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1 Introduction

Double Field Theory (DFT) [1, 2]–[3–6] reformulates the two-derivative universal gravita-

tional sector of string theory in such a way that T-duality symmetry can be anticipated

before dimensional reduction (for reviews see [7–9]). The field has been remarkably active

in the last years and much progress has been achieved in several directions: supersym-

metrization [10, 11], extensions that include heterotic [12] and type II theories [13, 14],

U-duality invariance (Exceptional Field Theory) [15–22], understanding duality covariant

geometries [23–27], non-geometry [28–32], finite gauge transformations [33–39], solution
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generating techniques [40–42], gauge symmetry enhancement and massive winding sec-

tor [43, 44], etc. The list continues, and most certainly the framework and its applications

will further expand in the coming years. In this paper we will focus on two remarkable

aspects of DFT: generalized Scherk-Schwarz compactifications and α′-corrections. Let us

first discuss them separately.

Generalized Scherk-Schwarz (GSS) compactifications of DFT lead to lower-dimensional

gauged supergravities [45, 46]. The information on the compact space (typically a T-

fold [47] or a double twisted torus) is encoded in a generalized twist matrix, in terms

of which the fluxes can be spelled out. The procedure neatly and efficiently leads to

half-maximal gauged supergravities expressed in the embedding tensor formalism [48–50].

The advantage of the approach is that, unlike the standard Scherk-Schwarz (SS) proce-

dure [51, 52], the parent theory is duality invariant and the duality symmetry is preserved

all along, without the need to reorganize the degrees of freedom in the effective action into

duality multiplets. Moreover, it was shown in [53] that the result of a GSS compactifica-

tion of DFT is effectively equivalent to simply gauging the theory and parameterizing the

generalized fields in terms of the degrees of freedom of the lower dimensional theory. In

addition, the frame or flux formulation of DFT [1, 2, 54, 55] allows to define the so-called

generalized fluxes, which contain all the covariant field strengths of the effective theory

upon compactification. Then, the compactification procedure is notably simplified in this

formulation, as it offers all the covariant tensors of the theory, even before the effective ac-

tion is computed. Furthermore, it is possible in this context to relax the strong constraint

of DFT in such a way that all possible duality orbits of gaugings are reached, including the

non-geometric ones [56]. Important work on GSS compactifications can be found in [57–77].

Another fruitful research direction in DFT points to the understanding of the way

in which duality constrains higher-derivative corrections. Since duality covariance must

remain unbroken, one seeks for consistent higher-derivative deformations of the gauge

transformations, i.e. deformations that close while keeping the constraints of the theory

invariant. The deformations allowed by the generalized metric formulation of DFT turn

out to be highly restrictive [78, 79], leaving the α′-geometry of Hohm, Siegel and Zwiebach

(HSZ) [80]–[81–87] as the unique possibility. This theory is interesting as it is the only

known theory that is exactly and manifestly duality invariant and exactly gauge invariant.

Instead, deformations that contain the first order α′-corrections of the bosonic and het-

erotic string low energy effective actions are allowed in the frame formalism [1, 2, 54, 55].

Actually, a two parameter family of consistent deformations that interpolate among the

four-derivative terms of the bosonic and heterotic strings and of the HSZ theory was con-

sidered in [88]. Alternative approaches for the first order α′-corrections in this context can

be found in [89–93].

The aim of this paper is to merge these two frameworks, the GSS compactifications and

the higher-derivative deformations of DFT, into a gauged α′-deformed frame-like DFT. The

outcome of this fusion captures all theories containing up to four derivative terms of the

metric coupled to a two-form, a dilaton, gauge and scalar fields, constrained by T-duality

symmetry. The universe of such theories includes (but is not restricted to) the effective

field theories of the closed bosonic string in 26 dimensions, heterotic strings in 10 dimen-
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sions (including non Abelian gauge vectors that were not considered in [88]), and lower

dimensional half-maximal gauged supergravities. An interesting aspect of the construction

is that the duality group and gauge symmetries completely fix the theory to first order

in α′ (up to the choice of dimension, interpolating parameters and gauge group), leading

to an action that is manifestly invariant under all symmetries, in particular the internal

duality group (the subgroup of the original duality group that is preserved in the compact-

ification). Let us note that computing such theories from standard SS compactifications

of, say, the first order heterotic string effective action, would be a highly non-trivial task:

not only the degrees of freedom would have to be repackaged into duality multiplets, but

this would also require non-covariant field redefinitions. These complications are tractable

and easily circumvented in our approach.

Let us add some words on the potential applications and relevance of our results.

Gauged supergravities are the effective lower dimensional field theories that arise from su-

persymmetry preserving flux compactifications of string theory. Already to lowest order in

a derivative expansion, the gaugings lift partially or totally the degeneracy in moduli space,

inducing mass terms for scalar and vector fields, and in many cases produce spontaneous

supersymmetry breaking. The rich structure of the scalar potential may also induce an ef-

fective cosmological constant or determine the dynamics of an inflaton field whose evolution

could govern the expansion of the early universe. However, geometric compactifications of

two-derivative supergravities are plagued with no-go theorems that prevent many of these

nice features from happening, and one is typically led to consider non-geometric compacti-

fications or stringy corrections. Unfortunately, even the leading order corrections to gauged

supergravities remain largely unknown. Among our contributions, in this paper we deter-

mine the leading order α′-corrections to half-maximal gauged supergravities in arbitrary

number of dimensions. We especially examine the corrections to the scalar potential and

also perform a preliminary analysis on how the deformations affect the vacuum structure

in some simple cases.

The paper is organized as follows. Section 2 reviews some basic aspects of the frame-

like formalism of DFT, and the α′-deformations considered in [88]. The generalized Green-

Schwarz transformations are displayed, together with the gauge invariant action. The new

result contained in this section is the gauging of the local generalized diffeomorphisms. In

section 3 we solve the section constraints and present the required parameterizations. This

allows to compute the deformed gauge transformations of the components of the generalized

fields, and to find the non-covariant field redefinitions to connect with the gauge covariant

fields (the frame, two-form, dilaton, gauge and scalar fields). Then, the action is evaluated

for these gauge covariant degrees of freedom, and we show how to relate it to the low

energy effective actions of the bosonic and heterotic strings and to half-maximal gauged

supergravities. Section 4 is dedicated to explore the corrections to the scalar potential

and their effects on the structure of the vacuum. Finally, we conclude in section 5. All

the conventions are displayed in appendix A, which we recommend to visit before reading

section 3. The lowest order action, its equations of motion and their relation to covariant

first order field redefinitions can be found in appendix B and appendix C contains some

technical details of the calculations.
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2 α′-corrections in gauged double field theory

We begin by reviewing the (gauged) frame-like formulation of DFT [1, 2, 54, 55]. We then

show how to deform the theory through the generalized Green-Schwarz transformations

of [88].

2.1 Generalized fields, projectors and fluxes

The frame-like DFT action is invariant under global G = O(D,D+N |R) transformations,

local double-Lorentz H = O(D−1, 1|R)×O(1, D−1+N |R) transformations, and infinites-

imal generalized diffeomorphisms generated by a generalized Lie derivative L̂. A constant

symmetric and invertible G-invariant metric ηMN raises and lowers the indices that are ro-

tated by G (which we label M,N, · · · = 1, . . . , 2D+N). In addition, there are two constant

symmetric and invertible H-invariant metrics ηAB and HAB. The former is used to raise

and lower the indices that are rotated by H (which we label A,B, . . . ,K = 1, . . . , 2D+N),

and the latter is constrained to satisfy

HACHCB = δBA . (2.1)

The three metrics ηMN , ηAB and HAB are invariant under the action of L̂, G and H.

The theory is defined on a double space, in which derivatives ∂M transform in the

fundamental representation of G. However, a strong constraint

∂M∂
M · · · = 0 , ∂M . . . ∂M · · · = 0 , (2.2)

restricts the coordinate dependence of fields and gauge parameters, the dots representing

arbitrary products of them. The strong constraint is duality invariant, and has the interest-

ing feature that even if its solutions spontaneously break the symmetry, there is no need to

specify a particular solution so duality invariance can be maintained. The generalized Lie

derivative is generated by an infinitesimal generalized parameter ξM that transforms in the

fundamental representation of G, and H-transformations are generated by an infinitesimal

parameter ΛA
B which is constrained by the fact that ηAB and HAB must be H-invariant

δΛηAB = 2Λ(AB) = 0 , δΛHAB = 2HC(AΛCB) = 0 . (2.3)

The fields of the theory are a generalized frame EM
A and a generalized dilaton d. The

generalized frame is constrained to relate the metric ηAB with ηMN , and allows to define

a generalized metric HMN from HAB

ηMN = EM
AηABEN

B , HMN = EM
AHABENB . (2.4)

In general EM
A converts G-indices into H-indices and vice versa. As a result of (2.1), the

generalized metric is constrained to be G-valued

HMPHPN = δNM . (2.5)
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Since the metrics HAB and HMN are constrained by (2.1) and (2.5), one can define

the following projectors

P =
1

2
(η −H) , P̄ =

1

2
(η +H) , (2.6)

which satisfy the following identities

P 2 = P , P̄ 2 = P̄ , P P̄ = P̄P = 0 . (2.7)

Another useful identity is

PM
NEN

A = EM
BPB

A , P̄M
NEN

A = EM
BP̄B

A . (2.8)

We will use the barred-index notation to denote projections

PM
NVN = VM , P̄M

NVN = VM , (2.9)

and the following convention for (anti-)symmetrization of barred-indices

V(MWN) =
1

2

(
VMWN + VNWM

)
, V[MWN ] =

1

2

(
VMWN − VNWM

)
, (2.10)

i.e., only the indices are exchanged and not the bars.

DFT admits deformations in terms of so-called fluxes or gaugings fMNP [12], a set of

constants that satisfy linear and quadratic constraints

fMNP = f[MNP ] , f[MN
RfP ]R

Q = 0 . (2.11)

In the presence of these deformations, consistency of the theory requires, apart form the

strong constraint (2.2), the following additional constraint to further restrict the coordinate

dependence of fields and gauge parameters

fMN
P ∂P · · · = 0 . (2.12)

This prevents the fields and gauge parameters to depend on coordinates oriented along the

directions that are gauged. The gaugings explicitly break the G-invariance, unless they are

allowed to transform as spurionic G-tensors.

Important objects in the frame-like or flux-formulation of DFT are the general-

ized fluxes

FABC = 3∂[AE
N
BE

P
C]ηNP + fMNPE

M
AE

N
BE

P
C ,

FA = 2∂Ad− ∂BEMAE
MB , (2.13)

and the following projections take a predominant role in the α′-deformed theory

F (−)
MAB = FMAB = P̄M

NEN
CFCDEPADPBE ,

F (+)
MAB = FMAB = PM

NEN
CFCDEP̄ADP̄BE . (2.14)
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2.2 Generalized Green-Schwarz transformations

The generalized dilaton and frame transform under generalized diffeomorphisms and H-

transformations as follows

δd = ξP∂Pd−
1

2
∂P ξ

P ⇔ δe−2d = ∂P

(
ξP e−2d

)
, (2.15)

δEM
A = L̂ξEMA + δΛEM

A + δ̃ΛEM
A , (2.16)

where the generalized Lie derivative governing infinitesimal generalized diffeomorphisms is

given by

L̂ξEMA = ξP∂PEM
A +

(
∂Mξ

P − ∂P ξM
)
EP

A + fMP
QξPEQ

A , (2.17)

and H-transformations split into double-Lorentz transformations

δΛEM
A = EM

BΛB
A , (2.18)

and a first order in α′ generalized Green-Schwarz transformation [88]

δ̃ΛEM
A =

(
a ∂[MΛC

B F (−)

N ]B
C − b ∂[MΛC

B F (+)
N ]B

C
)
ENA , (2.19)

where the parameters (a, b) are both of O(α′). Note that the P and P̄ projections involved

in both terms are opposite to each other, so a and b interpolate between generalized Green-

Schwarz transformations with respect to the two different factors of the H-group. The fact

that there are two free parameters (a, b) implies that we will end with a two-parameter

family of theories. Choosing an appropriate parameterization, it was shown in [88] that

the cases (a, b) = (−α′, 0) and (a, b) = (−α′,−α′) correspond to the heterotic and bosonic

strings respectively. These cases will be discussed in more detail in the forthcoming sections.

The case (a, b) = (−α′, α′) reproduces the HSZ theory which contains no Riemann squared

terms and the first order contributions are given only by Chern-Simons corrections to the

curvature of the two-form.

For the generalized metric these transformations imply

δHMN = L̂ξHMN + δ̃ΛHMN , (2.20)

with

L̂ξHMN = ξP∂PHMN + 2
(
∂(Mξ

P − ∂P ξ(M

)
HN)P − 2fP (M

QHN)Qξ
P , (2.21)

and

δ̃ΛHMN = 2a ∂(MΛA
B F (−)

N)B
A + 2b ∂(MΛA

B F (+)
N)B

A . (2.22)

Regarding the generalized fluxes, to lowest order in α′ they transform as

δFABC = ξP∂PFABC − 3
(
∂[AΛBC] + Λ[A

DFBC]D

)
, (2.23)

which implies that the projected generalized fluxes transform as connections to lowest order

δF (−)
MA

B = L̂ξF
(−)
MA

B − ∂MΛA
B + F (−)

MA
CΛC

B − ΛA
CF (−)

MC
B ,

δF (+)
MA

B = L̂ξF
(+)
MA

B − ∂MΛA
B + F (+)

MA
CΛC

B − ΛA
CF (+)

MC
B , (2.24)
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with

L̂ξF
(±)
MA

B = ξP∂PF (±)
MA

B +
(
∂Mξ

P − ∂P ξM
)
F (±)
PA

B + fMP
QξPF (±)

QA
B . (2.25)

The above transformations preserve the constraints on the generalized fields (2.1)–

(2.5), and also close to first order in α′[
δ(ξ1 ,Λ1), δ(ξ2 ,Λ2)

]
= δ(ξ21 ,Λ21) , (2.26)

where the “brackets” are given by

ξM12 = [ξ1 , ξ2]M(Cf ) −
a

2
Λ[1A

B∂MΛ2]B
A +

b

2
Λ[1A

B∂MΛ2]B
A , (2.27)

Λ12AB = 2ξP[1∂PΛ2]AB − 2Λ[1A
CΛ2]CB + a ∂[AΛ

CD
1 ∂B]Λ2DC + a ∂[AΛ

CD
1 ∂B]Λ2DC

− b ∂[AΛCD1 ∂B]Λ2DC − b ∂[AΛCD1 ∂B]Λ2DC , (2.28)

and the Cf -bracket is defined as [12]

[ξ1 , ξ2]M(Cf ) = 2ξP[1∂P ξ
M
2] − ξ

P
[1∂

Mξ2]P + fPQ
MξP1 ξ

Q
2 . (2.29)

2.3 Gauge invariant action

We now have all the ingredients to construct a gauge-invariant action to first order in α′.

It can be written as

S =

∫
dXe−2d

(
R+ aR(−) + bR(+)

)
, (2.30)

where R is of course defined in the same way as in the zeroth order DFT action [3–6]

R = 4HMN∂MNd− ∂MNHMN − 4HMN∂Md∂Nd+ 4∂MHMN∂Nd

+
1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂MHKL∂KHNL . (2.31)

Alternatively, the generalized Ricci scalar can also be written in terms of generalized

fluxes [46]

R = (2∂AFB −FAFB)(HAB − ηAB)− 1

4
FACDFBDCHAB

− 1

12
FABCFDEFHADHBEHCF −

1

6
FABCFABC . (2.32)

While R is a scalar under generalized diffeomorphisms, it fails to be gauge invariant

under the generalized Green-Schwarz transformations (2.22). Then, additional contribu-

tions to the Lagrangian (which must also transform as scalars under generalized diffeo-

morphisms) need to be considered to compensate for this failure. The generalized Green-

Schwarz transformations then constitute a gauge principle that requires and fixes the form

of the α′-corrections. The required additional first-order corrections are given by

R(−) = ∂A∂BFCDE FFGH
(
− PCFPDGP̄AEP̄BH − PCFPDGP̄AH P̄BE

)
+ ∂AFBCD ∂EFFGH

(
1

2
PAEPBFPCGP̄DH − PBFPCGP̄AD P̄EH
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− 1

2
PBFPCGP̄AEP̄DH

)
+ (2 ∂AFB−FAFB)FCDEFFGHPCFPDGP̄AEP̄BH

+ ∂AFBCD FFGHFE
(

2PBFPCGP̄AD P̄EH + 2PBFPCGP̄AH P̄DE
)

+ ∂AFBCD FEFGFHIJ
(
− PAEPBHPCI P̄DF P̄GJ

− 4PBEPCHPFI P̄AGP̄DJ + PBEPCF P̄AH P̄D I P̄GJ
)

+ FABCFDEFFGHIFJKL
(
PAD PBGPEJPHK P̄CLP̄FI

− PAD PBGPEJPHK P̄CF P̄ IL + PAD PBEPGJ P̄CH P̄FK P̄ IL

+
4

3
PAD PBGPEH P̄CJ P̄FK P̄ IL

)
,

and R(+) can be easily obtained from this through the substitution R(+) = R(−)[P ↔ P̄ ].

The ungauged limit of this action reduces to that in [88].

The three contributions to the Lagrangian R and R(±) are generalized diffeomorphism

scalars (modulo the constraints (2.2) and (2.12)), and the full Lagrangian is H-invariant

to first order in α′

δ
(
R+ aR(−) + bR(+)

)
= L̂ξ

(
R+ aR(−) + bR(+)

)
. (2.33)

In fact, one can show that the anomalous Lorentz behaviour δ̃ΛR is exactly cancelled by

δΛ

(
aR(−) + bR(+)

)
. Notice also that δ̃Λ

(
aR(−) + bR(+)

)
is of higher order, and must

then not be considered in this computation. We conclude that the action (2.30) is exactly

invariant under G and L̂ symmetries, and H-invariant to O(α′).

3 α′-corrections in gauged supergravity

So far our construction has been general: we have assumed neither a parameterization

of the generalized fields nor a solution to the strong constraint (2.2). Here we give the

parameterizations required to make contact with theories of gravity coupled to a two-

form, a dilaton, gauge vectors and scalar fields. We have chosen the duality group and its

pseudo-compact subgroup to be

G = O(D,D +N |R) , (3.1)

H = O(D − 1, 1|R)×O(1, D − 1 +N |R) . (3.2)

We now assume a splitting of the form D = n + d, such that the G-indices split as

VM = (Vµ, V
µ, V m) and the H-indices split as V A = (Va, V

a, V α), where µ, a = 1, . . . , n

(external) and m,α = 1, . . . , 2d+N (internal). This splitting spontaneously breaks G and

H into external and internal parts

G→ Ge ×Gi , H → He ×Hi , (3.3)
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where

Ge = O(n, n|R) , (3.4)

Gi = O(d, d+N |R) , (3.5)

He = O(n− 1, 1|R)×O(1, n− 1|R) , (3.6)

Hi = O(d|R)×O(d+N |R) . (3.7)

Then, the G-vector VM contains a Ge-vector (Vµ, V
µ) and a Gi-vector V m, and the H-

vector V A contains a He-vector (Va, V
a) and a Hi-vector V α.

Under this decomposition, the degrees of freedom can be parameterized as follows

dim(G/H) = D(D +N) =
n(n+ 1)

2
+
n(n− 1)

2
+ n(2d+N) + d(d+N)

g̃µν B̃µν Ãµ
m Φ̃m

α (3.8)

where g̃µν is symmetric and invertible, B̃µν is antisymmetric, and Φ̃m
α parameterizes the

coset Gi/Hi.

3.1 Parameterization and choice of section

The matrices ηAB, HAB and ηMN are taken to be

ηAB =

 0 δab 0

δba 0 0

0 0 καβ

 , HAB =

gab 0 0

0 gab 0

0 0 Mαβ

 , ηMN =

 0 δµν 0

δνµ 0 0

0 0 κmn

 , (3.9)

where gab is the flat Minkowski metric in the external space, καβ and Mαβ are the two

Hi-invariant matrices, and κmn is the Gi invariant metric. Internal Gi and Hi-indices

are raised and lowered with κmn and καβ respectively. The gaugings are chosen to be

non-vanishing only in the internal directions

fMNP =

{
fmnp if (M,N,P ) = (m,n, p)

0 otherwise
. (3.10)

For the fmnp gaugings, the linear and quadratic constraints (2.11) straightforwardly trans-

late into

fmnp = f[mnp] , f[mn
rfp]r

q = 0 . (3.11)

A natural solution to the constraints (2.2) and (2.12) is

∂M = (∂̃µ, ∂µ, ∂m) = (0, ∂µ, 0) , (3.12)

so the fields will only depend on the Xµ coordinates of the n-dimensional external space.

The generalized frame is parameterized as follows

EM
A =


ẽa
µ 0 0

−ẽaρC̃ρµ ẽµ
a Ãµ

pΦ̃p
α

−ẽaρÃρm 0 Φ̃m
α

 . (3.13)
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Here ẽµ
a is the frame for g̃µν = ẽµ

agabẽν
b, and ẽa

µ = gabg̃
µν ẽν

b is the inverse frame. They

satisfy the identities ẽµ
aẽa

ν = δνµ and ẽa
µẽµ

b = δba. Also, we have defined

C̃µν = B̃µν +
1

2
Ãµ

mÃνm . (3.14)

The parameterization of the generalized metric that follows from the above choices is

HMN =


g̃µν −g̃µρC̃ρν −g̃µρÃρn

−g̃νρC̃ρµ g̃µν + C̃ρµC̃σν g̃
ρσ + Ãµ

pM̃pqÃν
q C̃ρµg̃

ρσÃσn + Ãµ
pM̃pn

−g̃νρÃρm C̃ρν g̃
ρσÃσm + Ãν

pM̃mp M̃mn + Ãρmg̃
ρσÃσn

 ,

(3.15)

where we have defined the internal (scalar) matrix M̃mn = Φ̃m
αMαβΦ̃n

β , which is sym-

metric and Gi-valued M̃m
pM̃p

n = δnm. We also define the inverse internal frame as

Φ̃α
m = καβκ

mnΦ̃n
β , which satisfies Φ̃m

αΦ̃α
n = δnm and Φ̃α

mΦ̃m
β = δβα.

The parameterization of the generalized dilaton is given by

e−2d =
√
−g̃e−2φ̃ . (3.16)

We finally turn to the parameterization of the gauge parameters ξM and ΛAB

ξM = (ξµ, ξ
µ, λm) , ΛAB =

 0 Λab 0

Λa
b 0 0

0 0 Λαβ

 . (3.17)

Note that the choice of parameterization of the generalized frame assumes a gauge-fixing

of the external double-Lorentz transformations to the diagonal part corresponding to the

standard single Lorentz transformations parameterized here by Λab. On the other hand,

Λαβ are the infinitesimal parameters that generate Hi-transformations.

We have put a tilde on top of all the fields because, due to the generalized Green-

Schwarz transformation, these components receive α′-correction corrections in their gauge

transformations, and then they are related to the corresponding gauge covariant fields in

supergravity through first order in α′ Lorentz non-covariant field redefinitions. Of course,

to lowest order, these fields are precisely the corresponding fields in gauged supergravity,

which we will denote without tildes. We then expect an expansion of the form

ẽµ
a = eµ

a +O(α′) , B̃µν = Bµν +O(α′) , φ̃ = φ+O(α′)

Ãµ
m = Aµ

m +O(α′) , Φ̃m
α = Φm

α +O(α′) . (3.18)

We now introduce expressions for the generalized fluxes. To lighten the notation, we remove

the tildes from the fields, so strictly speaking the following identities only hold to lowest

order. The exact expressions are simply recovered by reinstalling tildes on all fields

Fabc = −eaµebνecρHµνρ , (3.19)

Fabc = −2e[a
µωµb]

c , (3.20)

Fabα = −Φα
mea

µeb
νFµνm , (3.21)
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Faαβ = −eaµωµαβ , (3.22)

Fαβγ = Φα
mΦβ

nΦγ
pfmnp , (3.23)

Fa = 2ea
µ∂µφ+ eb

µωµa
b . (3.24)

All these quantities are defined in appendix A.

Given that καβ raises and lowers the Hi-indices, and that Mα
γMγ

β = δβα, it follows

that one can define projectors as before

Pαβ =
1

2
(καβ −Mαβ) , P̄αβ =

1

2
(καβ +Mαβ) , (3.25)

in analogy with (2.6), that satisfy relations equivalent to (2.7). It is also convenient to

define projected Hi-indices α = α+ α as follows

Pα
βVβ = Vα , P̄α

βVβ = Vα . (3.26)

3.2 Gauge transformations and field redefinitions

Let us now explore how the tilded fields g̃µν , B̃µν , φ̃, Ãµ
m and M̃mn transform under (2.15)–

(2.16). Implementing the parameterization of the previous subsection we find

δg̃µν = Lξ g̃µν +
1

2

(
aω

(−)
(µ

αβ + bω
(+)
(µ

αβ
)
∂ν)Λαβ +

1

2

(
aω

(−)
(µ

ab + bω
(+)
(µ

ab
)
∂ν)Λab , (3.27)

δÃµ
m = LξÃµ

m + ∂µλ
m + fpq

mλpÃµ
q − 1

2

(
aFαβγ − bFαβγ

)
Φγ

m∂µΛαβ

+
1

4

(
aFabα + bFabα

)
Φα

m∂µΛab , (3.28)

δB̃µν = LξB̃µν + 2∂[µξν] + Ã[µ
m∂ν]λm −

1

2

(
aω

(−)
[µ

αβ − bω(+)
[µ

αβ
)
∂ν]Λαβ

−1

2

(
aω

(−)ab
[µ − bω(+)ab

[µ

)
∂ν]Λab +

1

2

(
aFαβγ − bFαβγ

)
ΦγmA[µ

m∂ν]Λαβ

−1

4

(
aFabα + bFabα

)
ΦαmA[µ

m∂ν]Λab , (3.29)

δM̃mn = LξM̃mn − 2fp(m
qM̃n)qλ

p , (3.30)

δφ̃ = Lξφ̃+
1

4
g̃µν (δ − Lξ) g̃µν , (3.31)

where all these quantities are defined in (3.21)–(3.23) and in appendix A.

We now search for field redefinitions that eliminate the highest possible number of

higher-order terms -i.e. terms that are weighted with a or b- in the above gauge transfor-

mations. We find that defining

g̃µν = gµν +
a

4
ω(−)ab
µ ω

(−)
µab +

b

4
ω(+)ab
µ ω

(+)
µab +

a

4
ω(−)
µ

αβω
(−)
ναβ +

b

4
ω(+)
µ

αβω
(+)
ναβ , (3.32)

Ãµ
m = Aµ

m +
a

4
Fabαω(−)ab

µ Φα
m +

b

4
Fabαω(+)ab

µ Φα
m

−a
2
Fαβγω(−)

µαβΦγ
m +

b

2
Fαβγω(+)

µαβΦγ
m , (3.33)

B̃µν = Bµν + Ã[µ
mAν]m , (3.34)
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M̃mn = Mmn , (3.35)

φ̃ = φ+
1

4
ln
g̃

g
, (3.36)

leads to the reduced transformations

δgµν = Lξgµν , (3.37)

δAµ
m = LξAµ

m + ∂µλ
m + fpq

mλpAµ
q , (3.38)

δBµν = LξBµν + 2∂[µξν] +A[µ
m∂ν]λm −

1

2

(
aω

(−)
[µ

αβ − bω(+)
[µ

αβ
)
∂ν]Λαβ ,

−1

2

(
aω

(−)ab
[µ − bω(+)ab

[µ

)
∂ν]Λab , (3.39)

δMmn = LξMmn − 2fp(m
qMn)qλ

p , (3.40)

δφ = Lξφ . (3.41)

We then see that the non-standard Lorentz transformations of the metric gµν , gauge fields

Aµ
m, scalars Mmn and dilaton φ can be totally removed. Unsurprisingly, it turns out to be

impossible to remove the dependence on a and b from the transformation of the two-form.

If a = b = 0, the above would be the standard gauge transformations of all fields, where ξµ

are vectors that parameterize the infinitesimal general coordinate transformations, ξµ are

one-forms that generate the gauge transformations of the two-form Bµν , and λm are the

infinitesimal parameters of the gauge transformation of the vectors Aµ
m and scalars Mmn.

Note that already to lowest order, we find that the gauge parameters λm generate a Green-

Schwarz transformation of the two-form [99]. The additional terms in the transformation of

Bµν are also of this form, but with respect to external He(Λab) and internal Hi(Λαβ) Lorentz

transformations. The corresponding connections are the torsionful Lorentz spin connections

ω
(±)
µab, and the internal double-Lorentz spin connections ω

(±)
µαβ . These deformations induce

corrections to the three-form field strength

Ĥµνρ = Hµνρ −
3

2
aΩ(e,−)

µνρ +
3

2
bΩ(e,+)

µνρ −
3

2
aΩ(i,−)

µνρ +
3

2
bΩ(i,+)

µνρ , (3.42)

in terms of the external Ω
(e,±)
µνρ and internal Ω

(i,±)
µνρ Chern-Simons three-forms defined in

appendix A.

3.3 The action

At this stage we have all the information required to write an action in terms of the com-

ponents of the generalized fields. Now we carry out the following procedure: we introduce

the parameterizations of the generalized fluxes (3.19)–(3.24) and flat matrices (3.9) into

the action (2.30), we expand to first order in α′, and finally we perform the field redefini-

tions (3.32)–(3.36). The result is a complicated action whose internal and external Lorentz

invariance is not manifest (but certainly a symmetry). Then some work must be done in

order to bring it to a form where all the gauge symmetries are manifest. The final result
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is given by

S =

∫
dnX
√
−ge−2φ

[
R+ 4∇µ∇µφ− 4∇µφ∇µφ−

1

12
ĤµνρĤ

µνρ

−1

4
Fµν

mFµνnMmn +
1

8
∇µMmn∇µMmn − V0

+ γ(−)L(−) + γ(+)L(+)

]
. (3.43)

The first two lines in this expression correspond to the standard form of (gauged/half-

maximal super) gravity coupled to a two-form, gauge vectors and scalar fields. The only

difference is that the three-form field strength Ĥµνρ receives α′-corrections through the

external and internal Lorentz Chern-Simons terms (3.42). The lowest order scalar potential

takes the standard form

V0 =
1

12
fmp

rfnq
sMmnMpqMrs +

1

4
fmp

qfnq
pMmn +

1

6
fmnpf

mnp . (3.44)

Then, the first two lines were expected and in fact could have been easily anticipated by

taking into account that this is an effective action of a G-invariant DFT, plus the fact that

the gauge transformations of the two-form are now deformed to first order in α′ by the

Green-Schwarz transformations (3.39).

The new piece of information here are the two terms in the last line of (3.43). For

convenience we have redefined the parameters a and b as follows

γ(±) = −a± b
2

. (3.45)

These factors contain a huge number of terms and for that reason we have used Cadabra

software [106] in this and other computations. The explicit expressions for L(±), written

in a form that makes all the gauge symmetries manifest, are

L(−) =
1

4
Fµ

νm∇ρ∇σFνεm
(
gµρgσε + gµσgρε

)
+

1

8
∇µFνρm∇σFγεm

(
2 gµνgργgσε − gµσgνγgρε

)
− 1

2
∇µĤνρσ R

µνρσ

+
1

4
Fµν

mFρσmRγεδλ

(
gµγgνδgρεgσλ − gµγgνεgρδgσλ + gµρgνγgσδgελ

)
+ Fµν

mFµρm∇ν∇ρφ −
1

4
Fµνm∇ρFσγn Ĥµγ

δM
mn
(
gνσgδρ − gνρgδσ

)
− 1

16
Fµνm∇ρFσγn∇εMpq

(
2Mnpκmqgµρgνσgγε +Mnpκmqgµσgνγgρε

− 2Mmpκnqgµρgνσgγε −Mmpκnqgµσgνγgρε
)

+ Fµν
m∇ρFσγm∇εφ

(
gµσgνεgργ − gµρgνσgγε

)
− 1

4
ĤµνρĤµ

σγ∇νĤρσγ

+
1

16
FµνmFρσnFγεpFδλ

pMmn
(
gµγgνδgρεgσλ − 2 gµρgνγgσδgελ

)
+

1

16
Fµν

mFρσmĤγεδĤλτ
δ
(
gµγgνλgρεgστ − gµγgνεgρλgστ − gµρgνγgσλgετ

)
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− 1

8
FµνmF ρσn∇σMmn Ĥµνρ +

1

32
FµνmF

µ
σn∇γMpq∇εMr

q
(
κmnκprgνγgσε

+ 4κmpκnrgνγgσε − 2κmpκnrgνσgγε
)
− FµνmFµ ρ m∇νφ∇ρφ

+
1

64
∇µMmn∇νMpq∇ρMn

s∇σM qsMmp
(
gµρgνσ − gµνgρσ

)
+

1

12
fmnpF

µνmFµ
ρnFνρ

p

− 1

8
fm

npFµνq∇ρMrn∇σMop g
µρgνσ

(
M qmκro −M rmκqo

)
− 1

16
fmnpfqr

pFµνoF
µν
t

(
MomM tqMnr + 2Momκtqκnr −Mmqκonκtr

)
− 1

32
fmnpfqrs∇µMot∇µMuv

(
2MmqMnrκouκtpκvs +MomMnqκtuκvrκps

−MomMunκtqκvrκps + 2κomκtqκunκvrκps + 2MomMuqκtnκvrκps

−MomMuqκtrκvnκps +MouMmqκtnκvrκps − 2κouκtmκvqκnrκps
)
− V (−) ,

where

V (−) = fmnpfqrsfotufvw
uMmq

(
1

16
MnrMovκptκsw − 1

16
MnoM rvκpsκtw

− 1

24
MnoM rtκpvκsw − 1

8
MnoM rvκpwκst +

1

8
κnoκptκrvκsw

− 1

16
MnoMpvM rtM sw +

7

24
MnoMpvκrtκsw − 1

16
κnoκpvκrtκsw

+
1

16
MnrMpoM svM tw − 1

8
MnrMpoκsvκtw − 1

16
κnrκpoκsvκtw

)
.

and

L(+) = − 1

4
Fµνm∇ρ∇σF νεn Mmn

(
gµρgσε + gµσgρε

)
+

1

4
RµνρσRµνρσ

− 1

4
∇µFνρm∇σFγεnMmn

(
gµνgργgσε − 3

2
gµσgνγgρε

)
− 1

8
∇µĤνρσ∇γĤε

ρσ
(
gµεgνγ − gµγgνε

)
+

1

32
∇µ∇νMmn ∇ρ∇σMpq

(
MmpMnqgµρgνσ +MmpMnqgµσgνρ

− κmpκnqgµρgνσ − κmpκnqgµσgνρ
)

− 1

4
FµνmFρσnRγεδλM

mn
(
gµγgνδgρεgσλ + gµγgνεgρδgσλ + gµρgνγgσδgελ

)
+

1

2
FµνmF ρσ m∇µĤνρσ +

1

8
FµνmF

µσ
n∇ν∇σMpq

(
MmpMnq − κmpκnq

)
− Fµν mFµ ρ n∇ν∇ρφ Mmn − 1

4
Fµνm∇ρFσγm Ĥµγ

δ

(
gνσgδρ + gνρgδσ

)
+ Fµνm∇ρFσγn∇εMmn

(
− 3

4
gµρgνσgγε +

1

2
gµσgνεgργ +

3

8
gµσgνγgρε

)
+ Fµνm∇ρFσγn∇εφMmn

(
gµρgνσgγε − gµσgνεgργ

)
− 1

4
ĤµνρĤµ

σγRνσργ
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+
1

32
FµνmFρσnFγεpFδλq

(
MmnMpqgµγgνδgρεgσλ + 2MmnMpqgµγgνεgρδgσλ

+ 8MmnMpqgµρgνγgσδgελ − 7κmnκpqgµγgνδgρεgσλ + 2κmnκpqgµγgνεgρδgσλ
)

+
1

16
FµνmFρσnĤγεδĤλτ

δMmn
(
gµγgνεgρλgστ + gµγgνλgρεgστ + 3 gµρgνγgσλgετ

)
− 1

16
FµνmFρσ

n∇γMpn ĤεδλM
mp
(

3 gµεgνδgρλgσγ−3gµεgνγgρδgσλ−2gµρgνεgσδgλγ
)

− 3

32
FµνmFρσn∇γMpq∇εMrs

(
Mmnκprκqsgµρgνγgσε + 3Mmpκnrκqsgµρgνγgσε

+ 2Mmpκnrκqsgµρgνσgγε −Mprκmqκnsgµρgνγgσε − 2

3
Mprκmqκnsgµρgνσgγε

)
− FµνmFµ ρn∇νMmn∇ρφ + Fµν mFµ

ρ
n∇νφ∇ρφMmn

− 1

32
ĤµνρĤ

µ
γεĤδλτ Ĥξζ

τ
(
gνδgρξgγλgεζ − gνγgρδgεξgλζ

)
− 1

32
∇µMmn∇νMmn Ĥ

ρσµĤρσ
ν

+∇µMmn∇νMm
q∇ρMrs∇σMo

s

(
1

128
κnqκrogµρgνσ +

1

16
κnrκqogµνgρσ

− 3

64
κnrκqogµσgνρ

)
− 1

24
fmnpFµνqF

µσ
rF

ν
σsM

qm
(
M rnM sp + 9κrnκsp

)
− 1

8
fmn

pFµνq∇ρMrp Ĥ
µνρM qmM rn

+
1

32
fmn

pFµνq∇ρMrs∇σMop g
µρgνσ

(
3M qmM rnκso −M qmM roκsn

+ 16κqmκroκsn − 12M rmMonκqs
)

− 1

16
fmnpfqrsFµνoF

µν
t

(
2MomMnqκtrκps − 2MomM tqMnrMps

+MomM tqκnrκps + κomκtqκnrκps
)

+
1

32
fmnpfqrs∇µMot∇µMuv

(
14Mmqκonκtrκupκvs + 3Momκtuκvqκnrκps

− 6MomMnqMprκtuκvs +MomMunMpqκtrκvs + 2MomMuqMnrκtpκvs

+MomMuqMnrκtsκvp + 2MouMmqMnrκtpκvs −Mouκtmκvqκnrκps
)
− V (+) ,

where

V (+) = fmnpfqrsfotufvxw

(
1

96
MmqMnoMpvM rtM swMux +

1

8
MmqMnoMpvM rtκswκux

+
1

8
MmqMnoκpvκrtκswκux − 7

96
κmqκnoκpvκrtκswκux

+
1

16
MmqMnrMpoM svM twMux − 1

16
MmqMnrMpoM svκtwκux

− 1

16
MmqMnrκpoκsvκtwκux +

1

8
MmqMnrMpoM tvκswκux
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− 1

8
MmqMnoκprκsvκtwκux +

1

16
MmqMnrMovM twκpuκsx

− 7

32
MmqMnoM rvM twκpxκsu +

1

32
MmqMovκntκpwκruκsx

)
.

We have explicitly written here only terms that are first order in α′, but higher order

terms are included in the deformation of the three-form field strength Ĥµνρ = Hµνρ+O(α′)

so as to ensure Lorentz invariance of the action. This form of the action can be simplified

through Bianchi identities like those discussed in appendix A, field redefinitions as discussed

in appendix B, and integrations by parts. We postpone this task to subsection 3.6 and

now move on to study some simple special cases of relevance, such as the bosonic and the

heterotic string low energy effective actions.

3.4 The bosonic string

Let us now take the specifications required to make contact with the bosonic string. In this

case, n = 26, d = 0 and N = 0 and the values of the parameters are (a, b) = (−α′,−α′).
Since we are truncating the internal part of the action, we can simply set Aµ

m = 0, fmnp = 0

and consider a trivial scalar frame Φm
α = δm

α. Evaluating the action (3.43) in this form,

one rapidly arrives at

SBos =

∫
d26X

√
−ge−2φ

[
R+ 4∇µ∇µφ− 4∇µφ∇µφ−

1

12
ĤµνρĤ

µνρ

−α
′

8
R(−)
µνa

bR(−)µν
b
a − α′

8
R(+)
µνa

bR(+)µν
b
a

]
, (3.46)

where

Ĥµνρ = 3∂[µBνρ] +
3

2
α′Ω(e,−)

µνρ −
3

2
α′Ω(e,+)

µνρ . (3.47)

Written in this form, it exactly coincides with the form of the bosonic string as displayed

in [88]. There, it was shown that decomposing the Riemann tensor and Chern-Simons

terms by separating the torsion part of the spin connection, and performing some field

redefinitions, this action matches the standard bosonic string effective action obtained by

Metsaev-Tseytlin [102]

SBos =

∫
d26X

√
−ge−2φ

[
R+ 4∇µ∇µφ− 4∇µφ∇µφ−

1

12
HµνρH

µνρ (3.48)

+
α′

4

(
RµνρσR

µνρσ − 1

2
HµνρHµσλRνρ

σλ +
1

24
H4 − 1

8
H2
µνH

2µν

)]
,

where

Hµνρ = 3∂[µBνρ] , (3.49)

H2
µν = HµρσHν

ρσ , (3.50)

H4 = HµνρHµσ
λHνλ

δHρδ
σ . (3.51)
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3.5 The heterotic string

We now move on to the heterotic string. Since we are including gauge vectors with a non-

Abelian gauge group, the action (3.43) is expected to give rise to extra terms with respect

to the results in [88]. We will show that such extra terms are exactly those required to

match the Bergshoeff-de Roo action [100, 101]. First we have to take n = 10, d = 0

and N = 496. Then, considering that the gauge group induced by the gaugings is either

SO(32) or E8 × E8, the fmn
p must be taken to match the structure constants of these

groups. In addition, since there are no scalar fields in the heterotic string apart from the

dilaton, we have to trivialize the scalar frame Φm
α = δm

α. We realize that we have to set

Mmn = ηmn, where ηmn is the Killing metric of the gauge group, so that the zeroth order

part of the action (3.43) matches that in [100, 101]. In addition, since the gaugings are

now the structure constants of the gauge group, we have

fmp
qfnq

p = γηmn , (3.52)

for some constant γ. The parameters must be set to (a, b) = (−α′, 0) as in [88].

To lowest order, the two derivative action contains even powers of κmn, and then there

are two options to relate it to the Killing metric ηmn,

(H+) κmn = ηmn , (H−) κmn = −ηmn . (3.53)

We then explore the cases H+ and H− to first order in α′ separately.

Let us begin with H+. Taking a close look into Ĥµνρ, the dependence on Ω
(i,−)
µνρ in (A.56)

trivially cancels because the choices we have made set Pαβ = 0 in (3.25). Then, in this

case the three-form field strength (3.42) takes the form

Ĥµνρ = Hµνρ +
3

2
α′Ω(e,−)

µνρ . (3.54)

It is easy to see that performing some field redefinitions, integrations by parts, and using

Bianchi identities, the action can be taken to the form

SH+ =

∫
d10X

√
−ge−2φ

[
R+ 4∇µ∇µφ− 4∇µφ∇µφ−

1

12
ĤµνρĤ

µνρ − 1

4
FµνmF

µνm

+
α′

8

(
R(−)µνρσR(−)

µνρσ − R(−)
µνρσF

µνmF ρσ m +
1

2
FµνmF ρσ mFµρ

nFνσn

−1

2
FµνmFµ

ρ
mFν

σnFρσn +
2

3
FµνmFµ

ρnFνρ
pfmnp

)]
. (3.55)

Let us now move on to the case H−. First we note that in this case the dependence of

Ĥµνρ on Ω
(i,−)
µνρ in (A.56) does not cancel because the choices we have made set Pαβ = −ηαβ

in (3.25). Then, it can be checked that due to the choice Φm
α = δm

α, the internal Lorentz

spin connection ω
(−)
µα

β is given by1

ω(−)
µα

β = Aµ
mfmα

β , (3.56)

1Note that both sides of the equality seem to transform differently. The anomalous part of the transfor-

mation of the l.h.s. is δω
(−)
µα

β = ∂µΛα
β while the r.h.s. transforms as δ

(
fmα

βAµ
m
)

= fmα
β∂µλ

m up to a

covariant contribution. This apparent inconsistency is resolved by noting that, because we have fixed Φm
α

to a constant, we also need to gauge fix the internal Lorentz symmetry by identifying Λαβ = fmαβλ
m.
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and then

Ω(i,−)
µνρ = γΩ(g)

µνρ . (3.57)

We then see that the three-form curvature becomes (note that changing the identification

κmn = −ηmn changes the sign of Ω
(g)
µνρ)

Ĥµνρ = 3∂[µBνρ] + 3β Ω(g)
µνρ +

3

2
α′Ω(e,−)

µνρ . (3.58)

with β = 1 + 1
2α
′γ. We can now compute the action for the choice H− by specifying (3.43)

for this particular case. After some field redefinitions, integrations by parts and using

Bianchi identities, we find

SH− =

∫
d10X

√
−ge−2φ

[
R+ 4∇µ∇µφ− 4∇µφ∇µφ−

1

12
ĤµνρĤ

µνρ − β

4
FµνmF

µνm

+
α′

8

(
R(−)µνρσR(−)

µνρσ −
1

2
TµνT

µν − 3

2
TµνρσT

µνρσ

)]
, (3.59)

where, following [100, 101] we have defined

Tµν = Fµ
ρmFρνm , Tµνρσ = F[µν

mFρσ]m . (3.60)

The β-dependence can be eliminated through a shift in the gauge fields and gaugings.

Written in this form, it can be checked that some further rescalings can be performed in

order to match the heterotic action by Bergshoeff and de Roo [100, 101] exactly.

We then conclude that the heterotic string effective action is obtained from the choice

H−. The effective action that results from the choice H+, although not related to string

theory, still enjoys an underlying duality structure. The difference between both theories

are the Buscher rules [97, 98] with respect to which they are invariant. The duality covariant

fields (that we have denoted with tildes) are related in a different way to the gauge covariant

fields on which these actions depend. In fact, it can be seen from (3.32)–(3.36) that the

relations between duality and gauge covariant fields depend on καβ , and hence on the

choice (3.53).

3.6 Higher-derivative half-maximal gauged supergravity

In section 3.3 we gave the explicit expression of the gauged α′-deformed DFT action and

we showed that the first order α′-corrections are contained in − 1
12ĤµνρĤ

µνρ and in the

last line of (3.43). This action can be further simplified performing several manipulations,

which include Bianchi identities, field redefinitions and integrations by parts. It would

be desirable to take the action to a minimal form. In this section we display some partial

simplifications, and the interested reader can find the technical details in appendix C.1. Let

us note that although the title of this section refers to gauged supergravities, the results are

more general and apply to arbitrary values of the parameters a and b. Since the case b = 0

captures the first-order heterotic string corrections, we believe that this choice corresponds

to the corrections that admit a supersymmetric completion. One must then keep in mind

that the corrections to half-maximal gauged supergravities correspond to the choice b = 0,

although we will be general and discuss the generic case.
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In order to have a more compact form of the action, it is useful to reorganize it in

terms of the parameters a and b instead of γ(±), i.e. we introduce the calligraphic L(±)

as follows

S =

∫
dnX
√
−ge−2φ

[
R+ 4∇µ∇µφ− 4∇µφ∇µφ−

1

12
ĤµνρĤ

µνρ

−1

4
Fµν

mFµνnMmn +
1

8
∇µMmn∇µMmn − V0

+ aL(−) + bL(+)

]
, (3.61)

This is just a rewriting of (3.43) with the identifications

γ(−)L(−) + γ(+)L(+) = aL(−) + bL(+) . (3.62)

It can be shown that these corrections take the form

L(±) =
1

8
R̃(±)µνρσR̃(±)

µνρσ + L(±)
ungauged + L(±)

gauged − V
(±) , (3.63)

where R̃
(±)
µνρσ is defined as follows

R̃(±)
µνρσ = R(±)

µνρσ ±
1

2
FµνmFρσn(P (±)mn − 2P (∓)mn) , (3.64)

and the corrections to the scalar potential γ(−)V (−) + γ(+)V (+) = aV(−) + bV(+) are

explicitly given by

V(±) =
(
P

(±)
mm′P

(±)
nn′ P

(∓)
pp′ − P

(∓)
mm′P

(∓)
nn′ P

(±)
pp′

)
P

(±)
qq′ P

(±)
rr′ P

(∓)
ss′ f

mpqfnp
′q′fm

′rsfn
′r′s′

+

(
P

(±)
mm′P

(±)
nn′ P

(∓)
pp′ +

4

3
P

(∓)
mm′P

(∓)
nn′ P

(±)
pp′

)
P

(±)
qq′ P

(±)
rr′ P

(∓)
ss′ f

mnsfm
′prfn

′p′qf q
′r′s′ ,

(3.65)

where we have conveniently renamed the projectors P = P (−) and P̄ = P (+). The terms

in L(±)
gauged include the higher-derivative interactions that explicitly depend on the gaug-

ings fmnp, while L(±)
ungauged contains the terms that only depend implicitly on the gaugings

through the field strengths and the covariant derivatives. Their explicit expressions are

given by

L(±)
ungauged = − 1

256
∇µMmn∇νMpq∇µMpq∇νMmn− 1

128
∇µMmn∇νMmp∇µMpq∇νMnq

− 1

64
∇µMnp∇νMqr∇µMpr∇νMmq (4κm

n ∓Mm
n)

+
1

16
∇(µ∇ν)Mmn ∇µ∇νMmn

+
1

128
FµνmFρσnF

µν
pF

ρσ
q (κmnκpq − 13MmnMpq ± 12κmnMpq)

− 1

64
FµνmFρσnF

µρ
pF

νσ
q(M

mnMpq ± 4Mmnκpq − κmnκpq + 4MmpMnq)

– 19 –



J
H
E
P
0
4
(
2
0
1
7
)
0
7
8

±1

4
∇ρ∇ρ

(
P (±)mnFµνmF

µν
n

)
− 1

8
Mmn∇ρFµνm∇ρFµν n

±1

4
P (±)mn∇µ∇ρ (FµνmF

νρ
n)

+
1

16
FµνmF

νρ
n∇µ∇ρMpq (MmpMnq − κmpκnq)

− 1

32
FµνmF

νρ
n∇µMpq∇ρMpqM

mn

∓ 1

32
FµνmF

µν
n∇ρMmp∇ρMnq (κpq ± 4Mpq)

+
1

8
FµνmF

νρ
n∇µMmp∇ρMnq (3Mpq ∓ κpq)

−3

8
Fµνm∇ρFµν n∇ρMmn +

1

4
Fµνm∇µMmn∇ρF νρ n

+
1

64
HνρσHγρσ (∇νMmn∇γMmn − 4FµνmF

µγ
nM

mn)

+
1

16
FµνmFρσn

(
HµργHνσ

γM
mn ∓HµνγHρσ

γP
(±)mn

)
− 1

16
∇σMn

p Fµνm (Fµρ nH
ν
ρσM

mp − FρσnH
µνρ (3Mmp ∓ κmp))

−1

8
FµνmH

µρσ∇νFρσn (3κmn ±Mmn) , (3.66)

and

L(±)
gauged = ±1

8
fmnpfqrs∇µM lp∇µMks

[
−P (∓)mq(κr lκ

n
k + 2P (+)r

lP
(−)n

k)

+P (±)mq
(

2P (+)n
lP

(−)r
k + 2κr lκ

n
k −M rnMlk + P (∓)rn(κkl ± 2Mkl)

)]
+

1

16
fkprfnqsFµνmF

µν
lP

(±)rs
(
±2Mmk(κnlκpq +Mnm1Mpq)

− κpq(κnlκmk +MnlMmk)
)

− 1

48
Fµ γmFµνnF

γν
pfqrs (Mmq(κnrκps +MnrMps)+2(4Mmq ± κmq)κnrκps)

+
1

4
Fµνm∇µMpr∇νMqs fn

rs
(
±Mn[mP (∓)p]q + κmnκpq −MmpMnq

)
− 1

16
FµνmH

µνρMmnMpq∇ρMp
s fnqs . (3.67)

It is likely that implementing other field redefinitions and algebraic manipulations will

further simplify the action. It would be desirable to take this action to a minimal form.

4 α′-deformations of the moduli space

In this section we use our knowledge of the first order corrections to half-maximal gauged

supergravity to investigate the structure of the effective potential. From a phenomenologi-

cal point of view, the general setting of gauged supergravity offers interesting perspectives,

such as the possibility to stabilize all moduli in a controlled manner or a mechanism of

spontaneous supersymmetry breaking.
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A nonzero extremal value of the scalar potential presents a possibility to explain a

small positive value of the cosmological constant, as required by observational data. How-

ever, an accelerating spacetime must violate the strong energy condition and the no-go

theorem of [103] guarantees that such solutions cannot be obtained from only the lowest

order terms in the supergravity action. The sub-leading corrections to the four dimensional

scalar potential obtained in the previous section offer the possibility not only to modify

the Minkowski minima to a small value, but they could also stabilize some of the massless

modes, modify the flat directions of the lowest order theory or change the slow-roll behavior

in inflationary models. Although four dimensional maximally symmetric de Sitter solutions

have been ruled out in the perturbative α′ expansion of string theory from generic analysis

of both the spacetime [94] and the worldsheet [95] theories, the α′-corrections can be com-

bined with non-perturbative quantum corrections or localized sources to produce solutions

with properties that cannot be obtained from two-derivative supergravity. Actually, there

are examples of AdS4 solutions at large internal volume in type IIB string theory [104] or

in the heterotic string [105], in which the leading order Minkowski ground states are broken

by higher-derivative terms that generate a nonzero cosmological constant.

With the motivation of better understanding the effect of the α′-corrections on the

vacua of the zeroth order theory, we focus on the analysis of the effective potential (3.65).

It is important to stress that the α′-corrections in (3.65) cannot be eliminated by field

redefinitions, as shown in appendix C.2. Moreover we emphasize that, since all the terms

in the heterotic effective action at string tree level scale uniformly with the dilaton, so

does the four-dimensional effective scalar potential which does not depend on the dilaton

otherwise. Hence the dilaton equation of motion implies either that the dilaton diverges

or that the potential vanishes, and then at lowest order in string perturbation theory the

heterotic effective action can only lead to Minkowski solutions, as shown in [94]. As the

dilaton only appears as an overall multiplicative factor in the effective scalar potential, in

the following analysis we will ignore this factor and restrict attention to the rest of the

moduli. To be specific, we concentrate on the α′-corrections to the Minkowski critical

points of seven dimensional half-maximal supergravity with geometric gaugings [107].

As we commented in the previous sections, the α′-corrections to half-maximal su-

pergravities originated from GSS reductions of DFT are those obtained by the choice of

parameters a = −α′, b = 0. Hence, the resulting scalar potential has the form

U(Φ) = U0(Φ) + α′ U1(Φ) +O
(
α′2
)

= e−2φ
(
V0 − α′ V(−)

)
+O

(
α′2
)
, (4.1)

where Φ generically denotes the scalar fields, V0 is given in (3.44) and V(−) in (3.65).

To find the critical points of (4.1) we have to solve the following equation:

∂IU(ΦP ) = ∂IU0(ΦP ) + α′ ∂IU1(ΦP ) +O
(
α′2
)

= 0 . (4.2)

Solving order by order, we obtain the corrected position in the moduli space

ΦI
P = ΦI

0 + α′ΦI
1 +O

(
α′2
)
, (4.3)
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where ΦI
0 denote the coordinates of a known critical point for U0(Φ) and ΦI

1 is the shift

generated by the first order corrections of the scalar potential. When Taylor expanding

the terms in (4.2) and truncating the O
(
α′2
)

contributions, we have

∂IU(ΦP ) = α′
(
ΦJ

1∂J∂IU0(Φ0) + ∂IU1(Φ0)
)

+O
(
α′2
)

= 0 , (4.4)

where we have considered that the leading order is trivially satisfied. If the Hessian is

invertible, the first α′ order can be solved algebraically as

ΦI
1 = −∂JU1(Φ0) (∂I∂JU0(Φ0))−1 . (4.5)

On the other hand, when ∂J∂IU0(Φ0) has vanishing determinant, the analysis is more

subtle. In this case, the Hessian has to be diagonalized, in order to separate a vanishing

block, and thus in the non-vanishing directions one can invert it and find the corresponding

ΦJ
1 using (4.5). In the directions in which the Hessian is null, the condition (4.4) for ΦI

P

to be a critical point at order α′ reduces to ∂IU1(Φ0) = 0, which is a non trivial condition.

Actually Φ0 is not a point when there are flat directions, then the condition ∂IU1(Φ0) = 0

can either (1) still have flat directions or (2) completely fix Φ0 when the solution is unique

or (3) have no solution at all, which means that the critical point of the zeroth order theory

disappears when α′-corrections are turned on.

If the critical point does exist then there is a cosmological constant2 Λ,

Λ = U(ΦP ) = U0(Φ0) + α′ U1 (Φ0) +O
(
α′2
)
. (4.6)

Let us now consider how this works in a particular example. For instance, we will

explore here if the first order α′-corrections affect the vacua structure of half-maximal

supergravity, with n = 7, d = 3 and N = 0.

This theory possesses 16 supercharges and a global duality group G0 =

R+ × SO(3, 3) ≈ R+ × SL(4). The linear constraints force the embedding tensor (ET)

to transform in one of the following irreducible representations of G0 in the SL(4) branch-

ing (subindices stand for R+ weights)

Θ ∈ 1(−4)︸ ︷︷ ︸
θ

⊕ 10′(+1)︸ ︷︷ ︸
Q(ij)

⊕ 10(+1)︸ ︷︷ ︸
Q̃(ij)

⊕ 6(+1)︸ ︷︷ ︸
ξ[ij]

.

Only a subsector of the full set of available supersymmetric deformations is captured

by GSS reductions of DFT. In particular, the gaugings considered here are such that

θ = ξij = 0. Notice that the notation here is exactly the opposite to the one in [107]. Here

we take indices i, j, k to belong to the fundamental representation of SL(4) while m,n, p

are indices in the fundamental of SO(3, 3). The deformations Q and Q̃ can be easily related

to the gaugings fmnp through the following expressions. First, we define

(Xi1i2)j1j2
k1k2 =

1

2
δ

[k1
[i1
Qi2][j1 δ

k2]
j2] +

1

4
εli1i2[j1 Q̃

l[k1 δ
k2]
j2] , (4.7)

2Λ only depends on Φ0 because the critical point condition eliminates the dependence on Φ1.
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Then, the fluxes fmnp in (3.44) are related to those in (4.7) through the ’t Hooft symbols

Gm, which map the fundamental representation of SO(3, 3) into the anti-symmetric two-

form of SL(4) ,

fmnp = [Gm]i1i2 [Gn]j1j2 [Gp]k1k2 (Xi1i2)j1j2
k1k2 . (4.8)

We note that when Q̃(ij)Q(ij) = 0, then fmnpf
mnp = 0 and the gaugings satisfy the

constraints of maximal supergravity [110, 111]. From a GSS compactification point of

view, this constraint holds for geometric reductions that satisfy the strong constraint [45].

We applied the approach described at the beginning of this section together with the

go to the origin GTTO setting [109] to two different sets of Minkowski vacua in n = 7

half-maximal supergravity, namely two 2-parameter families given by

Q = diag(λ, λ, 0, 0) , Q̃ = diag(0, 0, µ, µ) , (4.9)

and

Q = diag(λ, λ, µ, µ) , Q̃ = diag(µ, µ, λ, λ) , (4.10)

respectively, where λ, µ ∈ R. These vacua are solutions of the CSO(2,0,2) and the SO(2,2)

gaugings, respectively. We refer to table 4 of [107] for more details. As they satisfy

Q̃(ij)Q(ij) = 0, both deformations are locally geometric and can be uplifted to the maximal

theory [108].

The result is that for these two cases, condition (4.4) is trivially satisfied. As these

vacua already have flat directions at zeroth order, it means that what we called condition

(1) above holds and so the position of the critical point remains unchanged. In addition

U1(Φ0) = 0 in both cases, which means that the α′-corrections to the scalar potential

do not contribute to the cosmological constant, and the Minkowski vacua survive in both

configurations. Therefore we rule out in these particular cases the possibility of having a de

Sitter vacuum upon considering α′-corrections to the scalar potential, even when ignoring

the dilaton direction.

It would be interesting to push this investigation forward to understand if this is

a generic behaviour. Having the α′-corrected scalar potential of gauged supergravities,

it is now possible to explore these issues in full generality. Not only corrections to the

cosmological constant are worth studying, also corrections to massless scalar modes could

drive lowest order vacua unstable (or stabilize it) or even rule out inflationary behaviour

at lowest order. We hope to come back to these issues in the future.

5 Outlook and concluding remarks

The traditional DFT is equipped with a duality covariant gauge symmetry principle

based on a generalized Lie derivative that determines the two-derivative effective action

uniquely [1–6]. Different parameterizations and choices of section allow to make contact

with the standard universal bosonic sector of supergravity and lower-dimensional half-

maximal gauged supergravities [45]. Recently the duality covariant gauge symmetry prin-

ciple was extended in the frame-formalism to include first-order deformations that account
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for the Green-Schwarz transformations of the heterotic string [88]. In addition, the de-

formations are in fact general enough to capture the first order corrections to the bosonic

string as well as the α′-geometry of the HSZ theory [80].

Here we have revisited the generalized Green-Schwarz transformations and considered

them from a broader perspective. Exploiting the fact that GSS compactifications are

effectively equivalent to gauging the theory [53], we gauged the results in [88] and extended

the parameterization of the generalized fields to include, in addition to the frame, two-form

and dilaton, extra gauge and scalar fields. The freedom to choose the dimensionality of

the external and internal spaces, the gauge group and the two free parameters that control

the deformations permits to reach all the theories with this field content that enjoy an

underlying G-duality symmetry, thus generalizing the results in [88].

We have written the most general action in section 3.3. Expressed in terms of gen-

eralized fluxes, this action includes the 26-dimensional bosonic string, the 10-dimensional

heterotic string, and half-maximal supergravities in different dimensions, all corrected to

first-order in α′. While the first order corrections to the bosonic and heterotic strings

are well known, and then constitute a validation of our results, the leading corrections

to gauged supergravities had not been computed before in full generality and are then a

prediction of the formalism.

One of the most remarkable aspects of the effective action is that the scalar poten-

tial receives an unambiguous first order correction. Understanding how this deformation

affects the vacuum structure is of interest, as flat directions in the moduli space could be

lifted breaking the degeneracy of vacua with destabilized scalars, or changing the slow roll

behavior in inflationary models.

Another promising line of research is to understand how to incorporate higher orders

in this formalism. The Green-Schwarz transformations induce an infinite tower of α′-

corrections. The three-form field strength Ĥµνρ depends on the torsionful spin connection

ω
(−)
µa

b, the torsion being proportional to Ĥµνρ itself. This determines a system that can be

worked out iteratively in an α′ perturbative expansion. Second and higher-order corrections

of this kind are not captured by the generalized Green-Schwarz transformations considered

here because closure fails to hold at second-order in α′. Finding a complete deformation

that is exactly duality and gauge invariant is an open problem that deserves attention.

The parameter space can be further constrained by supersymmetry. We expect that

only the deformations that correspond to the heterotic string b = 0 admit supersym-

metrization, and it would be nice to check this explicitly. Even if an exactly closed form

of supersymmetric generalized Green-Schwarz transformations is found, constructing an

exactly invariant action can have subtleties. We obtained here the first order corrections

to the DFT generalized Ricci scalar. However, it is possible that unambiguous higher-

derivative invariants exist that would trigger their own tower of α′-corrections, leading for

example to quartic Riemann terms and beyond. Understanding the full picture would be

useful in order to have a complete classification of the constraints imposed by duality and

supersymmetry.

Finally, other applications of this formalism arise: finding consistent higher-derivative

deformations in Exceptional Field Theories or exploring if the generalized Green-Schwarz
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transformation, among others, can shed light on the discussion on large gauge transforma-

tions in DFT, etc. We hope to come back to these issues in the future.
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A Conventions and definitions

In this appendix we introduce the notation used throughout the paper. Space-time and

tangent space Lorentz indices are denoted µ, ν, . . . and a, b, . . . , respectively. The internal

double-Lorentz indices transformed by Hi are denoted α, β, . . . and internal indices rotated

by global Gi transformations are denoted m,n, . . . .

A.1 Diffeomorphisms

The Lie derivative of a tensor is given by

LξVµ
ν = ξρ∂ρVµ

ν + ∂µξ
ρVρ

ν − ∂ρξνVµρ . (A.1)

The Christoffel connection is defined in terms of the metric as

Γρµν =
1

2
gρσ (∂µgνσ + ∂νgµσ − ∂σgµν) , Γρ[µν] = 0 , (A.2)

and transforms anomalously under infinitesimal diffeomorphisms (whenever the Lie deriva-

tive acts on a non-tensorial object, we use the convention that it acts as if it were covariant)

δξΓ
ρ
µν = LξΓ

ρ
µν + ∂µ∂νξ

ρ , (A.3)

so it allows to define a covariant derivative, given by

∇ρVµν = ∂ρVµ
ν − ΓσρµVσ

ν + ΓνρσVµ
σ . (A.4)

The commutator of two covariant derivatives

[∇µ, ∇ν ]Vρ
σ = −Rδρµν Vδσ +RσδµνVρ

δ , (A.5)

is expressed in terms of the Riemann tensor

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµδΓ
δ
νσ − ΓρνδΓ

δ
µσ , (A.6)

which symmetries and Bianchi identities are

Rρσµν = gρδR
δ
σµν = R([ρσ][µν]) , Rρ[σµν] = 0 , ∇[µRνλ]

ρ
σ = 0 . (A.7)

Traces of the Riemann tensor give the Ricci tensor and scalar, respectively

Rµν = Rρµρν , R = gµνRµν . (A.8)
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A.2 External Lorentz transformations

The (inverse) metric can be written in terms of a (inverse) frame field

gµν = eµ
agabeν

b , gµν = ea
µgabeb

ν , (A.9)

where gab is the Minkowski metric, and they satisfy the following identities

ea
µeµ

b = δba , eµ
aea

ν = δνµ , ea
µ = gµνeν

bgba . (A.10)

Under Lorentz and infinitesimal diffeomorphism transformations, the frame field changes

as follows

δeµ
a = Lξeµ

a + eµ
bΛb

a , δea
µ = Lξea

µ − Λa
beb

µ , Λab = Λa
cgcb = −Λba . (A.11)

We also consider a spin connection defined in terms of the frame field

ωµa
b = ∂µeν

bea
ν − Γρµνeρ

bea
ν , (A.12)

that transforms as

δωµa
b = Lξωµa

b + ∂µΛa
b + ωµa

cΛc
b − Λa

cωµc
b . (A.13)

The Riemann tensor can also be written as an adjoint Lorentz-valued two-form, expressed

in terms of the spin connection as

Rµνa
b = ∂µωνa

b − ∂νωµab + ωµa
cωνc

b − ωνacωµcb . (A.14)

This form of the Riemann tensor transforms as

δRµνa
b = LξRµνa

b +Rµνa
cΛc

b − Λa
cRµνc

b , (A.15)

and is related to the Riemann tensor (A.6) through a frame rotation

Rµνa
beb

ρeσ
a = −Rρσµν . (A.16)

The Chern-Simons three-form is defined as

Ωµνρ = ω[µa
b∂νωρ]b

a +
2

3
ω[µa

bωνb
cωρ]c

a , (A.17)

and it transforms under infinitesimal diffeomorphisms and Lorentz transformations as

δΩµνρ = LξΩµνρ + ∂[µ

(
ωνa

b∂ρ]Λb
a
)
. (A.18)

The Chern-Simons three-form satisfies the identity

∇[µΩνρσ] =
1

4
R[µνa

bRρσ]b
a . (A.19)
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A.3 Gauge transformations

Generic gauge tensors Tm
n transform as follows

δTm
n = LξTm

n − fpmqλpTqn + fpq
nλpTm

q . (A.20)

Their derivatives fail to transform tensorially, and then one has to introduce a covariant

derivative

∇µTmn = ∂µTm
n + fpm

qAµ
pTq

n − fpqnAµpTmq , (A.21)

where the gauge connections Aµ
m transform as

δAµ
m = LξAµ

m + ∂µλ
m + fpq

mλpAµ
q . (A.22)

The two-form curvature of the gauge fields

Fµν
m = 2∂[µAν]

m − fpqmAµpAνq , (A.23)

is a tensor both under diffeomorphisms and gauge transformations, and so it transforms

covariantly

δFµν
m = LξFµν

m + fpq
mλpFµν

q . (A.24)

Throughout the paper, whenever we write a covariant derivative acting on tensors with

mixed indices, we assume that the derivative is covariant with respect to both diffeomor-

phisms and gauge transformations. Then, for example we have

∇µFνρm = ∂µFνρ
m − ΓσµνFσρ

m − ΓσµρFνσ
m − fpqmAµpFνρq , (A.25)

which in turn implies

∇[µFνρ]
m = 0 . (A.26)

The commutator of two covariant derivatives acting on gauge tensors satisfies the identity

[∇µ, ∇ν ]Tm = fpq
mT pFµν

q . (A.27)

The scalar fields Mmn are gauge tensors and diffeomorphism scalars, so they transform as

follows

δMmn = LξMmn − 2fp(m
qMn)qλ

p . (A.28)

Finally, we define the gauge Chern-Simons three-form as

Ω(g)
µνρ = A[µ

m∂νAρ]m −
1

3
fmnpAµ

mAν
nAρ

p , (A.29)

which transforms as

δΩ(g)
µνρ = LξΩ

(g)
µνρ + ∂[µ

(
Aν

m∂ρ]λm
)
. (A.30)

This gauge Chern-Simons three-form satisfies the identity

∇[µΩ
(g)
νρσ] =

1

4
F[µν

mFρσ]m . (A.31)
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A.4 Internal double-Lorentz transformations

The internal Lorentz transformations are parameterized by infinitesimal parameters Λαβ

that leave the Hi metrics invariant

δκαβ = 2Λ(αβ) = 0 , δMαβ = 2Mγ(αΛγβ) = 0 . (A.32)

This in turn implies that it has the following projections under (3.25)–(3.26)

Λαβ = Λαβ + Λαβ , Λαβ = Λαβ = 0 . (A.33)

The only field with a non-trivial internal double-Lorentz transformation is the internal

scalar frame Φm
α (or its inverse Φα

m = καβκ
mnΦn

β)

δΦm
α = LξΦm

α − fpmqλpΦq
α + Φm

βΛβ
α (A.34)

δΦα
m = LξΦα

m + fpq
mλpΦα

q − Λα
βΦβ

m . (A.35)

One can define an internal Lorentz connection

ωµα
β = Φα

m∇µΦm
β , (A.36)

that transforms as follows

δωµα
β = Lξωµα

β + ∂µΛα
β + ωµα

γΛγ
β − Λα

γωµγ
β . (A.37)

Due to the splitting (A.33), it follows that this connection separates in two independent

connections

ω
(−)
µαβ = ωµαβ , ω

(+)
µαβ = ωµαβ (A.38)

which transform as

δω(−)
µα

β = Lξω
(−)
µα

β + ∂µΛα
β + ω(−)

µα
γΛγ

β − Λα
γω(−)

µγ
β , (A.39)

δω(+)
µα

β = Lξω
(+)
µα

β + ∂µΛα
β + ω(+)

µα
γΛγ

β − Λα
γω(+)

µγ
β . (A.40)

We can now define the internal Lorentz Chern-Simons three-forms

Ω(i,±)
µνρ = ω

(±)
[µα

β∇νω(±)
ρ]β

α +
2

3
ω

(±)
[µα

βω
(±)
νβ

γω
(±)
ρ]γ

α , (A.41)

which transform as follows

δΩ(i,±)
µνρ = LξδΩ

(i,±)
µνρ + ∂[µ

(
ω(±)
να

β∂ρ]Λβ
α
)
. (A.42)

Finally, we define the projected scalar Riemann tensors

R(±)
µνα

β = 2∂[µω
(±)
ν]α

β + 2ω
(±)
[µα

γω
(±)
ν]γ

β , (A.43)

that transforms as

δR(±)
µνα

β = LξR
(±)
µνα

β +R(±)
µνα

γΛγ
β − Λα

γR(±)
µνγ

β , (A.44)

and in terms of which the following identity holds

∇[µΩ
(i,±)
νρσ] =

1

4
R

(±)
[µνα

βR
(±)
ρσ]β

α . (A.45)
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A.5 Green-Schwarz and Chern-Simons

To lowest order in α′, the two-form transforms as follows

δBµν = LξBµν + 2∂[µξν] +A[µ
m∂ν]λm . (A.46)

The covariant (to lowest order in α′) three-form curvature tensor is then given by

Hµνρ = 3∂[µBνρ] − 3Ω(g)
µνρ . (A.47)

It is invariant under gauge transformations parameterized by ξµ and λm, and transforms

as a three-form under diffeomorphisms.

We can now define the spin connections with torsion

ω
(±)
µab = ωµab ±

1

2
Hµab , Hµab = Hµνρea

νeb
ρ , (A.48)

Note that we do not include any α′-correction in the torsion, as we are only interested in

first-order corrections in this paper. When the two-form Riemann tensor is supra-labeled

with a sign, we use the convention that it is defined as in (A.14) but in terms of the spin

connection with torsion

R(±)
µνa

b = ∂µω
(±)
νa

b − ∂νω(±)
µa

b + ω(±)
µa

cω(±)
νc

b − ω(±)
νa

cω(±)
µc

b . (A.49)

The supra-labeled with a sign torsionful Chern-Simons three-form is accordingly

Ω(e,±)
µνρ = ω

(±)
[µa

b∂νω
(±)
ρ]b

a +
2

3
ω

(±)
[µa

bω
(±)
νb

cω
(±)
ρ]c

a . (A.50)

The transformations of the torsionful spin connection, Riemann tensor and Chern-Simons

three-form are as follows

δω(±)
µa

b = Lξω
(±)
µa

b + ∂µΛa
b + ω(±)

µa
cΛc

b − Λa
cω(±)
µc

b , (A.51)

δR(±)
µνa

b = LξR
(±)
µνa

b +R(±)
µνa

cΛc
b − Λa

cR(±)
µνc

b , (A.52)

δΩ(e,±)
µνρ = LξΩ

(e,±)
µνρ + ∂[µ

(
ω(±)
νa

b∂ρ]Λb
a
)
. (A.53)

The Lorentz Chern-Simons three-forms satisfy the identities

∇[µΩ
(e,±)
νρσ] =

1

4
R

(±)
[µνa

bR
(±)
ρσ]b

a . (A.54)

When first order α′-corrections are turned on, the two-form field receives a deformation

in its gauge transformations

δBµν = LξBµν + 2∂[µξν] +A[µ
m∂ν]λm −

1

2

(
aω

(−)
[µ

αβ − bω(+)
[µ

αβ
)
∂ν]Λαβ

−1

2

(
aω

(−)ab
[µ − bω(+)ab

[µ

)
∂ν]Λab , (A.55)

that forces a correction in its three-form field strength

Ĥµνρ = Hµνρ −
3

2
aΩ(e,−)

µνρ +
3

2
bΩ(e,+)

µνρ −
3

2
aΩ(i,−)

µνρ +
3

2
bΩ(i,+)

µνρ . (A.56)

The Bianchi identity for this tensor is given by

∇[µĤνρσ] = −3

4
F[µν

mFρσ]m −
3

8
aR

(−)
[µνa

bR
(−)
ρσ]b

a +
3

8
bR

(+)
[µνa

bR
(+)
ρσ]b

a

−3

8
aR

(−)
[µνα

βR
(−)
ρσ]β

α +
3

8
bR

(+)
[µνα

βR
(+)
ρσ]β

α . (A.57)
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B Lowest order action, EOMs and field redefinitions

Here we briefly review the zeroth order action of half-maximal gauged supergravities. The

action is given by

S =

∫
dnX
√
−ge−2φL0 , (B.1)

where

L0 = R+ 4∇µ∇µφ− 4∇µφ∇µφ−
1

12
HµνρH

µνρ

−1

4
Fµν

mFµνnMmn +
1

8
∇µMmn∇µMmn − V0 , (B.2)

and the scalar potential is

V0 =
1

12
fmp

rfnq
sMmnMpqMrs +

1

4
fmp

qfnq
pMmn +

1

6
fmnpf

mnp . (B.3)

Varying the action with respect to the fields gives, up to total derivatives,

δS =

∫
dnX
√
−ge−2φ (∆gµνδgµν + ∆φδφ+ ∆BµνδBµν + ∆AµmδAµ

m + ∆MmnδMmn) ,

where

∆φ = −2L0

∆gµν =
1

4
gµν∆φ+Rµν + 2∇µ∇νφ−

1

4
HµρσHν

ρσ

−1

2
Fµρ

mFν
ρnMmn +

1

8
∇µMmn∇νMmn

∆Bµν =
1

2
∇ρHρµν −∇ρφHρµν (B.4)

∆Aµ
m = Aν

m∆Bν
µ − 2∇νφFνµnMnm +∇ν (FνµnM

nm)

+
1

2
Hµ

ρσFρσ
m +

1

2
fp
qmMqr∇µM rp

∆Mmn =
(
Pm

pP̄n
q + P̄m

pPn
q
)(
−1

4
FµνpF

µν
q +

1

2
∇µφ∇µMpq −

1

4
∇µ∇µMpq

−1

4
fpurfqvsM

uvM rs − 1

4
fpr

sfqs
r

)
,

with

Pmn =
1

2
(κmn −Mmn) , P̄mn =

1

2
(κmn +Mmn) (B.5)

Notice that under field redefinitions

gµν → gµν +Dg(µν) , Bµν → Bµν +DB[µν] , φ→ φ+Dφ ,

Aµ
m → Aµ

m +DAµ
m , Mmn →Mmn +DM(mn) , (B.6)

the lowest order action shifts (up to integration by parts) as

DS =

∫
dnX
√
−ge−2φ (∆gµνDgµν + ∆φDφ+ ∆BµνDBµν

+∆AµmDAµ
m + ∆MmnDMmn) .
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Therefore, using equations of motion to simplify or eliminate terms in the first order part

of the action, simply amounts to performing covariant first order field redefinitions, and is

then a valid operation.

C Some technical details

C.1 Simplifying the action

The purpose of this appendix is to give some explicit details in the derivation of (3.63).

The expressions of L(±), introduced in section 3.3 and related to L(±) via (3.62) are our

starting point. After some algebraic manipulations we obtain

L(±) = −V (±) ∓ 1

4
HµνρΩ(±)

µνρ +
1

8
R(±)µνρσR(±)

µνρσ ±
1

4
P (±)mnFµρmF

νρ
nRµν

∓1

4
Fµν mF

ρσ
nRµνρσP

(∓)mn ± 1

4
Fµν mF

ρσ
nRµρνσP

(±)mn

− 1

64
∇µMnp∇νMqr∇µMpr∇νMmq (4 ηm

n ∓Mm
n)

+
1

16
∇(µ∇ν)Mmn ∇µ∇νMmn − 1

256
∇µMmn∇νMpq∇µMpq∇νMmn

− 1

128
∇µMmn∇νMmp∇µMpq∇νMnq

±1

8
fmnpfqrs∇µMm1p∇µMm2s

(
−P (∓)mq(ηr m1η

n
m2 + 2P (+)r

m1P
(−)n

m2)

+P (±)mq
(

2P (+)n
m1P

(−)r
m2 + 2 ηr m1η

n
m2 −M rnMm1m2

+ P (∓)rn(ηm2m1 ± 2Mm2m1)
))

− 1

32
FµνmFρσnF

µν
pF

ρσ
q (MmnMpq + ηmnηpq)

− 1

64
FµνmFρσnF

µρ
pF

νσ
q(M

mnMpq ∓ 2Mmnηpq − 7ηmnηpq

±4 (ηmp ± 2Mmp)Mnq)∓ 1

8
(2P (±)mn−P (∓)mn)∇µFνρm∇µF νρ n

±1

4
P (±)mn(∇µFµνm∇ρF νρ n +∇µ∇νFρµn F νρ m +∇µ∇νF ρν n Fµρm)

− 1

16
Fµρ mFµνn∇ρ∇νMpq (MmpMnq − ηmpηnq)

± 1

64
Fµρ mFµνn∇ρMpq∇νMpq (ηmn ± 3Mmn)

∓ 1

32
FµνmF

µν
n∇ρMmp∇ρMnq (ηpq ± 4Mpq)

±1

8
Fµρ mFµνn∇ρMmp∇νMnq (2P (∓)

pq − P (±)
pq)

+
1

4
Fµν m∇µFνρn∇ρMmp (2P (∓)n

p + P (±)n
p)

−1

8
Fµν m∇ρFµνn∇ρMmp (2P (±)n

p + P (∓)n
p)

−1

4
Fµν m∇νMmn∇ρFµρn ± P (±)mn∇µFµρmF νρn∇νφ
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±P (±)mnFµρm∇µF νρn∇νφ± P (±)mnFµρmF
νρ
n∇µ∇νφ

+
1

2
FµρmF

νρ
n∇νφ∇µMmn ∓ P (±)mnFµρmF

νρ
n∇νφ∇µφ

+
1

16
fm2prfnqsFµνmF

µν
m1P

(±)rs
(
±2Mmm2(ηnm1ηpq +Mnm1Mpq)

− ηpq(ηnm1ηmm2 +Mnm1Mmm2)
)

− 1

48
Fµ γmFµνnF

γν
pfqrs (Mmq(ηnrηps +MnrMps) + 2(4Mmq ± ηmq)ηnrηps)

+
1

4
Fµνm∇µMpr∇νMqs fn

rs
(
±Mn[mP (∓)p]q + ηmnηpq −MmpMnq

)
− 1

16
FµνmH

µνρMmnMpq∇ρMp
s fnqs

+
1

64
HµνρHµνσ∇ρMmn∇σMmn ∓ 1

32
Fµρ nFµνmH

νσγHρσγ (ηmn ± 3Mmn)

± 1

16
Fµν mF

ρσ
n

(
Hµρ

γHνσγP
(∓)mn −Hµν

γHρσγP
(±)mn

)
∓1

8
Fµν mF

ρσ
nHµνρ

(
2P (∓)mp − P (±)mp

)
∇σMn

p

+
1

16
FµνmF

µρ
nH

νσ
ρM

mp∇σMn
p −

1

4
FµνmH

µρσ∇νFρσn P (±)mn

+
1

4
F ρ µmH

µνσ∇νFρσn P (∓)mn − 1

4
FµνmFρσ

m∇µHνρσ , (C.1)

Now notice that most of the terms containing derivatives of the dilaton can be rewritten

as a total derivative, e.g.

e−2φ
(
±P (±)mn∇µFµρmF νρn∇νφ± P (±)mnFµρm∇µF νρn∇νφ

±P (±)mnFµρmF
νρ
n∇µ∇νφ+

1

2
FµρmF

νρ
n∇νφ∇µMmn

∓P (±)mnFµρmF
νρ
n∇νφ∇µφ

)
= ∇µ

(
e−2φ P (±)mnFµρmF

νρ
n∇νφ

)
± e−2φP (±)mnFµρmF

νρ
n∇νφ∇µφ. (C.2)

We can also perform some field redefinitions in order to get some extra simplifications (see

appendix B). In particular if we choose

δgµν = a δgµν− + b δgµν+ , δgµν(±) = ∓1

4
P (±)mnFµρmF

ν
ρn ,

δφ = a δφ− + b δφ+ , δφ(±) = ± 1

16
P (±)mnFµνmFµνn , (C.3)

we find that some terms in L(±) are cancelled, in particular the one containing the Ricci

tensor and the only term which is not a total derivative in the last line of (C.2). It would

be nice to explore if redefinitions of the scalars, the two-form and the gauge fields simplify

the action further.
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On the other hand we can use the Bianchi identity of the Riemann tensor Rµ[νρσ] = 0

to rewrite the terms

∓1

4
Fµν mF

ρσ
nRµνρσP

(∓)mn ± 1

4
Fµν mF

ρσ
nRµρνσP

(±)mn

= ±1

8
Fµν mF

ρσ
nRµνρσ

(
P (±)mn − 2P (∓)mn

)
, (C.4)

which can then be absorbed into

1

8
R̃(±)
µνρσR̃

(±)µνρσ =
1

8
R(±)
µνρσR

(±)µνρσ ± 1

8
FµνmF

ρσ
nRµνρσ

(
P (±)mn − 2P (∓)mn

)
∓ 1

16
FµνmFρσnH

µρλHνσ
λ

(
P (±)mn − 2P (∓)mn

)
+

1

32
Fµν

mFρσ
nFµνpF ρσq

(
2
(
P (+)
mn P

(+)
pq + P (−)

mn P
(−)
pq

)
− 5P (+)

mn P
(−)
pq

)
+

1

16
Fµν

mFρσ
nFµρpF νσq

(
2P (∓)

mn P
(∓)
pq − P (±)

mn P
(±)
pq + P (+)

mn P
(−)
pq

)
,

(C.5)

where we have used the Bianchi identity of the three-form (A.57), in order to rewrite the

term containing ∇µHνρσ in R̃
(±)
µνρσR̃(±)µνρσ as

1

8
FµνmF ρσn∇µHνρσ(P (±)

mn − 2P (∓)
mn )

=
1

8
FµνmF ρσn∇[µHνρσ](P

(±)
mn − 2P (∓)

mn )

= − 1

32
FµνmF ρσn (Fµν

pFρσp − 2Fµρ
pFνσp) (P (±)

mn − 2P (∓)
mn ). (C.6)

This condition can also be used to put the last term in L± in the form

−1

4
FµνmF ρσm∇µHνρσ =

1

16
FµνmFρσ

m (FµνnF ρσn − 2FµρnF νσn) . (C.7)

On the other hand we can use the Bianchi identity for the field strength (A.26), which

implies ∇ρFµνm∇ρFµν n = −2∇ρFµνm∇µF νρ n to rewrite

±1

4
P (±)mn(∇µFµνm∇ρF νρ n +∇µ∇νFρµn F νρ m +∇µ∇νF ρν n Fµρm)

∓1

8
(2P (±)mn − P (∓)mn)∇µFνρm∇µF νρ n

= ±1

4
P (±)mn∇µ∇ρ (FµνmF

νρ
n)− 1

8
Mmn∇µFνρm∇µF νρ n. (C.8)

Again by using (A.26) we can write

−1

4
FµνmH

µρσ∇νFρσn P (±)mn +
1

4
F ρ µmH

µνσ∇νFρσn P (∓)mn

= −1

8
FµνmH

µρσ∇νFρσn
(
P (∓)mn + 2P (±)mn

)
, (C.9)
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and

1

4
Fµνm∇µF νρ n∇ρMmp (2P (∓)n

p + P (±)n
p)

−1

8
Fµνm∇ρFµν n∇ρMmp (2P (±)n

p + P (∓)n
p) = −3

8
Fµνm∇ρFµν n∇ρMmn .

(C.10)

Hence plugging all these equations into (C.1), we obtain (3.63).

C.2 The α′-corrections to the scalar potential

The purpose of this appendix is to show that the α′-corrections to the scalar potential

cannot be eliminated through field redefinitions. Let us discuss, without loss of generality

the case b = 0. If such redefinitions existed, then Vα = −α′V(−) in (3.65) should be

reproduced by the scalar part of ∆MmnδMmn|scalar = −δmnV0δMmn (see (B.4)), where

δmnV0 = −2Sm′n′
(
P (+)mm′P (−)nn′ + P (−)mm′P (+)nn′

)
= −2

(
Smn + Smn

)
Sm′n′ = fm′pqfn′p′q′P

(+)pp′P (−)qq′ (C.11)

The first line of Vα in (3.65) can be rewritten as(
P

(−)
mm′P

(−)
nn′ P

(+)
pp′ − P

(+)
mm′P

(+)
nn′ P

(−)
pp′

)
P

(−)
qq′ P

(−)
rr′ P

(+)
ss′ f

mpqfnp
′q′fm

′rsfn
′r′s′

= Sm
′n′
(
P

(−)
mm′P

(−)
nn′ P

(+)
pp′ − P

(+)
mm′P

(+)
nn′ P

(−)
pp′

)
P

(−)
qq′ f

mpqfnp
′q′

=
(
SmnP

(+)
pp′ − S

mnP
(−)
pp′

)
P

(−)
qq′ f

mpqfnp
′q′ , (C.12)

and so we see that the projected components of S above do not agree with those in δmnV0.

The situation is even worse for the second line of (3.65), as it is not possible to generate

the Smn factor. Indeed to generate it, we need to permute indices in the fluxes and the

only available identities are the quadratic constraints in which the fluxes are contracted

with the κ metric instead of projectors.
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