arise in DeLP3E programs
before going on to examine in detail how ideas from belief revision can be applied to deal
with this inconsistency. We use the following notion of (classical) consistency of PreDeLP
programs: � is said to be consistent if there does not exist a ground literal a s.t. � � a

and � � ¬a. For DeLP3E programs, there are two main kinds of inconsistency that can be
present; the first is what we refer to as EM, or Type I, (in)consistency.

Definition 15 An environmental model �EM is Type I consistent iff there exists a
probability distribution Pr over the set of worlds WEM that satisfies �EM.

We illustrate this type of consistency in the following example.

Example 12 It is possible to create probabilistic knowledge bases for which there is no
satisfying probability distribution. The following formula is a simple example of such a
case:

rain ∨ hail : 0.3 ± 0;
rain ∧ hail : 0.5 ± 0.1.

The above is an example of Type I inconsistency in DeLP3E, as it arises from the fact that
there is no satisfying interpretation for the EM knowledge base.

However, even if the EM is consistent, the interaction between the annotation function
and facts and strict rules can still cause another type of inconsistency to arise. We will refer
to this as combined, or Type II, (in)consistency.

Definition 16 A DeLP3E program I = (�EM,�AM, af ), with �AM = 〈Θ,Ω, Φ,Δ〉,
is Type II consistent iff: given any probability distribution Pr that satisfies �EM, if there
exists a world w ∈ WEM such that

⋃
x∈Θ∪Ω | w|=af(x){x} is inconsistent, then we have

Pr(w) = 0.

Thus, any EM world in which the set of associated facts and strict rules are inconsistent
(we refer to this as “classical consistency”) must always be assigned a zero probability. The
intuition is as follows: any subset of facts and strict rules are thought to be true under certain
circumstances — these circumstances are determined through the annotation function and
can be expressed as sets of EM worlds. Suppose there is a world where two contradictory
facts can both be considered to be true (based on the annotation function). If this occurs, then
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there must not exist a probability distribution that satisfies the program �EM that assigns
such a world a non-zero probability, as this world leads to an inconsistency. We provide a
more concrete example of Type II inconsistency next.

Example 13 Consider the environmental model from Example 2 (Page 8), the analytical
model shown in Fig. 1 (Page 10), and the annotation function shown in Figure 3 (Page 15).
Suppose the following fact is added to the argumentation model:

θ3 = ¬p,

and that the annotation function is expanded as follows:

af (θ3) = k ∧ ¬f

Clearly, fact θ3 is in direct conflict with fact θ1a . However, this does not necessarily mean
that there is an inconsistency. For instance, by the annotation function, θ1a holds in the
world {k, f } while θ3 does not. However, let’s consider following world w = {k}. Note
that w |= af (θ3) and w |= af (θ2). Hence, in this world both contradictory facts can
occur. However, can this world be assigned a non-zero probability? A simple examina-
tion of the environmental model indicates that it can. Hence, in this case, we have Type II
inconsistency.

We say that a DeLP3E program is consistent iff it is both Type I and Type II consistent.
However, in this paper, we focus on Type II consistency and assume that the program is Type
I consistent. Figure 4 gives a straightforward approach to identifying Type II inconsistent
DeLP3E programs by running breath-first search on a set of Θ ∪ Ω . The algorithm works
by examining all subsets of a set of facts and strict rules to find inconsistent subsets whose
corresponding formula in the environmental model can be assigned a non-zero probability.
The following result states its correctness.

Proposition 1 For Type I consistent DeLP3E program I = (�EM,�AM, af ) where Θ and
Ω are the sets of facts and strict rules in �AM, then
CON-CHK-BFS(�EM,�AM, af , d, {Θ∪Ω}) (where d = |Θ ∪Ω|) returns INCONSISTENT
iff the DeLP3E is Type II inconsistent.

Proof The algorithm takes the set of facts and strict rules and checks the consistency of
it by checking the value of the probability distribution on the set and the subsets of the
given set. If in any step there exists a subset of facts and strict rules that is not Type I
consistent, the algorithm checks the value of the probability distribution; if it is not zero, it
will return INCONSISTENT. BWOC, suppose the algorithm has returned INCONSISTENT
for a DeLP3E program that is consistent. So, there exist a subset S of size d of facts and

Fig. 4 A straightforward BFS-based algorithm for consistency checking
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strict rules for which the algorithm has returned INCONSISTENT, while S is consistent.
Because the algorithm has returned INCONSISTENT, the set S is classically inconsistent.
It also means that � w ∈ WAM s.t. w |= ∧

s∈S{s} and ∃ Pr s.t. P r(af (s)) > 0. This is
in contradiction with the assumption of consistency of S. For the other direction, consider
a DeLP3E program that is inconsistent. Since the program is inconsistent, there exists a
world w ∈ WEM such that

⋃
x∈Θ∪Ω | w|=af(x){x} is inconsistent and Pr(w) > 0. Since⋃

x∈Θ∪Ω | w|=af(x){x} is a subset of the facts and rules, the algorithm checks its consistency
in some iteration. Since the subset is inconsistent and the probability value assigned to it is
greater than zero, the algorithm returns INCONSISTENT.

However, we note that even with an oracle for checking the classical consistency of a
subset (line 2) and for determining the upper bound on the probability of the annotations
(line 2a), this algorithm is still intractable as it explores all subsets of Θ ∪ Ω . One possible
way to attack this intractability is to restrict the depth of the search by setting d to be less
than the size of Θ ∪ Ω . In this case, we get the following result:

Proposition 2 Given Type I consistent DeLP3E program I = (�EM,�AM, af ), where Θ

and Ω are the sets of facts and strict rules in �AM and d < |Θ ∪ Ω|, then if CON-
CHK-BFS(�EM, �AM, af , d, {Θ ∪ Ω}) returns INCONSISTENT, the program I is Type II
inconsistent.

Proof Suppose, BWOC that CON-CHK-BFS(�EM, �AM, af , d, {Θ ∪ Ω}) returns INCON-
SISTENT, and the program I is Type II consistent. We claim that by showing that,
under the condition of the statement, that if I is Type II consistent, then CON-CHK-
BFS(�EM,�AM, af , d, {Θ ∪Ω}) must return CONSISTENT (giving a contradiction). This
is due to the following: since calling CON-CHK-BFS(�EM,�AM, af , d, {Θ ∪ Ω} where
d = |Θ ∪ Ω| returns CONSISTENT when the program is consistent, then the algorithm
returns CONSISTENT for every subset of Θ ∪Ω smaller than itself. As a result, CON-CHK-
BFS(�EM,�AM, af , d, {Θ ∪ Ω}) (where d < |Θ ∪ Ω|) returns CONSISTENT.

Therefore, by restricting depth, we can view this algorithm as an “anytime” approach,
essentially searching for a world leading to an inconsistent program and not halting until it
does.

In the following sections, we explore three methods for resolving Type II inconsistency
through belief revision. We summarize them briefly below.

Revise the EM. The probabilistic model can be changed in order to force the worlds that
induce contradicting strict knowledge to have probability zero. In general, this type of
revision by itself is not ideal as it will not work in all cases. We discuss this method in
Section 4.2.

Revise the AM. The argumentation model can be changed in such a way that the set of
strict rules and facts is consistent. If this is the case, then Type II consistency follows. We
discuss this method in Section 4.3.

Revise the annotation function. The annotations involved in the inconsistency can be
changed so that the conflicting information in the AM does not become induced under
any possible world. This can be viewed as a generalization of AM revision. We discuss
this method in Section 4.4.
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4.2 EM-based belief revision

We now study belief revision through updating the environmental model only (�EM). Sup-
pose that �EM is consistent, but that the overall program is Type II inconsistent. Then, there
must exist a set of worlds in the EM such that there exists a probability distribution that
assigns each of them a non-zero probability. This gives rise to the following result.

Proposition 3 If there exists a probability distribution Pr that satisfies �EM s.t. there exists
a world w ∈ WEM where Pr(w) > 0 and

⋃
x∈Θ∪Ω | w|=af(x){x} is inconsistent (Type II

inconsistency), then any change made in order to resolve this inconsistency by modifying
only �EM yields a new EM �′

EM such that
(∧

a∈w a∧∧
a /∈w ¬a

) : 0±0 is entailed by �′
EM.

Proof Suppose by contradiction that �′
EM �|= (∧

a∈w a∧∧
a /∈w ¬a

) : 0±0. By hypothesis,
we have that

⋃
x∈Θ∪Ω | w|=af(x){x} is inconsistent and the changes made to �EM resolve this

inconsistency. Therefore, according to Definition 16, Pr(w) = 0, which is equivalent to the
condition �′

EM |= (∧
a∈w a ∧ ∧

a /∈w ¬a
) : 0 ± 0.

Proposition 3 seems to imply an easy strategy to resolve Type II inconsistencies: add
formulas to �EM forcing the necessary worlds to have a zero probability. However, this may
lead to Type I inconsistencies in the resulting model �′

EM. If we are applying an EM-only
strategy to resolve inconsistencies, this would then lead to further adjustments to �′

EM in
order to restore Type I consistency. We illustrate this situation in the following example.

Example 14 Consider two contradictory facts in an AM: a and ¬a such that af (a) = p and
af (¬a) = q. Suppose that p and q are the only atoms in the EM, and that we have:

p : 0.4 ± 0
q : 0.8 ± 0.1

¬p ∧ ¬q : 0.2 ± 0.1

which is consistent since the following distribution satisfies all constraints:

Pr({p}) = 0.2;
Pr({p, q}) = 0.2;
Pr({q}) = 0.5;
Pr({}) = 0.1.

Now, to restore Type II consistency of our simple DeLP3E program, we can add formula
p∧q : 0±0 to the EM so that world {p, q} is forced to have probability zero. However, this
leads to another inconsistency, this time of Type I, since putting together all the constraints
we have:

Pr({p, q}) = 0;
Pr({p}) + Pr({p, q}) = 0.4;
Pr({q}) + Pr({p, q}) = 0.8 ± 0.1;
Pr({}) = 0.2 ± 0.1;
Pr({p}) + Pr({p, q}) + Pr({q}) + Pr({}) = 1;

which is clearly inconsistent. Repairing this inconsistency involves changing the EM further,
for instance by relaxing the bounds in the first two formulas to accommodate the probability
mass that world {p, q} had before and can no longer hold.



Belief revision in structured probabilistic argumentation

In the previous example, we saw how changes made to repair Type II inconsistencies
could lead to Type I inconsistencies. It is also possible that changing �′

EM (for instance,
by removing elements, relaxing probability bounds of the sentences, etc.) causes Type II
inconsistency in the overall DeLP3E program — this would lead to the need to set more EM
worlds to a probability of zero. Unfortunately, this process is not guaranteed to arrive at a
fully consistent program before being unable to continue; consider the following example,
where the process cannot even begin.

Example 15 Consider an AM composed of several contradictory facts and an EM with just
two atoms, as in the previous example, and the following annotation function:

af (a) = p af (b) = ¬p af (c) = ¬p af (d) = q

af (¬a) = q af (¬b) = ¬q af (¬c) = p af (¬d) = ¬q

Modifying the EM so that no two contradictory literals ever hold at once in a world that
has a non-zero probability leads to the constraints:

Pr({p, q}) = 0;
Pr({p}) = 0;
Pr({q}) = 0;
Pr({}) = 0;
Pr({p}) + Pr({p, q}) + Pr({q}) + Pr({}) = 1;

As in the previous example, the probability mass cannot be accommodated within
these constraints. It would thus be impossible to restore consistency by only modifying
�EM.

We thus arrive at the following observation from Example 15:

Observation 1 Given a Type II inconsistent DeLP3E program, consistency cannot always
be restored via modifications to �EM alone.

Therefore, due to this line of reasoning, in this paper we focus our efforts on modifi-
cations to the other two components of a DeLP3E framework: the AM and the annotation
function, as described in the next two sections. Approaches combining two or more of these
methods are the topic of future work.

4.3 AM-based belief revision

The result of the previous section indicates that EM-based belief revision of a DeLP3E
framework (at least by itself) is not a tenable solution. Hence, in this section, we resort to an
alternate approach in which we only modify the AM (�AM). In this section (and the next),
given a DeLP3E program I = (�EM, �AM, af ), with �AM = Ω ∪ Θ ∪ Δ ∪ Φ, we are
interested in solving the problem of incorporating an epistemic input (f, af ′) into I , where
f is either an atom or a rule and af ′ is equivalent to af , except for its expansion to include
f . For ease of presentation, we assume that f is to be incorporated as a fact or strict rule, as
incorporating defeasible knowledge can never lead to inconsistency since any contradicting
presumption can be defeated by another, and hence presumptions can rule out each other.
As we are only conducting �AM revisions, for I = (�EM,�AM, af ) and input (f, af ′) we
denote the revision as follows: I • (f, af ′) = (�EM,�′

AM, af ′) where �′
AM is the revised
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argumentation model. We also slightly abuse notation for the sake of presentation, as well
as introduce notation to convert sets of worlds to/from formulas:

– I ∪ (f, af ′) to denote I ′ = (�EM,�AM ∪ {f }, af ′).
– (f, af ′) ∈ I = (�AM,�EM, af ) to denote f ∈ �AM and af = af ′.
– W0

EM(I) = {w ∈ WEM | �I
AM(w) is inconsistent}

– WI
EM(I) = {w ∈ W0

EM | ∃Pr s.t. Pr |= �EM ∧ Pr(w) > 0}
Intuitively, the set W0

EM(I) contains all the EM worlds for a given program where the
corresponding knowledge base in the AM is classically inconsistent and WI

EM(I) is a subset
of these that can be assigned a non-zero probability — the latter are the worlds where
inconsistency in the AM can arise.

4.3.1 Postulates for AM-based belief revision

We now analyze the rationality postulates for non-prioritized revision of belief bases first
introduced in [20] and generalized in [10], in the context of AM-based belief revision of
DeLP3E programs.

AM inclusion For I • (f, af ′) = (�EM,�′
AM, af ′), �′

AM ⊆ �AM ∪ {f }.
This postulate states that the revised AM knowledge base is a subset of the union of the
original AM knowledge base and the input.

AM vacuity If I ∪ (f, af ′) is consistent, then I • (f, af ′) ⊆ I ∪ (f, af ′).
If simply adding the input does not cause inconsistency, then the revision operator does
precisely that.

AM consistency preservation If I is consistent, then I • (f, af ′) is also consistent.
The operator maintains a consistent program.

AM weak success If I ∪ (f, af ′) is consistent, then (f, af ′) ∈ I • (f, af ′).
Whenever the simple addition of the input does not cause inconsistencies to arise, the result
will contain the input.

If a portion of the AM knowledge base is removed by the operator, then there exists a
subset of the remaining knowledge base that is not consistent with the removed element and
f .

AM pertinence For I • (f, af ′) = (�EM,�′
AM, af ′), where �′

AM = Θ ′ ∪ Ω ′ ∪ Φ ′ ∪ Δ′,
for each g ∈ Θ ∪Ω \�′

AM there exists Yg ⊇ Θ ′ ∪Ω ′ ∪ {f } s.t. Yg is consistent and Yg ∪{g}
is inconsistent.
If a portion of the AM knowledge base is removed by the operator, then there exists a
superset of the remaining knowledge base that is not consistent with the removed element
and f .

AM uniformity 1 Let (f, af ′
1), (g, af ′

2) be two inputs where WI
EM(I ∪ (f, af ′

1)) =
WI

EM(I ∪ (g, af ′
2)); for all X ⊆ Θ ∪ Ω; if X ∪ {f } is inconsistent iff X ∪ {g} is inconsis-

tent, then Θ ′
1 ∪ Ω ′

1 \ {f } = Θ ′
2 ∪ Ω ′

2 \ {g} where I • (f, af ′
1) = (�EM, �AM

′
1, af

′
1) and

I • (g, af ′
2) = (�EM,�AM

′
2, af

′
2) and �AM

′
i = Θ ′

i ∪ Ω ′
i ∪ Φ ′

i ∪ Δ′
i .

If two inputs result in the same set of EM worlds leading to inconsistencies in an AM
knowledge base, and the consistency between analogous subsets (when joined with the
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respective input) are the same, then the remaining elements in the AM knowledge base are
the same.

AM uniformity 2 Let (f, af ′
1), (g, af ′

2) be two inputs where WI
EM(I ∪ (f, af ′

1)) =
WI

EM(I∪ (g, af ′
2)); for all X ⊆ Θ ∪Ω; if X∪{f } is inconsistent iff X∪{g} is inconsistent,

then (Θ ∪Ω)\ (Θ ′
1 ∪Ω ′

1) = (Θ ∪Ω)\ (Θ ′
2 ∪Ω ′

2) where I • (f, af ′
1) = (�EM,�AM

′
1, af

′
1)

and I • (g, af ′
2) = (�EM,�AM

′
2, af

′
2) and �AM

′
i = Θ ′

i ∪ Ω ′
i ∪ Φ ′

i ∪ Δ′
i .

If two inputs result in the same set of EM worlds leading to inconsistencies in an AM
knowledge base, and the consistency between analogous subsets (when joined with the
respective input) are the same, then the removed elements in the AM knowledge base are
the same.

We can show an equivalence between the Uniformity postulates under certain conditions.

Proposition 4 For operator • where for program I • (f, af ′) = (�EM, �′
AM, af ′) and

�′
AM ⊆ �AM ∪ {f }, we have that • satisfies AM Uniformity 1 iff it also satisfies AM

Uniformity 2.

Proof (If) Suppose BWOC that • satisfies AM Uniformity 1 and does not satisfy AM Uni-
formity 2. Then (for the two inputs as specified by the Uniformity postulates) (Θ ∪ Ω) \
(Θ ′

1 ∪ Ω ′
1) = (Θ ∪ Ω) \ (Θ ′

2 ∪ Ω ′
2) and Θ ′

1 ∪ Ω ′
1 \ {f } �= Θ ′

2 ∪ Ω ′
2 \ {g}. However, this

is equivalent to (Θ ∪ Ω) \ (Θ ′
1 ∪ Ω ′

1) = (Θ ∪ Ω) \ (Θ ′
2 ∪ Ω ′

2) — hence, we arrive at a
contradiction.
(Only-If) Mirrors the above claim.

4.3.2 AM-based revision operators

In this section, we define a class of operators that satisfies all of the AM rationality postu-
lates of the previous section. We also show that there are no operators outside this class that
satisfy all of the postulates.

First, we introduce notation CandPgmAM(I), which denotes a set of maximal consis-
tent subsets of �AM. So, if I is consistent, then CandPgmAM(I) = {�AM}.

CandPgmAM(I) = {�′
AM | �′

AM ⊆ Θ ∪ Ω s.t. �′
AM is consistent and

��′′
AM ⊆ Θ ∪ Ω s.t. �′′

AM ⊃ �′
AM s.t. �′′

AM is consistent}
For our first result, we show that an operator returning any subset of an element of
CandPgmAM(I) is a necessary and sufficient condition for satisfying both the Inclusion
and Consistency Preservation postulates.

Lemma 1 Given program I and input (f, af ′), operator • satisfies Inclusion and Con-
sistency Preservation iff for I • (f, af ′) = (�EM,�′

AM, af ′), there exists an element
X ∈ CandPgmAM(I ∪ (f, af ′)) s.t. (Θ ∪ Ω ∪ {f }) ∩ �′

AM ⊆ X.

Proof (If) Suppose, BWOC, that there exists X ∈ CandPgmAM(I ∪ (f, af ′)) s.t. (Θ ∪
Ω ∪ {f }) ∩ �′

AM ⊆ X, but either Inclusion or Consistency Preservation is not satisfied.
However, the elements of CandPgmAM(I ∪ (f, af ′)) are all classically consistent with all
subsets of �AM ∪ {f }, which is a contradiction.
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(Only-If) Suppose, BWOC, that the operator satisfies both Inclusion and Consistency
Preservation and there does not exist X ∈ CandPgmAM(I ∪ (f, af ′)) s.t. (Θ ∪Ω ∪ {f })∩
�′

AM ⊆ X. Then, (Θ ∪Ω ∪{f })∩�AM is a subset of �AM ∪{f } and (Θ ∪Ω ∪{f })∩�′
AM

is classically consistent.
However, by definition, this would mean that it must also be a subset of an element in

CandPgmAM(I ∪ (f, af ′)).

Our next result extends Lemma 1 by showing that elements of �AM ∪ {f } that are
retained are also elements of CandPgmAM(I∪(f, af ′)) if and only if the operator satisfies
Inclusion, Consistency Preservation, and Pertinence (simultaneously).

Lemma 2 Given program I and input (f, af ′), operator • satisfies Inclusion, Consistency
Preservation, and Pertinence iff for I • (f, af ′) = (�EM,�′

AM, af ′), we have (Θ ∪ Ω ∪
{f }) ∩ �′

AM ∈ CandPgmAM(I ∪ (f, af ′)).

Proof (If) Suppose, BWOC, that (Θ ∪ Ω ∪ {f }) ∩ �′
AM ∈ CandPgmAM(I ∪ (f, af ′)),

(which, by Lemma 1, satisfies both Consistency and Inclusion) but does not satisfy Per-
tinence. As |Θ ∪ Ω \ X| > 0, then f ∈ (Θ ∪ Ω ∪ {f }) ∩ �′

AM. This means that
(Θ ∪ Ω ∪ {f }) ∩ �′

AM ⊇ X ∪ {f }, which also yields a contradiction.
(Only-If) Suppose, BWOC, that the operator satisfies Inclusion, Consistency Preservation,
and Pertinence but (Θ ∪ Ω ∪ {f }) ∩ �′

AM /∈ CandPgmAM(I ∪ (f, af ′)). As the oper-
ator satisfies Pertinence, and by Lemma 1, (Θ ∪ Ω ∪ {f }) ∩ �′

AM ∈ V = {X | ∃Y ∈
CandPgmAM(I ∪ (f, af ′)) ∧ X ⊇ Y }. As (Θ ∪ Ω ∪ {f }) ∩ �′

AM /∈ CandPgmAM(I ∪
(f, af ′)), we have (Θ∪Ω∪{f })∩�′

AM ∈ Z = {X | ∃Y ∈ CandPgmAM(I∪(f, af ′))∧X ⊃
Y }. However, this violates Lemma 1 — we have thus arrived at a contradiction.

To support the satisfaction of the first Uniformity postulate, we provide the following
lemma that shows for a consistent program where two inputs cause inconsistencies to arise
in the same way, that the set of candidate replacement programs (minus the added AM
formula) is the same.

Lemma 3 Let I = (�EM,�AM, af ) be a consistent program, (f1, af ′
1), (f2, af ′

2) be two
inputs, and Ii = (�EM,�AM∪{fi}, af ′

i ). IfWI
EM(I1) = WI

EM(I2), then for allX ⊆ Θ∪Ω

we have that:

1. If X ∪ {f1} is inconsistent ⇔ X ∪ {f2} is inconsistent, then:
{X \ {f1} | X ∈ CandPgmAM(I1)} = {X \ {f2} | X ∈ CandPgmAM(I2)}.

2. If {X \ {f1} | X ∈ CandPgmAM(I1)} = {X \ {f2} | X ∈ CandPgmAM(I2)} then
X ∪ {f1} is inconsistent ⇔ X ∪ {f2} is inconsistent.

Proof (If) Suppose BWOC that for all X ⊆ Θ ∪ Ω we have that X ∪ {f1} is incon-
sistent iff X ∪ {f2} is inconsistent, but {X \ {f1} | X ∈ CandPgmAM(I1)} �= {X \
{f2} | X ∈ CandPgmAM(I2)}. However, the pre-condition of this statement implies that
{X \ {f1} | X ⊆ CandPgmAM(I1)} = {X \ {f2} | X ⊆ CandPgmAM(I2), which gives
us a contradiction.
(Only-If) Suppose BWOC that {X \ {f1} | X ∈ CandPgmAM(I1)} = {X \ {f2} | X ∈
CandPgmAM(I2)}, but there exists a set X ⊆ Θ ∪ Ω s.t. exactly one of X ∪ {f1}, X ∪
{f2} is inconsistent. As a first case, let us assume that Θ ∪ Ω ∪ {f1} is consistent. As
{X \ {f1} | X ∈ CandPgmAM(I1)} = {X \ {f2} | X ∈ CandPgmAM(I2)}, this implies
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that Θ ∪ Ω ∪ {f2} must also be consistent as each of those sets must then have exactly one
element. In this case, a contradiction arises, hence both Θ ∪ Ω ∪ {f1} and Θ ∪ Ω ∪ {f2}
must be classically inconsistent. Now let us consider the other case. As Θ ∪ Ω is consistent
and all its subsets are consistent, then we must consider some X ⊆ Θ ∪ Ω where X ∪ {f1}
is not consistent. Hence, X ∪ {f2} must be consistent. As Θ ∪ Ω ∈ CandPgmAM(I2), we
know that X ∈ {X \ {f2} | X ∈ CandPgmAM(I2)} iff X ∪ {f2} is consistent, so it must
be in that set. However, X /∈ {X \ {f1} | X ∈ CandPgmAM(w,I1)} as X ∪ {f1} is not
consistent — this is a contradiction.

We now define the class of AM-based Operators, denoted AMO. Essentially, this operator
selects one of the candidate programs in a deterministic fashion.

Definition 17 (AM-based Operators) A belief revision operator • is an “AM-based” oper-
ator (• ∈ AMO) iff given program I = (�EM, �AM, af ) and input (f, af ′), the revision is
defined as I • (f, af ′) = (�EM,�′

AM, af ′), where �′
AM ∈ CandPgmAM(I ∪ (f, af ′)).

Finally, we are able to prove our representation theorem for AM-based belief revision.
This theorem follows directly from the results presented in this section.

Theorem 1 (AM Representation Theorem) An operator • belongs to class AMO iff
it satisfies Inclusion, Vacuity, Consistency Preservation, Weak Success, Pertinence, and
Uniformity 1.

Proof (Sketch) (If) By the definition of AMO, Vacuity and Weak Success follow triv-
ially. Further, Lemma 2 shows that Inclusion, Consistency Preservation and Pertinence are
satisfied, while Lemma 3 shows that Uniformity 1 is satisfied.
(Only-If) Suppose BWOC that an operator • satisfies all postulates from the statement
and • /∈ AFO. Then, one of the following conditions must hold: (i) it does not satisfy
Lemma 2; (ii) it does not satisfy Lemma 3. However, by those previous arguments, if it sat-
isfies all postulates from the statement, these arguments must be true as well — hence a
contradiction.

Example 16 Recall the AM knowledge base of the Fig. 1. We want to add θ3a = l and
θ3b = ¬l to AM. Also recall KEM defined in Example 2. Let af (θ3a) = a and af (θ3a) = b.
The input is (f, af ′) = ({θ3a, θ3b}, af ′) where af ′ is the new annotation function. The
program I ∪ (f, af ′) = (�EM,�AM ∪ {f }, af ′) will be inconsistent because of f8. The
AM-based belief revision I • (f, af ′) will remove either θ3a or θ3b. The resulting program
I ′ will be consistent.

We add θ3a = l and θ3b = ¬l to the AM knowledge base of the Fig. 1 and f8 = a ∧ b :
0.4 ± 0.1 to the KEM defined in the Example 2. Also, let af (θ3a) = a and af (θ3a) = b. In
this scenario, the AM-based revision operator will remove either θ3a or θ3b. The resulting
knowledge base will be consistent.

4.4 Annotation function-based belief revision

In this section we attack the belief revision problem from a different angle: adjusting the
annotation function. The advantage to changing the annotation function is that we might



P. Shakarian et al.

not need to discard an entire fact or strict rule from the argumentation model. Consider the
following example.

Example 17 Let us consider two contradictory facts in an AM: a and ¬a such that af (a) =
q ∧ r and af (¬a) = r ∧ s. If we assume that q, r, s are the only atoms in the EM, then we
know that a occurs under the environmental worlds {q, r} and {q, r, s}, and that ¬a occurs
under the environmental worlds {r, s} {q, r, s}.

Clearly, they cannot both be true in world {q, r, s}. Hence, a new annotation formula af ′
where af ′(a) = q ∧ r and af ′(¬a) = r ∧ s ∧ ¬for({q, r, s}) easily solves the conflict (note
that for(w) specifies a formula satisfied by exactly world w). Note that we did not have to
remove ¬a from the knowledge base, which means that this information is not completely
lost. In other word, the main difference between the AM-based belief revision and adjusting
the Annotation function is that the later model allows more delicate changes to be made in
order to preserve the information gathered in AM.

We also note that modifications of the annotation function can be viewed as a general-
ization of AM modification. Consider the following:

Example 18 Consider again the present facts a and ¬a in the AM. Assuming that this causes
an inconsistency (that is, there is at least one world in which they both hold), one way to
resolve it would be to remove one of these two literals. Suppose ¬a is removed; this would
be equivalent to setting af(¬a) = ⊥ (where ⊥ represents a contradiction in the language of
the EM).

In this section, we introduce a set of postulates for reasoning about annotation function-
based belief revision. As in the previous section, we then go on to provide a class of
operators that satisfy all the postulates and show that this class includes all operators
satisfying the postulates.

As in this section we are only conducting annotation function revisions, for I =
(�EM,�AM, af ) and input (f, af ′) we denote the revision as follows: I�(f, af ′) =
(�EM,�′

AM, af ′′) where �′
AM = �AM ∪ {f } and af ′′ is the revised annotation function.

Further, in this section, we often refer to “removing elements of �AM” to refer to changes to
the annotation function that cause certain elements of the �AM to not have their annotations
satisfied in certain EM worlds. Further, as we are looking to change the annotation function
for a specific subset of facts and strict rules, we specify these subsets with the following
notation.

– wld(f ) = {w | w |= f } – the set of worlds that satisfy formula f ; and
– for(w) = ∧

a∈w a ∧ ∧
a /∈w ¬a – the formula that has w as its only model.

– �I
AM(w) = {f ∈ Θ ∪ Ω | w |= af(f )}

Intuitively, �I
AM(w) is the subset of facts and strict rules in �AM whose annotations are

true in EM world w.

4.4.1 Postulates for revising the annotation function

Just as we did for AM-based belief revision, here we introduce rationality postulates for
annotation function based belief revision. We note that except for vacuity, consistency
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preservation, and weak success, the postulates are defined in a different manner from the
AM postulates. The key difference between the AM-based and the AF-based postulates
is that AF postulates consider subsets of the AM that occur in certain the environmental
conditions — as opposed to considering the entire analytical model as a whole. In this
way, the AF-based postulates will give rise to a more fine-grained revision of the overall
knowlegebase than the more coarse-grain AM-based approach.

AF inclusion For I�(f, af ′) = (�EM,�AM ∪ {f }, af ′′),
∀g ∈ �AM, wld

(
af ′′(g)

) ⊆ wld(af ′(g)).
This postulate states that, for any element in the AM, the worlds that satisfy its annotation
after the revision are a subset of the original set of worlds satisfying the annotation for that
element.

AF vacuity If I ∪ (f, af ′) is consistent, then I�(f, af ′) ⊆ I ∪ (f, af ′).
This is the same as for the AM version of the postulate: no change is made if the program
is consistent with the added input.

AF consistency preservation If I is consistent, then I�(f, af ′) is also consistent.
Again, as with the AM version, the operator maintains a consistent program.

AF weak success If I ∪ (f, af ′) is consistent, then (f, af ′) ∈ I�(f, af ′).
The input must be contained in the revised program if it does not cause inconsistencies.

For a given EM world, if a portion of the associated AM knowledge base is removed by
the operator, then there exists a subset of the remaining knowledge base that is not consistent
with the removed element and f .

AF pertinence For I�(f, af ′) = (�EM, �AM ∪ {f }, af ′′), for each w ∈ WI
EM(I ∪

(f, af ′)), we have Xw = {h ∈ Θ ∪ Ω | w |= af ′′(h)}; for each g ∈ �AM(w) \ Xw there
exists Yw ⊇ Xw ∪ {f } s.t. Yw is consistent and Yw ∪ {g} is inconsistent.
For a given EM world, if a portion of the associated AM knowledge base is removed by the
operator, then there exists a superset of the remaining knowledge base that is not consistent
with the removed element and f .

AF uniformity 1 Let (f, af ′
1), (g, af ′

2) be two inputs where
WI

EM(I ∪ (f, af ′
1)) = WI

EM(I ∪ (g, af ′
2)); for all w ∈ WI

EM(I ∪ (f, af ′)) and for all X ⊆
�AM(w); if {x | x ∈ X∪{f }, w |= af ′

1(x)} is inconsistent iff {x | x ∈ X∪{g}, w |= af ′
2(x)}

is inconsistent, then for each h ∈ �AM, we have that:

{w ∈ WI
EM(I ∪ (f, af ′

1)) | w |= af ′
1(h) ∧ ¬af ′′

1(h)} =
{w ∈ WI

EM(I ∪ (g, af ′
2)) | w |= af ′

2(h) ∧ ¬af ′′
2(h)}.

If two inputs result in the same set of EM worlds leading to inconsistencies in an AM knowl-
edge base, and the consistency between analogous subsets (when joined with the respective
input) are the same, then the models removed from the annotation of a given strict rule or
fact are the same for both inputs.
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AF uniformity 2 Let (f, af ′
1), (g, af ′

2) be two inputs where
WI

EM(I ∪ (f, af ′
1)) = WI

EM(I ∪ (g, af ′
2)); for all w ∈ WI

EM(I ∪ (f, af ′))and for all X ⊆
�AM(w); if {x | x ∈ X∪{f }, w |= af ′

1(x)} is inconsistent iff {x | x ∈ X∪{g}, w |= af ′
2(x)}

is inconsistent, then

{w ∈ WI
EM(I ∪ (f, af ′

1)) | w |= af ′
1(h) ∧ af ′′

1(h)} =
{w ∈ WI

EM(I ∪ (g, af ′
2)) | w |= af ′

2(h) ∧ af ′′
2(h)}.

If two inputs result in the same set of EM worlds leading to inconsistencies in an AM knowl-
edge base, and the consistency between analogous subsets (when joined with the respective
input) are the same, then the models retained in the the annotation of a given strict rule or
fact are the same for both inputs.

4.4.2 AF-based revision operator

In this section, we introduce a class of operators for revising a DeLP3E program. Unlike
the AM revision, this fine-grained approach requires an adjustment of the conditions in
which elements of �AM can hold true. Hence, any subset of �AM associated with a world
in WI

EM(I ∪ (f, af ′)) must be modified by the operator in order to remain consistent.
So, for such a world w, we introduce the annotation function version of the set of candi-
date replacement programs for �AM(w) in order to maintain consistency and satisfy the
Inclusion postulate.

CandPgmaf (w,I) =
{�′

AM | �′
AM ⊆ �AM(w) s.t. �′

AM is consistent and

��′′
AM ⊆ �AM(w) s.t. �′′

AM ⊃ �′
AM s.t. �′′

AM

is consistent}
Intuitively, for each world w, this is the set of is a maximal consistent subsets of �I

AM(w).
However, unlike with AM based belief revision, the candidate replacement program are
specified for specific worlds - this in turn enables a more “surgical” adjustment to the
overall knowledgebase than AM belief revision. This is due to the fact that in AM revi-
sion, components of the analytical model are deemed to no longer hold in any world as
opposed to a specific subset of worlds.

Before introducing our operator, we define some preliminary notation. Let Φ : WEM →
2[Θ ]∪[Ω ]. Recall that sets of all facts and rules are denoted by [Θ] and [Ω] respectively.
For each formula h in �AM ∪ {f }, where f is part of the input, we define:

newFor(h,Φ,I, (f, af ′)) = af ′(h) ∧
∧

w∈WI
EM(I∪(f,af ′)) | h/∈Φ(w)

¬for(w)

Intuitively, newFor eliminate inconsistency by adding the negation of the formulas whose
only models are the inconsistent words. These inconsistent words are the result of adding
the input f to the existing program I .

Now we define the class of operators called AFO. We show that membership in AFO is a
necessary and sufficient condition for satisfying all postulates introduced in this paper. The
supporting Lemmas and their associated proofs are included in the Appendix.

Definition 18 (AF-based Operators) A belief revision operator � is an “annotation
function-based” (or af-based) operator (� ∈ AFO) iff given program I = (�EM,�AM, af )



Belief revision in structured probabilistic argumentation

and input (f, af ′), the revision is defined as I�(f, af ′) = (�EM, �AM ∪ {f }, af ′′),
where:

∀h, af ′′(h) = newFor(h,Φ,I, (f, af ′))
where ∀w ∈ WEM, Φ(w) ∈ CandPgmaf (w,I ∪ (f, af ′)).

Theorem 2 (Annotation Function Representation Theorem) An operator � belongs
to class AFO iff it satisfies Inclusion, Vacuity, Consistency Preservation, Weak Success,
Pertinence, and Uniformity 1.

Proof (Sketch) (If) By the fact that formulas associated with worlds in the set WI
EM(I ∪

(f, af ′)) are considered in the change of the annotation function, Vacuity and Weak Suc-
cess follow trivially. Further, Lemma 8 shows that Inclusion, Consistency Preservation, and
Pertinence are satisfied while Lemma 9 shows that Uniformity 1 is satisfied.
(Only-If) Suppose BWOC that an operator � satisfies all postulates and � /∈ AFO. Then,
one of four conditions must hold: (i) it does not satisfy Lemma 8 or (ii) it does not sat-
isfy Lemma 9. However, by those previous arguments, if it satisfies all postulates, these
arguments must be true as well – hence a contradiction.

5 Case study: an application in cyber security

In this section we develop a complete example of how the DeLP3E framework can be used
to deal with a cyber-attribution problem. In this scenario, a cyber attack has been detected
and we want to determine who is responsible for it.

5.1 Model for the attribution problem

To specify the model we need to specify the environmental model, the analytical model, and
the annotation function. First we identify two special subsets of the set of constants (C) for
this application: Cact and Cops , which specify the actors that could conduct cyber-operations
and the operations themselves, respectively:

Cact = {baja, krasnovia,mojave}
Cops = {worm123}

That is, the possible actors are the states of baja, krasnovia and mojave, and the only
operation that we consider they can conduct is a worm123 attack.

Next, we need to specify the sets of predicates, PEM, the predicates for the environ-
mental model, and PAM, the predicates for the analytical model. These are given in Fig. 5,
which presents all the predicates with variables. The following are examples of ground
atoms over those predicates; again, we distinguish between the subset of ground atoms
from the environmental model GEM and the ground atoms from the analytical model
GAM:

GEM : origIP(mw123sam1, krasnovia),mwHint(mw123sam1, krasnovia),

inLgConf (krasnovia, baja),mseTT(krasnovia, 2)

GAM : evidOf (mojave,worm123),motiv(baja, krasnovia), expCw(baja),

tgt(krasnovia,worm123)
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Fig. 5 Predicate definitions for the environment and analytical models in the cyber attribution example

PAM and the set of constants provides all the information we need for the analytical
model. However, there is more to the environmental model than just PEM and the constants.
We need to specify the probabilities of formulae. This information is given by the following
set of probabilistic formulae KEM:

f1 = govCybLab(baja) : 0.8 ± 0.1

f2 = cybCapAge(baja, 5) : 0.2 ± 0.1

f3 = mseTT(baja, 2) : 0.8 ± 0.1

f4 = mwHint(mw123sam1,mojave)

∧ compilLang(worm123, english) : 0.7 ± 0.2

f5 = malwInOp(mw123sam1,worm123)

∧ malwareRel(mw123sam1,mw123sam2)

∧ mwHint(mw123sam2,mojave) : 0.6 ± 0.1

f6 = inLgConf (baja, krasnovia) ∨ ¬cooper(baja, krasnovia) : 0.9 ± 0.1

f7 = origIP(mw123sam1, baja) : 1 ± 0
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Given this probabilistic information, we can demonstrate the linear programming approach
to the maximum entailment problem defined in Definition 2. Consider knowledge base K′

EM
and a set of ground atoms restricted to those that appear in that program. Hence, we have
the following worlds:

w1 = {govCybLab(baja), cybCapAge(baja, 5),mseTT(baja, 2)}
w2 = {govCybLab(baja), cybCapAge(baja, 5)}
w3 = {govCybLab(baja),mseTT(baja, 2)}
w4 = {cybCapAge(baja, 5),mseTT(baja, 2)}
w5 = {cybCapAge(baja, 5)}
w6 = {govCybLab(baja)}
w7 = {mseTT(baja, 2)}
w8 = ∅

and suppose we wish to compute the probability for formula:

q = govCybLab(baja) ∨ mseTT(baja, 2)

For each formula in KEM we have a constraint, and for each world above we have a variable.
An objective function is created based on the worlds that satisfy the query formula (in
this case, worlds w1, w2, w3, w4, w6, w7). Hence, EP-LP-MIN(K′

EM, q) can be written as
follows:

max x1 + x2 + x3 + x4 + x6 + x7 w.r.t. :
0.7 ≤ x1 + x2 + x3 + x6 ≤ 0.9

0.1 ≤ x1 + x2 + x4 + x5 ≤ 0.3

0.8 ≤ x1 + x3 + x4 + x7 ≤ 1

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = 1

From this, we can solve EP-LP-MAX(K′
EM, q) and, after an easy modification,

EP-LP-MIN(K′
EM, q), and obtain the solution 0.9 ± 0.1.

Now, given PAM and C, we can assemble the ground argumentation framework of
Fig. 6 as a sample �AM. From this argumentation framework, we can build the following
arguments:

〈A1, condOp(baja,worm123)〉 A1 = {θ1a, δ1a}
〈A2, condOp(baja,worm123)〉 A2 = {φ1, φ2, δ4, ω2a, θ1a, θ2}
〈A3, condOp(baja,worm123)〉 A3 = {φ1, δ2, δ4}
〈A4, condOp(baja,worm123)〉 A4 = {φ2, δ3, θ2}
〈A5, isCap(baja,worm123)〉 A5 = {φ1, δ4}

〈A6,¬condOp(baja,worm123)〉 A6 = {δ1b, θ1b, ω1a}
〈A7, ¬isCap(baja,worm123)〉 A7 = {φ3, δ5a}

Note that:

〈A5, isCap(baja,worm123)〉
is a sub-argument of both

〈A2, condOp(baja,worm123)〉
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Fig. 6 A ground argumentation framework

and
〈A3, condOp(baja,worm123)〉

The following are some of the attack relationships between these arguments: A1, A2, A3,
and A4 all attack A6; A5 attacks A7; and A7 attacks A2.

In Fig. 7 we show an another example of a knowledge base for the attribution problem,
this time with a non-ground argumentation system.

With the environmental and analytical models specified, the remaining component of
the model is the annotation function; one suitable annotation function is given in Fig. 8.
Consider worlds w1, . . . , w8 along with the argument 〈A5, isCap(baja,worm123)〉. This
argument is valid in worlds w1, w2, w3, w4, w6, and w7. Similarly, worlds w3, w6, and w7
are warranting scenarios for argument 〈A5, isCap(baja,worm123)〉 and

nec(isCap(baja,worm123)) = {w3, w6, w7}
while

poss(isCap(baja,worm123)) = {w1, w2, w3, w4, w6, w7}

5.2 Applying entailment to the cyber-attribution problem

We now discuss how finding tight bounds on the entailment probability can be applied
to the cyber-attribution problem. Following the domain-specific notation introduced in
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Fig. 7 A non-ground argumentation framework

the beginning of this case study (where the set of constants C includes two subsets:
Cact and Cops , that specify the actors that could conduct cyber-operations and the oper-
ations themselves, respectively), we define a special case of the entailment problem as
follows.

Definition 19 Let I = (�EM,�AM, af ) be a DeLP3E program, S ⊆ Cact (the set of
“suspects”), O ∈ Cops (the “operation”), E ⊆ GEM (the “evidence”), and D ⊆ GEM (the
“probabilistic fact”).

An actor A ∈ S is said to be a most probable suspect iff there does not exist A′ ∈ S
such that PcondOp(A′,O),I′ > PcondOp(A,O),I′ where I ′ = (�EM ∪�E ∪�D,�AM, af ′) with
�E = ⋃

c∈E {c : 1 ± 0} and �D = ⋃
c∈D{c : p ± ε}.

Note that PcondOp(A′,O),I′ and PcondOp(A,O),I′ are midpoint of intervals PcondOp(A′,O),I′ ±
ε and PcondOp(A,O),I′ ± ε. Alternative formulations are possible based on upper or lower
bound of interval.

Given the above definition, we refer to Q = (I,S,O, E) as an attribution query, and
A as an answer to Q. We note that in the above definition, the items of evidence are added

Fig. 8 Example annotation function
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to the environmental model with a probability of 1. While, in general, this may be the case,
there are often instances in analysis of a cyber-operation where the evidence may be true
with some degree of uncertainty. For this reason we allow for probabilistic facts in the
definition.

To understand how uncertain evidence can be present in a cyber-security scenario,
consider the following scenario:

In Symantec’s initial analysis of the Stuxnet worm, analysts found the routine
designed to attack the S7-417 logic controller was incomplete, and hence would not
function [13]. However, industrial control system expert Ralph Langner claimed that
the incomplete code would run provided a missing data block is generated, which he
thought was possible [27]. In this case, though the code was incomplete, uncertainty
was clearly present regarding its usability.5

This situation provides a real-world example of the need to compare arguments — in this
case, in the worlds where both arguments are valid, Langner’s argument would likely defeat
Symantec’s by generalized specificity (the outcome, of course, will depend on the exact
formalization of the two).

In Fig. 9 we give a simple, straightforward algorithm for attribution queries. The correct-
ness of this algorithm clearly follows from the definitions above. We note that a key source
of computational complexity lies in step 2, where all arguments supporting the hypothesis
that each actor conducted the operation are computed for each world in the EM; this leads to
a factor of 2|GEM| (exponential in the number of ground atoms in the environmental model).
However, we also note that this is equal to the time complexity required to write out a linear
program for answering the entailment query.

Note that the exact approaches presented thus far for answering attribution queries expe-
rience exponential running times in the worst case. Hence, for the creation of a real-world
system, we consider several practical approaches that can be taken to answer attribution
queries Q = (I,S,O, E). We are currently exploring several of these ideas as we work to
build a system for cyber-attribution based on DeLP3E:

1. Approximating the warranting formula: Instead of inspecting all possible classical
dialectical trees as in Approach 1, either a subset of trees can be computed according to
a given heuristic or an anytime approach can be adopted to select such a subset F ′. The
computations with respect to F ′ will then yield sound approximations relative to the
full forest F , which means that all probability intervals will be supersets of the exact
intervals.

2. Approximating the probability: Another alternative to Approach 1 is to apply approxi-
mation algorithms to the formula; for instance:

(a) Approximate satisfiability: if the formula is unsatisfiable, then the warranting
probability is zero;

(b) A lower bound on the warranting probability can be obtained from a subset of
possible worlds (k most probable worlds, random sample of worlds, etc.).

3. “What-if” Reasoning: Given a set Wint of worlds of interest and a warranting for-
mula φ (computed using any of the above approaches), each world can be checked to

5Langner was later vindicated by the discovery of an older sample, Stuxnet 0.5, which generated the data
block [5].
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Fig. 9 A straightforward algorithm for finding a solution to an attribution query

see which literals condOp(Ai,O), with Ai ∈ S , are warranted. That is, instead of
computing probability of attribution, the attribution literal is analyzed in each world of
interest.

6 Conclusions

In this paper we introduced the DeLP3E framework, consisting of an environmental model,
an analytical model, and an annotation function that relates the two. DeLP3E is an extension
of the PreDeLP language in which sentences can be be annotated with probabilistic events.
Such events are connected to a probabilistic model, allowing a clear separation of interests
between certain and uncertain knowledge while allowing uncertainty to be captured and
incorporated into reasoning. After presenting the language, we focused on characterizing
belief revision operations over DeLP3E knowledge bases. We presented two sets of pos-
tulates, both inspired by the postulates that were developed for non-prioritized revision of
classical belief bases. The first set of postulates provides a coarse approach that assumes
that revision operations only allow changes to the analytical model, while the second is
a finer-grained approach based on modifications to the annotation function. We then pro-
ceeded to study constructions of operators based on these postulates, and prove that they are
equivalent to their characterizations by the respective postulates.

This paper makes a number of contributions to the literature of both argumentation and
belief revision. First, this paper contains the most complete description of DeLP3E yet pub-
lished.6 This is a contribution to the study of probabilistic argumentation, and one that,
with the separation between the argumentation system and the probabilistic information in
the environmental model, makes it unique. Second, this paper presents two approaches to
belief revision in DeLP3E. This is a contribution to the study of the relationship between
argumentation systems and belief revision, one that views the problem from the position of
structured argumentation. While the study of revision of the annotation function is specific
to DeLP3E, the study of the revision of the analytical model will be relevant to all argumen-
tation systems that combine strict and defeasible elements, such as DeLP [15], PreDeLP
[30] and ASPIC+ [31, 33]. Finally, the paper presents an extended case study of the applica-
tion of DeLP3E to the attribution problem. This is a contribution to both the argumentation

6DeLP3E was briefly introduced in [41] and [40] as a solution to the attribution problem.
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literature, in showing how argumentation can be applied to a complex real-world problem,
and to the cyber security literature, suggesting tools that can be used to address this prob-
lem. As part of the case study we considered a special kind of query, called an attribution
query, that is useful in tackling the problem of attributing responsibility to entities given a
cyber event of interest. This is a further contribution to the cyber security literature.

After this initial proposal, there remains much work to be done with DeLP3E. As future
work, we plan to study other kinds of belief revision operators, including more general
ones that allow the modification of the environmental model along with the other two
components, as well as revision operators that function at different levels of granularity.
Furthermore, we are in the final stages of producing an implementation of the system —
important future work involves focusing on scalable inference algorithms and testing them
on real-world data from the cyber security domain. The last thing to note is that, as discussed
above, DeLP3E is less a specific formal system, and more a family of systems in which the
analytical model and the environmental model are instantiated in different ways. Here we
chose to use Nilsson’s probabilistic logic to capture the world in the environmental model,
but it is possible to use other frameworks for this purpose; for instance, Markov Logic net-
works [35] would be an interesting choice. Similarly, here we chose to use PreDeLP to build
the analytical model. We can easily envisage versions of DeLP3E that use frameworks other
than PreDeLP for the analytical model. For instance, an abstract argumentation model [3],
an argumentation model that includes uncertain consideration in defeat relationships (such
as a probabilistic argumentation model [28] or possibilistic argumentation model [4]) and
we might also associate varying notions of strength with attack relations as in [8]. All of
these are potential routes for future work.
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Appendix

In this appendix we provide some complementary material that was not included in the
main body of the paper to enhance readability. Specifically, the results of this appendix
support the proof of Theorem 2 in Section 4.4 (the representation theorem for AF-based
belief revision).

First, we give the annotation function revision versions of Proposition 4.

Proposition 5 For operator � such that I�(f, af ′) = (�EM,�AM ∪ {f }, af ′′) and ∀w,

we have that �I�(f,af ′)
AM (w) ⊆ �

I∪(f,af ′)
AM (w), it holds that � satisfies AF Uniformity 1 iff it

also satisfies AF Uniformity 2.

Proof (If) Suppose BWOC that � satisfies AF Uniformity 1 and does not satisfy AF Unifor-
mity 2. Then ∀w ∈ WI

EM(I ∪ (f, af ′
1)) = WI

EM(I ∪ (g, af ′
2)) and h ∈ �AM we have:

{w ∈ WI
EM(I ∪ (f, af ′

1)) | w |= af ′
1(h)} ∩ {w ∈ WI

EM(I ∪ (f, af ′
1)) | w |= ¬af ′′

1(h)} =
{w ∈ WI

EM(I ∪ (g, af ′
2)) | w |= af ′

2(h)} ∩ {w ∈ WI
EM(I ∪ (g, af ′

2)) | w |= ¬af ′′
2(h)}
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and

{w ∈ WI
EM(I ∪ (f, af ′

1)) | w |= af ′
1(h)} ∩ {w ∈ WI

EM(I ∪ (f, af ′
1)) | w |= af ′′

1(h)} �=
{w ∈ WI

EM(I ∪ (g, af ′
2)) | w |= af ′

2(h)} ∩ {w ∈ WI
EM(I ∪ (g, af ′

2)) | w |= af ′′
2(h)}

However, we note that ∀h ∈ �AM we have af ′
1(h) = af ′

2(h) and by the statement of the
postulate WI

EM(I ∪ (f, af ′
1)) = WI

EM(I ∪ (g, af ′
2)), we have the following:

{w ∈ WI
EM(I ∪ (f, af ′

1)) | w |= ¬af ′′
1(h)} =

{w ∈ WI
EM(I ∪ (g, af ′

2)) | w |= ¬af ′′
2(h)}

Which implies a contradiction.
(Only-If) Mirrors the above claim.

We now focus on complementary material relating to Section 4.4 on annotation function-
based belief revision.

Lemma 4 Given program I and input (f, af ′), operator � satisfies Inclusion and Consis-
tency Preservation iff for I�(f, af ′) = (�EM,�AM, af ′′), for all w ∈ WI

EM(I ∪ (f, af ′)),
there exists an element X ∈ CandPgmaf (w,I ∪ (f, af ′)) s.t. {h ∈ Θ ∪ Ω ∪ {f } | w |=
af ′′(h)} ⊆ X.

Proof (If) Suppose, BWOC, that there exists an element X ∈ CandPgmaf (w,I∪(f, af ′))
s.t. {h ∈ Θ ∪ Ω ∪ {f }|w |= af ′′(h)} ⊆ X but either Inclusion or Consistency Preservation
is not satisfied. However, the elements of CandPgmaf (w,I ∪ (f, af ′)) are all classically
consistent and all subsets of �AMI∪(f,af ′)(w), which is a contradiction. (Only-If) Suppose,
BWOC, that the operator satisfies both Inclusion and Consistency Preservation and there
does not exist X ∈ CandPgmaf (w,I∪(f, af ′)) s.t. {h ∈ Θ∪Ω∪{f } | w |= af ′′(h)} ⊆ X.
Then, {h ∈ Θ ∪ Ω ∪ {f } | w |= af ′′(h)} is a subset of �AMI∪(f,af ′)(w) and {h ∈ Θ ∪ Ω ∪
{f } | w |= af ′′(h)} is classically consistent. However, by definition, this would mean that it
must also be a subset of an element in CandPgmaf (w,I ∪ (f, af ′)).

We now investigate the role that the set CandPgmaf plays in showing the necessary and
sufficient requirement for satisfying Pertinence.

Lemma 5 Given program I and input (f, af ′), operator � satisfies Inclusion, Consistency
Preservation, and Pertinence iff for I�(f, af ′) = (�EM,�AM, af ′′), for all w ∈ WI

EM(I ∪
(f, af ′)) we have {h ∈ Θ ∪ Ω ∪ {f } | w |= af ′′(h)} ∈ CandPgmaf (w,I ∪ (f, af ′)).

Proof (If) Suppose, BWOC, that

{h ∈ Θ ∪ Ω ∪ {f } | w |= af ′′(h)} ∈ CandPgmaf (w,I ∪ (f, af ′))
(which, by Lemma 7, satisfies both Consistency and Inclusion) but does not satisfy Per-
tinence. As |�AM(w) \ Xw| > 0, then f ∈ {h ∈ Θ ∪ Ω ∪ {f } | w |= af ′′(h)}. This
means that {h ∈ Θ ∪ Ω ∪ {f } | w |= af ′′(h)} ⊇ Xw ∪ {f }, which also yields a contra-
diction.
(Only-If) Suppose, BWOC, that the operator satisfies Inclusion, Consistency Preserva-
tion, and Pertinence but there exists w s.t. {h ∈ Θ ∪ Ω ∪ {f } | w |= af ′′(h)} /∈
CandPgmaf (w,I ∪ (f, af ′)). By Lemma 7, {h ∈ Θ ∪ Ω ∪ {f } | w |= af ′′(h)} ∈
V = {X | ∃Y ∈ CandPgmaf (w,I ∪ (f, af ′)) ∧ X ⊇ Y }. Hence, this would mean that
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{h ∈ Θ∪Ω∪{f } | w |= af ′′(h)} ∈ Z = {X | ∃Y ∈ CandPgmaf (w,I∪(f, af ′))∧X ⊃ Y }
in this case. However, this would violate Lemma 7 — a contradiction.

Lemma 6 Let I = (�EM,�AM, af ) be a consistent program, (f1, af ′
1), (f2, af ′

2) be two
inputs, and Ii = (�EM, �AM ∪ {fi}, af ′

i ). If WI
EM(I1) = WI

EM(I2), then for all w ∈
WI

EM(I1) and all X ⊆ �AM(w) we have that:

1. If {x | x ∈ X ∪ {f1}, w |= af ′
1(x)} is inconsistent ⇔ {x | x ∈ X ∪ {f2}, w |= af ′

2(x)}
is inconsistent, then {X \ {f1} | X ∈ CandPgmaf (w,I1)} = {X \ {f2} | X ∈
CandPgmaf (w,I2)}.

2. If {X \ {f1} | X ∈ CandPgmaf (w,I1)} =
{X \ {f2} | X ∈ CandPgmaf (w,I2)} then {x | x ∈ X ∪ {f1}, w |= af ′

1(x)} is
inconsistent ⇔ {x | x ∈ X ∪ {f2}, w |= af ′

2(x)} is inconsistent.

Proof (If) Suppose BWOC that for all w ∈ WI
EM(I1) and all X ⊆ �AM(w); if {x | x ∈

X ∪ {f1}, w |= af ′
1(x)} is inconsistent iff {x | x ∈ X ∪ {f2}, w |= af ′

2(x)} is inconsistent,
but there exists w s.t.:

{X \ {f1} | X ∈ CandPgmaf (w,I1)} �= {X \ {f2} | X ∈ CandPgmaf (w,I2)}.
However, the pre-condition of this statement implies that {X \ {f1} | X ⊆ CandPgmaf

(w,I1)} = {X \ {f2} | X ⊆ CandPgmaf (w,I2) which gives us a contradiction.
(Only-If) Suppose BWOC that for all w, {X \ {f1} | X ∈ CandPgmaf (w,I1)} = {X \
{f2} | X ∈ CandPgmaf (w,I2)}, but there exists a world w ∈ WI

EM(I1) and set X ⊆
�AM(w) s.t. exactly one of {x | x ∈ X ∪ {f1}, w |= af ′

1(x)}, {x | x ∈ X ∪ {f2}, w |=
af ′

2(x)} is inconsistent. As a first case, let us assume that �AM(w) ∪ {f1} is consistent. As
{X\{f1} | X ∈ CandPgmaf (w,I1)} = {X\{f2} | X ∈ CandPgmaf (w,I2)}, this implies
that �AM(w)∪{f2} must also be consistent as each of those sets must then have exactly one
element. In this case a contradiction arises, hence both �AM(w)∪{f1},�AM(w)∪{f2} must
be classically inconsistent. Now let us consider the other case. As �AM(w) is consistent and
all its subsets are consistent, then we must consider some X ⊆ �AM(w) where X ∪ {f1} is
not consistent. Hence, X ∪ {f2} must be consistent. As �AM(w) ∈ CandPgmaf (w,I2),
we know that X ∈ {X \ {f2} | X ∈ CandPgmaf (w,I2)} iff X ∪ {f2} is consistent, so it
must be in that set. However, X /∈ {X \ {f1} | X ∈ CandPgmaf (w,I1)} as X ∪ {f1} is not
consistent — this is a contradiction.

Lemma 7 Given program I and input (f, af ′), operator � satisfies Inclusion and Consis-
tency Preservation iff for I�(f, af ′) = (�EM,�AM, af ′′), for all w ∈ WI

EM(I ∪ (f, af ′)),
there exists an element X ∈ CandPgmaf (w,I ∪ (f, af ′)) s.t. {h ∈ Θ ∪ Ω ∪ {f } | w |=
af ′′(h)} ⊆ X.

Proof (If) Suppose, BWOC, that there exists X ∈ CandPgmaf (w,I ∪ (f, af ′)) s.t.
{h ∈ Θ ∪ Ω ∪ {f }|w |= af ′′(h)} ⊆ X but either Inclusion or Consistency Preservation
is not satisfied. However, the elements of CandPgmaf (w,I ∪ (f, af ′)) are all classically
consistent and all subsets of �AMI∪(f,af ′)(w), which is a contradiction.
(Only-If) Suppose, BWOC, that the operator satisfies both Inclusion and Consistency
Preservation and there does not exist X ∈ CandPgmaf (w,I ∪ (f, af ′)) s.t. {h ∈ Θ ∪
Ω ∪ {f } | w |= af ′′(h)} ⊆ X. Then, {h ∈ Θ ∪ Ω ∪ {f } | w |= af ′′(h)} is a sub-
set of �AMI∪(f,af ′)(w) and {h ∈ Θ ∪ Ω ∪ {f } | w |= af ′′(h)} is classically consistent.
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However, by definition, this would mean that it must also be a subset of an element in
CandPgmaf (w,I ∪ (f, af ′)).

We now investigate the role that the set CandPgmaf plays in showing the necessary and
sufficient requirement for satisfying Pertinence.

Lemma 8 Given program I and input (f, af ′), operator � satisfies Inclusion, Consistency
Preservation, and Pertinence iff for I�(f, af ′) = (�EM,�AM, af ′′), for all w ∈ WI

EM(I ∪
(f, af ′)) we have {h ∈ Θ ∪ Ω ∪ {f } | w |= af ′′(h)} ∈ CandPgmaf (w,I ∪ (f, af ′)).

Proof (If) Suppose, BWOC, that

{h ∈ Θ ∪ Ω ∪ {f } | w |= af ′′(h)} ∈ CandPgmaf (w,I ∪ (f, af ′))
(which, by Lemma 7, satisfies both Consistency and Inclusion) but does not satisfy Perti-
nence. As |�AM(w) \ Xw| > 0, then f ∈ {h ∈ Θ ∪ Ω ∪ {f } | w |= af ′′(h)}. This means
that {h ∈ Θ ∪ Ω ∪ {f } | w |= af ′′(h)} ⊇ Xw ∪ {f }, which also yields a contradiction.
(Only-If) Suppose, BWOC, that the operator satisfies Inclusion, Consistency Preserva-
tion, and Pertinence but there exists w s.t. {h ∈ Θ ∪ Ω ∪ {f } | w |= af ′′(h)} /∈
CandPgmaf (w,I ∪ (f, af ′)). By Lemma 7, {h ∈ Θ ∪ Ω ∪ {f } | w |= af ′′(h)} ∈ V =
{X | ∃Y ∈ CandPgmaf (w,I ∪ (f, af ′)) ∧ X ⊇ Y }. Hence, this would mean that
{h ∈ Θ∪Ω∪{f } | w |= af ′′(h)} ∈ Z = {X | ∃Y ∈ CandPgmaf (w,I∪(f, af ′))∧X ⊃ Y }
in this case. However, this would violate Lemma 7 — a contradiction.

Lemma 9 Let I = (�EM,�AM, af ) be a consistent program, (f1, af ′
1), (f2, af ′

2) be two
inputs, and Ii = (�EM, �AM ∪ {fi}, af ′

i ). If WI
EM(I1) = WI

EM(I2), then for all w ∈
WI

EM(I1) and all X ⊆ �AM(w) we have that:

1. If {x | x ∈ X ∪ {f1}, w |= af ′
1(x)} is inconsistent ⇔ {x | x ∈ X ∪ {f2}, w |= af ′

2(x)}
is inconsistent, then {X \ {f1} | X ∈ CandPgmaf (w,I1)} = {X \ {f2} | X ∈
CandPgmaf (w,I2)}.

2. If {X \ {f1} | X ∈ CandPgmaf (w,I1)} =
{X \ {f2} | X ∈ CandPgmaf (w,I2)} then {x | x ∈ X ∪ {f1}, w |= af ′

1(x)} is
inconsistent ⇔ {x | x ∈ X ∪ {f2}, w |= af ′

2(x)} is inconsistent.

Proof (If) Suppose BWOC that for all w ∈ WI
EM(I1) and all X ⊆ �AM(w); if {x | x ∈ X∪

{f1}, w |= af ′
1(x)} is inconsistent iff {x | x ∈ X ∪ {f2}, w |= af ′

2(x)} is inconsistent, but
there exists w s.t.
{X \ {f1} | X ∈ CandPgmaf (w,I1)} �= {X \ {f2} | X ∈ CandPgmaf (w,I2)}. However,
the pre-condition of this statement implies that {X \ {f1} | X ⊆ CandPgmaf (w,I1)} =
{X \ {f2} | X ⊆ CandPgmaf (w,I2) which gives us a contradiction.
(Only-If) Suppose BWOC that for all w, {X \ {f1} | X ∈ CandPgmaf (w,I1)} = {X \
{f2} | X ∈ CandPgmaf (w,I2)}, but there exists a world w ∈ WI

EM(I1) and set X ⊆
�AM(w) s.t. exactly one of {x | x ∈ X ∪ {f1}, w |= af ′

1(x)}, {x | x ∈ X ∪ {f2}, w |=
af ′

2(x)} is inconsistent. As a first case, let us assume that �AM(w) ∪ {f1} is consistent. As
{X\{f1} | X ∈ CandPgmaf (w,I1)} = {X\{f2} | X ∈ CandPgmaf (w,I2)}, this implies
that �AM(w)∪{f2} must also be consistent as each of those sets must then have exactly one
element. In this case a contradiction arises, hence both �AM(w)∪{f1},�AM(w)∪{f2} must
be classically inconsistent. Now let us consider the other case. As �AM(w) is consistent and
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all its subsets are consistent, then we must consider some X ⊆ �AM(w) where X ∪ {f1} is
not consistent. Hence, X ∪ {f2} must be consistent. As �AM(w) ∈ CandPgmaf (w,I2),
we know that X ∈ {X \ {f2} | X ∈ CandPgmaf (w,I2)} iff X ∪ {f2} is consistent, so it
must be in that set. However, X /∈ {X \ {f1} | X ∈ CandPgmaf (w,I1)} as X ∪ {f1} is not
consistent — this is a contradiction.
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