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A B S T R A C T

In this article, dedicated to the memory of Lesser Blum, we develop a theory for the physical clusters which
were introduced some time ago in our group (J. Chem Phys. 116, 1097–1108, 2002). The physical cluster
definition establishes that a system particle belongs to the cluster if it is (nonspecifically) bonded to other
particles of the cluster along a finite time period t (the residence time). Our theory has as main ingredients
the Stillinger criterion of instantaneous connectivity, that involves a connectivity distance d, the general-
ized time-dependent pair distribution function of Oppenheim and Bloom that acts as a classical propagator
and also the cluster pair correlation function for a weaker version of the physical clusters that requires con-
nectivity just at the extremes of the time period no matter what happens in between. With these tools we
express the time dependent pair connectedness function for the physical clusters in the strong sense as a
path integral. The path integral is solved by means of a perturbation expansion where the nonperturbed
connectedness function coincides with the generalized pair distribution function of Oppenheim and Bloom.
We apply the theory to Lennard-Jones fluids at low densities and perform molecular dynamics simulations
to check the goodness of diverse functions that appear in the theory.

© 2017 Elsevier B.V. All rights reserved.

This work is dedicated to the memory of Lesser Blum: enlightening
professor, generous colleague and unforgettable friend.

1. Introduction

Many interesting natural phenomena arise in systems whose
macroscopic properties are related to the formation of aggregates
of their constituent particles. We can mention, among many others,
the insulator-conductor [1], the sol-gel [2] and the glassy [3,4]
transitions observed in several materials; the behavior of super-
cooled water [5,6], aggregation and agglutination phenomena in
cells and biological macromolecules and organelles [7–9], the
flow of fluids in porous media [10], earthquakes and fractures in
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the terrestrial crust [11–13], and the large-scale structure of the
Universe [14–16]. Frequently these phenomena can properly be
studied by using the ideas of clustering and percolation.

A rough drawing of clustering and percolation theoretic studies
shows that two main approaches have commonly been used. In one
of them the system particles are restricted to occupy just the sites of
given lattices (see e.g. Refs. [17,18]); in the other one they can move
through continuum regions. Here we will restrict ourselves to the
lattice-free (continuum) approach.

Continuum percolation is normally associated with the existence
of “real” clusters that become macroscopic in size. The clusters
we are talking about were already considered many years ago by
Bijl [19], Band [20] and Frenkel [21] (among others) and must
be distinguished from the more familiar Mayer’s mathematical
clusters used in the diagrammatic virial expansion of the imperfect
gases [22].

Most of the present day theories of clustering and percolation are
based on the work of Terrel L. Hill. In Hill ’ s theory [23] the concept
of cluster is directly related to that of (“instantaneous”) connectivity:
two particles belong to the same cluster if they are connected trough
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an instantaneous path of directly connected particles. Therefore a
crucial point in the identification of the clusters is the definition of
directly connected particles (a bonded pair).

The original Hill’s definition of a bonded pair is based on an
energetic criterion: two particles are bonded, in a given configura-
tion, if their relative kinetic energy is less than minus the pair poten-
tial energy [23]. Very frequently, however, a geometrical criterion is
used instead of the energetic one. For spherically symmetric particles
that interact via radial pair potentials V(r12) where r12 = |r1−r2|(ri ≡
position of the center of particle i), a very common specification
(Stillinger criterion) considers that two particles are bonded if they
are separated by a distance smaller than certain parameter d which
is called the connectivity distance [24].

In this context, the Boltzmann factor e(r12) ≡ exp[−bV(r12)],
where b = (kBT)−1 with kB the Boltzmann constant and T the
absolute temperature can be split into bonded (†) and unbonded
(*) terms: e(r12) = e†(r12) + e∗(r12) and, since it is the statistical
weight in the configurational integrals, all the pair functions can
be separated in a similar way in “connectedness” and “blocking”
parts. In particular, the pair distribution function is written: q(r12) =
q†(r12) + q∗(r12). The pair-connectedness density function q†(r12)
plays a central role in the clusters theory. This function, that was
introduced some time ago by Coniglio and collaborators [25,26], very
properly describes the particles distribution inside the clusters. It
represents the probability density of finding two particles connected
and separated by a distance r12.

Fugacity and density expansions similar to those obtained by
Mayer and Montroll [27] for the ordinary pair correlation function
g(r12) has been found [25,26], within Hill-Coniglio formalism, for
the pair connectedness correlation function h†(r12) = q†(r12)/q,
where q = N/V is the system density. Moreover, by collecting
nodal and non-nodal diagrams in these expansions, an Ornstein-
Zernike (OZ) like relation is obtained [25,26] from which integral
equations for h†(r12) can be posed [28]. This way, several approx-
imate integral equations for the pair-connectedness function have
been derived [28–34] and solved for diverse fluid models [29–42].

The cluster pair correlation function in the geometrical criterion
of Stillinger gStill(r12; d), say the density probability of finding two
particles of the same cluster at a relative distance r12, and the
connectedness total correlation function are both the same object:
gStill(r12; d) ≡ h†(r12; d). Thus, the mean cluster size can be obtained
in the form S(q) = 1 + 4pq

∫∞
0 gStill(r12; d)r2

12dr12 so that the
critical percolation density qp verifies lim

q→qp
S(q) = ∞. This equation

expresses in mathematical language the meaning of qp: the density
at which a macroscopic fraction of particles first become connected.

The use of an instantaneous geometrical criterion to decide
whether two particles are bonded can be meaningful in some appli-
cation where the fact that particles are close together for an instant
is sufficient to describe the phenomenon under study. However, in
most real experiments, clusters and the involved particle-particle
bonds need to last for some minimum period of time in order to allow
the occurrence of the phenomenon in question. Examples where
the finite value of the bond lifetime is of crucial importance to the
understanding of the clustering and percolation phenomena include
the formation of hydrogen bonds in liquid and glassy water [6,43].

In our group, we have taken into account this point and have
considered to introduce clusters that incorporate a residence time
in their definition. So, in reference [44], two new criteria for the
clusters identification, which generalize the instantaneous geometric
criterion of Stillinger by adding a residence time to decide when the
particles belong to them, have been proposed. In the definitions we
demand that, in order to belong to the cluster, a given particle must
be bonded to another one of the cluster along a finite time period t

(the residence time). But, whereas in one of the criteria we require
that this second particle be always the same one during the whole

time interval t, in the other criterion the second particle need not to
be the same one along the residence time, but it is enough that at
each instant of the complete time period it simply be any one of the
cluster particles. We call the clusters so defined chemical clusters and
physical clusters, respectively, in an obvious analogy with the con-
cepts of chemical (or specific) adsorption and physical adsorption.
These clusters are such that when the residence time is zero they
reduce to the Stillinger clusters.

In previous works we have exhaustively studied the chemical
clusters for the Lennard-Jones fluid using molecular dynamics sim-
ulations [44]. This way we could observe the close relation between
the percolation loci and the low-density branch of the liquid-solid
coexistence curve [45]. Also, for the chemical clusters we have posed
an Ornstein-Zernike like equation for the connectedness function
g†(r1, r2, p1, p2; d, t) which is proportional to the joint probability
density of finding two particles at positions r1 and r2 with momenta
p1 and p2, respectively, and belonging to the same chemical clus-
ter [44,46]. We have closed this equation with a Percus-Yevick like
relation for the connectedness functions together with the condi-
tion that the direct bond between each pair of cluster particles lasts
during the whole residence time t and have solved the resulting inte-
gral equation for g†(r1, r2, p1, p2; d, t) using an orthogonal polynomial
approach [47]. This function is related to the pair correlation function
for chemical clusters gChem(r12; d, t) according to gChem(r12; d, t) =∫
q(r1, p1)q(r2, p2)g†(r1, r2, p1, p2; d.t)dp1dp2 where q(r1, p1) is the

one point density function.
We have performed molecular dynamics simulations for the

physical clusters in Lennard-Jones fluids too [44]. The results in
this case suggest [45] that physical clusters are more accurate for
describing the gas-liquid coexistence than the chemical clusters are.
In Ref. [44], we have tried to develop also a theory for the pair
correlation function of physical clusters gPhys(r12; d, t) for systems of
spherically symmetric particles. However, as a previous step, we had
to consider a weaker version of them, say gPhys;W(r12; d, t), where we
require that, in order that a given particle belongs to the cluster, it
is sufficient that it be bonded (in the Stillinger sense) to others of
the cluster just at the origin t and the end t + t of the time period,
no matter what happens in between. For gPhys;W(r12; d, t) an inte-
gral equation determined by an OZ like relation with closures that
involve the functions gStill(r12; d) and G(r12, ŕ12, t) was solved for the
ideal gas. The generalized time-dependent pair distribution function
G(r12, ŕ12, t), which is a central object in our theory of physical clus-
ters, was introduced by Oppenheim and Bloom in relation with the
nuclear spin relaxation in fluids [48,49]. It is the joint probability
density of finding two particles in relative position r12 = r2 − r1 at
an initial time and in relative position r′

12 = r′
2 − r′

1 at a time t later.
The aim of the present work is to follow developing a theory

for the physical clusters and their application to Lennard-Jones flu-
ids. To this end, in the next Section, we consider the generalized
time-dependent pair distribution function that we will need further.
Following previous works [48–51], we present an approximated
theoretic expression for G(r12, ŕ12, t) to be used along the paper and
compare them with molecular dynamics calculations. Section 3 is
devoted to the weak criterion for physical clusters. We consider two
approximations for gPhys;W(r12; d, t). One [44] is the already men-
tioned integral equation defined by an OZ like relation with closures
that involve the functions gStill(r12; d) and G(r12, ŕ12, t). The other
one is the integral gPhys;W (r12; d, t) =

∫
h††

W (r12, r′
12; t)dr′

12 where the
function h††

W (r12, r′
12; t), that accounts for the joint probability density

that two particles which are initially connected at a relative position
r12 will be also connected at a relative position r′

12 at a time t later, is
given by a simple product relation that involves again the functions
gStill(r12; d) and G(r12, ŕ12, t). We perform molecular dynamics runs
to analyze the goodness of both approximations for Lennard-Jones
fluids and, very especially of h††

W (r12, r′
12; t) at very short residence
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times because, in Section 4, we will use h††
W (r12, r′

12; 4) for small 4 to
calculate gPhys(r12; d, t). The idea is to divide the finite interval t into
subintervals of length 4 = t/n(n → ∞); to assume that for residence
times 4 small enough the connectedness function for strong physical
clusters, h†∼†(r12, r′

12; 4), is well approximated by h††
W (r12, r′

12; 4) and
finally to pose a path integral for gPhys(r12; d, t) in the whole residence
time t. After comparison of gPhys(r12; d, t) so obtained with simu-
lation results, the paper is closed by giving some conclusions in
Section 5.

2. Generalized time-dependent pair distribution function

The generalized time-dependent pair distribution function of
Oppenheim and Bloom [48,49] G(r12, ŕ12, t) plays a fundamental role
in our theory of physical clusters, so we will study it with some
detail. We briefly review the semiclassical approach of Borysow et
al. [51] that gives theoretic expressions which allow to calculate it
with diverse degree of approximation. Besides, we also consider the
calculation of G(r12, ŕ12, t) from molecular dynamics trajectories in
order to compare with the theoretic results.

2.1. Theory

As was mentioned, the function G(r12, ŕ12, t) gives the joint
probability density of finding two particles in relative position r12 =
r2 − r1 at an initial time and in relative position r′

12 = r′
2 − r′

1 at a
time t later . It can be written as [50]

G(r12, r′
12; t) =

1
N

〈
N∑
i

N∑
j�=i

d
[
r12 − rij(0)

]
d
[
r′

12 − rij(t)
]〉

, (1)

where rij(t) = ri(t) − rj(t); d(x) is the Dirac delta function and 〈.〉
means a canonical average carried out over all initial configurations.
Since the system is in equilibrium, G(r12, r′

12; t) is invariant under
time translation. The function G(r12, r′

12; t) verifies

G(r12, r′
12; t = 0) = g(r1,2)d (r′

12 − r12) (2)

and

∫
G(r12, r′

12; t)dr′
12 = g(r1,2), (3)

where g(r12) denotes the ordinary pair correlation function.
Here we use for G(r12, r′

12; t) a semiclassical approach in the sta-
tionary phase approximation as developed by Borysow et al. [51]. We
write:

G(r12, r′
12; t) =

(
2p�2b

l

)3/2

×

× K(r′, r12; t − i�b)K(r12, r′
12; −t) (4)

with l = m/2 the reduced mass (m the particles mass). In this
equation appears the Feymann propagator defined, in terms of the
Hamiltonian H of relative motions, as

K(r12, r′
12; t) =

〈
r′

12

∣∣exp(−iHt/�)
∣∣ r12

〉
. (5)

The propagator K(r12, r′
12, t) can be written as a Feymann path

integral

K(r12, r′
12; t) =

∫
drF exp

[
i
�2

S (rF)

]
. (6)

The integral must be performed over all the paths that link r12

and r′
12 in time t and S(rF) denotes the action along them. In the

semiclassical limit only classically allowed paths are considered.
Here we assume that there is only one such a classical path. The
stationary phase approximation then gives the VanVleck formula
(the WKB or semiclassical approximation to the propagator):

K(r12, r′
12; t) =

(
l

2p�

)3/2
[

Det
∂2S

(
r12, r′

12, t
)

∂r12∂r′
12

]1/2

(7)

× exp
[

i
�2

S (r12, r′
12, t)

]
,

where S
(
r12, r′

12, t
)

is the classical action connecting r12 and r′
12.

In turn, the classical action is solution of the Hamilton-Jacobi
equation

∂S
∂t

+
1

2l

(
∇r′

12
S
)2

+ V (r′
12) = 0. (8)

For short enough time the action can be written

S = S0 − tS1 − t3S2 + · · · (9)

where S0 is the action for free particles and S1 and S2 are time
independent. Introducing Eq. (9) into Eq. (8) and collecting terms
with the same power in t we obtain:

S0 (r12, r′
12; t) =

l
(
r12 − r′

12

)2
2t

, (10)

S1 (r12, r′
12) =

1∣∣r12 − r′
12

∣∣
∫ r′

12

r12

V(r)dr (11)

and

S2 (r12, r′
12) =

1∣∣r12 − r′
12

∣∣3 ×
∫ r′

12

r12

1
2l
[∇S1 (r12, r′

12)
]2

(r − r12)
2dr.

(12)

Replacing in Eq. (4) the propagators by the expression of Eq. (7)
with S

(
r12, r′

12, t
)

given by Eqs. (9)–(12), remembering that l = m/2
and doing � → 0 we obtain

G(r12, r′
12; t) =

(
mb

4pt2

)3/2

exp
[
−bm(r12 − r′

12)
2/4t2

−bS1 (r12, r′
12) − b3t2S2 (r12, r′

12)
]
. (13)

If Eqs. (11) and (12) are replaced by

S1 (r12, r′
12) ≈ V (r′

12) and S2 (r12, r′
12) ≈ 1

3m

[∇r12 V (r12)
]2, (14)

respectively, then G(r12, r′
12; t) in the so called constant acceleration

approximation (CAA) is obtained [48,50]:

G(r12, r′
12; t) =e−bV(r12)

(
mb

4pt2

)3/2

× exp

{
−bm

4t2

[
r′

12 − r12 +
2
m

∇r12 V (r12) t2
]2
}

, (15)

which is accurate to low densities and short times. Observe that
if we apply Eq. (3), then the pair correlation function g(r12) =
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exp[−bV(r12)] for dilute fluids is, in fact, obtained. Also the condition
given by Eq. (2) is easily verified.

We also note that for the ideal gas, where V(r12) = 0, we have

G(r12, r′
12; t)free =

(
mb

4pt2

)3/2

× exp

[
−bm

(
r12 − r′

12

)2
4t2

]
, (16)

a well known result [50].

2.2. Molecular dynamics

Here we describe the molecular dynamics (MD) simulations that
we have performed, using the package GROMACS [52,53], in order
to evaluate the theoretical generalized time-dependent distribution
function G

(
r12, r′

12; t
)
. We also will use the runs to evaluate, in the

next Section, the pair correlation and other related functions of
physical clusters in the weak sense whereas that in Section 4 the MD
trajectories will be used to calculate the corresponding functions for
the strong criterion of the physical clusters.

We consider N = 64000 particles of mass m interacting through
a Lennard-Jones potential

V (r12) = 4e

[(
s

r12

)12

−
(

s

r12

)6
]

(17)

with the parameters adequate for argon [54]: m = 6.62 × 10−26kg,
e/kB = 119.8K and s = 3.401Å. The particles are placed into a cubic
box with sides of length L = 74.46s , so we are taking a system of
reduced density q∗ = 0.155(q∗ = qs3 = (N/L3)s3). The temper-
ature we consider is, in reduced units, T∗ = 1.4(T∗ = kBT/e; T =
167.72K) stabilized by velocity rescaling [55].

The position and velocities of the N particles are followed by stan-
dard MD simulation methods [56,57] in the NV T ensemble using
leap-frog integrator with an integration step Dt = 0.002 ps and an
interaction cut-off distance rc = L/4. For the trajectories the usual
periodic boundary conditions are used.

In the calculation of G
(
r12, r′

12; t
)
, in particular, a problem with

the periodic conditions arise. The point is that in order to evaluate it
we need to follow the trajectories of pairs of particles and can occur
that whereas one of the particles of a given pair remains at certain
time inside the simulation box, the other one leaves it. When the
boundary conditions return this particle inside the box a discontinu-
ity in the relative motion of both particles can be produced. To avoid
this inconvenient, Balucani and Vallauri [58] consider an auxiliary
separate record with the coordinates of the particles not modified by
the periodic conditions. Another solution, that is what we use here,
takes advantage of the relatively great number of particles that we
are considering (64000 against the 108 of Ref. [58]). Thus, in addi-
tion to the box of side L we define a second cubic box of side L/4 at
the center of that, so the volume of the new box is 1/64 of the vol-
ume of the big one. The initial position of at least one of the particles
of the pairs to be followed is in the small box. The small box will
contain in average N′ ∼ 1000 particles a number still large enough as
to have good statistics. On the other hand, if we study G

(
r12, r′

12; t
)

for times t not too much large, as will be the case here, the pairs of
particles one of which is initially inside the small box and the second
is at a distance rij < rc have to travel a distance greater than (L/8)s
in order to arrive to the big box surface, so, for the times we are
considering here, most of them will not have sufficient time to reach
the surface of the big box and corrections by periodic conditions will
be unnecessary.

The procedure to calculate G
(
r12, r′

12; t
)

is as follows. First we
take a particle i of the small box and count the number of particles
j that fall at the initial time into the spherical shell between the

spheres of radius rij = |ri − rj| and rij + drij(rij < rc) cen-
tered at the position of particle i. The volume of the shell is:
dV(0) = (4p/3)

[(
rij + drij

)3 − r3
ij

]
. We repeat the procedure for all

the particles i in the small box. Then, we leave the pairs (i, j) evolve
during time t and count, of all the particles j, those that fall in the
volume delimited between spheres of radius r′

ij and r′
ij+dr′

ij

(
r′

ij < rc

)
centered at particle i and the angles h′ and h′ + dh′, where h′ is the
angle between r′

ij and rij:

dV ′(t) =
2p
3

[cos (h′) − cos (h′ + dh′)] ×
[(

r′
ij + dr′

ij

)3 − r′3
ij

]
. (18)

Note that, because we can assume that the vector rij is placed
along the axis z of coordinates, the angle h′ between the vectors rij

and r′
ij coincides with the polar angle of r′

ij in spherical coordinates.
If we denote with n[dV ′(t)|dV(0)] the number of pairs whose

second particle falls, at time t, inside the volume dV ′(t), assuming
that initially the first particle was in the volume dV(0), then we have
for r12 < rc, r′

12 < rc:

G(r12, r′
12; t) =

n
[
dV ′(t)

∣∣ dV(0)
]

N′dV(0)dV ′(t)
. (19)

2.3. Results

To visualize in some way on the paper the function G
(
r12, r′

12; t
)

is
necessary to restrict ourself to sections of the full hypersurface that
represents it. In particular, in order to take an idea about how well
works the approximation given by Eq. (15), we consider in Fig. 1 the
radial function g2

(
r′

12, t
)
, defined by [58]

g2 (r′
12, t) = 8p2q

∫ 2.1s

0.9s
dr12r2

12 ×
∫ p

0
dh sin hG (r12, r′

12; t) ,

for t = 0.1, 0.2, 0.3 and 1.0 ps (0.047, 0.094, 0.141 and
0.47, respectively, in reduced units t∗ = ts−1

√
e/m). There the

corresponding curves calculated using Eq. (15) (lines) are compared
with those given by molecular dynamics simulations as described
in the previous subsection (symbols). We observe that, for the
relatively small density considered, the approximation given by
Eq. (15) compares well just at very short times as we must expect
from Eq. (9).

3. Physical clusters: weak criterion

In order to treat the physical clusters within a theoretical frame-
work first we will restrict ourself to a weaker version. The weak
criterion is established as follows [44]:

Two particles of the system belong, at a time t, to the same physical
cluster (of connectivity distance d and residence time t ) if at the initial
time t there exists a path of directly connected particles which links them
and at time t + t later all the particles forming the path, including the
two particles under consideration, are also connected.

Here connected and directly connected are understood in the
Stillinger sense with connectivity distance d. The difference with the
strong criterion that we will establish in Section 4 is that in the weak
version we require that the particles be connected at the extremes of
the time interval no matter if they are connected or not in between.

3.1. Theory

We start considering the function H(r1, r2) introduced by Xu and
Stell in their “percolation in probability” theory [34]. This function
measures the basic conditional probability for two particles to be
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a b

c d

Fig. 1. The function g2
(
r′

12, t
)

(see text) for different values of the time t. Solid lines: theoretic result with G
(
r12, r′

12; t
)

calculated in the CAA (Eq. (15)). Open circles: from MD
simulations.

directly connected if they are at positions r1 and r2, respectively. The
role of this function within Hill’s formalism is that of an auxiliary
function in the Boltzmann factor separation e(ri, rj) = e†(ri, rj) +
e∗(ri, rj) into bonded and unbonded terms:

e†
i,j = H(ri, rj)e(ri, rj)

e∗
i,j =

[
1 − H(ri, rj)

]
e(ri, rj). (20)

Each choice of H(ri, rj) corresponds to a bond definition. For
example, for Stillinger definition of directly connected particles we
have

H(r1, r2) = H(r1,2) =

{
1 r1,2 ≤ d

0 r1,2 > d
.

To define bonded particles accordingly with the weak criterion of
physical clusters, we use:

H(r1, r2) = H(r1,2; t) =

⎧⎨
⎩

h•†(r1,2 ;d,t)
g(r1,2) r1,2 ≤ d

0 r1,2 > d
, (21)

where h•†(r1,2; d, t) is the probability density of finding two particles
in relative position r1,2 at time t and connected at time t + t.

Clearly, this election of H(r1,2; t) considers as bonded any two par-
ticles which are connected (directly or not) at time t + t and were
separated by a distance smaller than d at t. We explicitly include
t in the functions to stress the life time dependence and calculate
h•†(r1,2; d, t) as

h•†(r1,2; d, t) =
∫ gStill

(
r′

1,2, d
)

g
(

r′
1,2

) G (r1,2, r′
12; t) dr′

1,2 (22)

It is worth noting that, according to the definition of h•†(r1,2; t), in
the initial time t the particles can be connected or not, but they must

be in relative position r1,2, whereas at the final time t + t they must
be connected whatever the relative position is.

For completeness we remember that we can calculate gStill(r1,2; d)
in the Perscus-Yevick approximation as solution of the connectivity
OZ relation [26,59]

gStill(r1,2; d) = cStill(r1,2; d) + q

∫
cStill(r1,3; d)gStill(r3,2; d)dr3, (23)

with the closures

gStill(r1,2; d) = gPY (r1,2) for r1,2 ≤ d, (24)

where gPY(r1,2) is the ordinary (or thermic) pair correlation as
obtained in the Percus-Yevick approximation [59] and [26]:

cStill(r1,2; d) = (1 − exp [bV(r12)]) gStill(r1,2; d) for r1,2 > d. (25)

Once the direct bond is defined, a connectivity Ornstein-Zernike
relation between the pair correlation function gPhys,W(r1,2; t) and the
direct correlation function for weak physical clusters cPhys,W(r1,2; t)
can be obtained, in a similar way as for gStill(r1,2; d) and cStill(r1,2; d),
in the form:

gPhys;W (r12; d, t) =cPhys,W (r1,2; d, t)

+ q

∫
cPhys,W (r1,3; d, t)gPhys,W (r3,2; d, t)dr3. (26)

The function gPhys,W(r1,2; t) is proportional to the probability density
of finding two particles in positions r1 and r2 and belonging to the
same weak physical cluster.

To transform the OZ relation (26) into an integral equation a
closure is needed. We see that

gPhys,W (r1,2; d, t) = h•†(r1,2; d, t) for r1,2 ≤ d, (27)
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because the conditional probability density that two particles belong
to the same weak physical cluster, under the assumption that they
are connected at time t + t, is equal to one if they were at a distance
smaller than d at time t. For r1,2 > d we use the Percus-Yevick
connectivity closure:

cPhys,W (r1,2; d, t) = (1 − exp [bV(r12)])

× gPhys,W (r1,2; d, t) for r1,2 > d. (28)

A second approximation for gPhys,W(r1,2; d, t) that we propose is
based in the connectedness function h††

W (r12, r′
12; d, t), that accounts

for the joint probability density that two particles which are initially
connected at a relative position r12 will be also connected at a
relative position r′

12 at a time t later. It can be approximated as

h††
W (r12, r′

12; d, t) ≈
[

gStill(r1,2, d)
g(r1,2)

]
× G(r12, r′

12; t)

⎡
⎣gStill

(
r′

1,2, d
)

g
(

r′
1,2

)
⎤
⎦

c

,

(29)

where

c =
(t/t0)

2

1 + (t/t0)
2

(30)

is a switching function. For t = 0 Eq. (30) yields
c = 0 and we obtain the exact value h††

W (r12, r′
12; d, t =

0) = gStill(r1,2; d)d
(
r12 − r′

12

)
(see Eq. (2)), whereas for

very large t we have c = 1 and h††
W

(
r12, r′

12; d, t
)

=

[gStill(r1,2, d)/g(r1,2)] G
(
r12, r′

12; t) [gStill

(
r′

1,2, d
)
/g
(

r′
1,2

)]
. This last

expression is also correct since the connectivity status of two
particles at instants separated by a time interval t are, for large
enough t, independent events. The constant t0 in Eq. (30) denotes
the critical time around which the transition from coincident (c = 0)
to completely independent (c = 1) events occurs. A lower bound for
t0 is d/〈|v2 − v1|〉 with d the connectivity distance and 〈|v2 − v1|〉 the
mean relative velocity between pairs of particles.

The cluster pair correlation for weak physical cluster is thus given
by

gPhys,W (r1,2; d, t) =
∫

h††
W (r12, r′

12; d, t) dr′
12 (31)

With gPhys,W(r1,2; d, t) calculated by any of both approximations
we obtain the mean cluster size in the form

S(q) = 1 + 4pq
∫ ∞

0
gPhys,W (r1,2; d, t)r2

12dr12 (32)

3.2. Molecular dynamics

To analyze the approximations that we have introduced in
our theoretical approach, we have calculated the pair correlation
function for physical clusters defined in the weak sense from molec-
ular dynamics trajectories obtained as described in the previous
Section. The simulation algorithm to identify the weak physical
clusters is slightly different from that considered for the strong
criterion (see Subsection 4.2). It is carried out as follows [44]:

1) Identify a Stillinger cluster at t − t.
2) Move the particles of this cluster to the new positions in t.

3) Identify the Stillinger clusters in the new configuration for the
particles selected in 1.
These clusters are the physical ones in the weak sense.

4) Repeat from 1 until cover all initial Stillinger clusters.

3.3. Results

In Fig. 2 we consider the curves we obtain for gPhys,W(r1,2; d, t)
in the Percus-Yevick approximation defined by Eqs. (26)–(28) with
h•†(r1,2; d, t) given by Eq. (22) where we use for gStill(r1,2, d) that
obtained of solving the Percus-Yevick integral equation (formulas
(23), (24) and (25)) whereas that G

(
r1,2, r′

12; t) is treated in
the CAA discussed in the previous section. The system density
and temperature, as well as the particle mass and the potential
parameters are the same ones considered in Subsection 2.2. The
two parameters that characterize the clusters are the connectivity
distance d and residence time t. We take, in reduced units, d∗ =
d/s = 1.325 and t∗ = ts−1

√
e/m = 0, 0.047, 0.094, 0.47. The panel

a is devoted to the cluster pair correlation function for the Stillinger
criterion (t = 0). For completeness we also show the correspond-
ing ordinary (thermal) pair correlation function calculated in the PY
approximation too. In all the cases, to solve the involved integral
equations we have used the hybrid method of Labík and collabora-
tors [60]. The overestimation of PY connectedness correlations with
respect to MD ’ s was already observed for extended hard spheres
by DeSimone et al. [33] and is a point to take into account in the
comparison of the MD results with ours. The dependence of the PY
gPhys,W(r1,2; d, t) with G

(
r1,2, r′

12; t) specially for r1,2 ≤ d (see Eqs.
(27), (22)) and the differences observed between the G

(
r1,2, r′

12; t)
calculated using MD and using the CAA expression for times not short
enough (Fig. 1), manifest into a correspondent difference between PY
and MD curves at t∗ = 0.47 (panel d).

The curves for gPhys,W(r1,2; d, t) calculated using the approxi-
mation given by Eqs. (29)–(31) are displayed in Fig. 3 together
with the corresponding ones obtained from the MD trajectories. In
Eq. (30) we take for t0 = d

√
m/6kBT in reduced units t∗

0 = 0.46.
We observe that for the shortest time gPhys,W(r1,2; d, t) and gStill(r1,2, d)
practically fix together. This fact is observed for the MD as well as
for the theoretic curves (remember the above-mentioned difference
between MD and PY Stillinger connectedness correlations). For larger
times the two curves start to separate, the curve for the weak clusters
taking smaller values as it should be. For even larger times the
approximation is not more valid.

4. Physical clusters: strong criterion

The strong criterion for the physical clusters reads:
A set of particles form a physical cluster (of connectivity distance d

and residence time t) at the instant t if all they remained connected
during the whole time interval [t, t + t].

Here the term “connected” must be also understood in the Hill-
Stillinger sense with connectivity distance d, i.e. two particles are
connected if between them there exists a path of directly connected
particles. Two particles being directly connected if they are at a
distance smaller than d.

The previous definition is incomplete. It must be accompanied
by the additional condition that those particles of the system which
do not belong to a given cluster cannot contribute to the connectiv-
ity of that cluster. Actually, the best way of stating the criterion is
operationally. In this vein it is convenient to introduce the concept
of fragmentation event. A fragmentation event occurs when a cluster
breaks up into two or more connected sub-aggregates.

Suppose we identify the system (“instantaneous”) Stillinger
clusters at t. Select one of these clusters. As the system evolves from
t to t + t, the particles in it will connect and disconnect themselves
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Fig. 2. Clusters pair correlation functions for physical clusters in the weak version gPhys;W(r; d, t) calculated in the Percus-Yevick aproximation and from MD simulations. For
t = 0 (panel a) the physical clusters reduces to the Stillinger clusters.

several times. If we watch just those particles which have belonged
to the initially selected Stillinger cluster and consider the successive
fragmentation events then, after the period [t, t+t], the particles will
be in several sub-aggregates. Each sub-aggregate forms a physical
cluster.

4.1. Theory

We will calculate the function h†∼† (r12, r′
12; d, t

)
which accounts

for the joint probability density that two particles which are ini-
tially connected at a relative position r12 will be also connected at

a

b

Fig. 3. Clusters pair correlation functions for physical clusters in the weak version
gPhys;W(r; d, t) calculated using the approximation given by Eqs. (29)–(31) and from
MD simulations.

a relative position r′
12 at a time t later, being connected during the

whole time interval. It is clear that, for very small t, is

h†∼† (r12, r′
12; d, t) ≈

tvery small
h††

W (r12, r′
12; d, t) , (33)

where the connectedness function for weak clusters h††
W

(
r12, r′

12; d, t
)

was defined in Subsection 3.1 (see Eq. (29)).
It is convenient to redefine the parameter associated with time:

t̂ = t2, t̂ = t2 and to introduce hated functions such that

f̂
(

r12, r′
12; d, t̂ = t2

)
= f (r12, r′

12; d, t) . (34)

So, from Eq. (15) we have:

Ĝ
(

r12, r′
12; t̂

)
= e−bV(r12)

(
mb

4pt̂

)3/2

× exp

{
−bm

4t̂

[
r′

12 − r12 +
2
m

∇r12 V (r12) t̂
]2
}

. (35)

Now break up the interval
[
0, t̂

]
into n (→∞) divisions of length

4 = t̂/n. Taking into account Eqs. (33), (29) and (30) we have

ĥ†∼† (r12, r′
12; d, 4) ≈ ĥ††

W (r12, r′
12; d, 4) ≈

[
gStill(r1,2, d)

g(r1,2)

]
ĥ∼† (r12, r′

12; d, 4) ,

(36)

with

ĥ∼† (r12, r′
12; d, 4) ≈ Ĝ (r12, r′

12; 4)
⎡
⎣gStill

(
r′

1,2, d
)

g
(

r′
1,2

)
⎤
⎦

4/t2
0

(37)
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where we consider that, for small t, Eq. (30) gives c ≈ (t/t0)2. Taking
into account that for 4 very small is

⎡
⎣gStill

(
r′

1,2, d
)

g
(

r′
1,2

)
⎤
⎦

4/t2
0

≈ exp

⎡
⎣−

gStill

(
r′

1,2, d
)

g
(

r′
1,2

) 4

t2
0

⎤
⎦

we have

ĥ∼† (r12, r′
12; d, 4) ≈ Ĝ (r12, r′

12; 4) × exp

⎡
⎣−

gStill

(
r′

1,2, d
)

g
(

r′
1,2

) 4

t2
0

⎤
⎦ . (38)

The composition property for propagators allows to write

ĥ∼† (r, r′; d, n4 = t̂
)

=
∫ ∫

· · ·
∫

ĥ∼†(r, r1; d, 4)ĥ∼† (r1, r2; d, 4) · · · ĥ∼† (rn−1, r′; d, 4)

dr1dr2 · · · drn−1 (39)

where we define ra−1 = ra,a+1(a = 2, · · · , n) and r = r0 = r12, r′ =
rn = r′

12. In the limit 4 → 0, this equation can be written symbolically
as a path integral:

ĥ∼†(r, r′; d, t̂) =
∫

V
[
r
(
t̂′)]D [r (t̂′)] (40)

with

V
[
r
(
t̂′)] = lim

4→∞
n4=t̂′

ĥ∼†(r, r1; d, 4)ĥ∼†(r1, r2; d, 4) · · · ĥ∼† (rn−1, r′; d, 4)

(41)

and

D
[
r
(
t̂′)] = lim

n→∞ dr1dr2 · · · drn−1. (42)

From Eqs. (35) and (38) we can write V
[
r
(
t̂′)] in the form

V
[
r
(
t̂′)] = exp

{
−b

∫ t̂

0

(
m
4
[
r
(
t̂′)]2 + W0

[
r
(
t̂′)]+ W

[
r
(
t̂′)])dt̂′

}

(43)

where W0
[
r
(
t̂′)] is such that

Ĝ
(
r12, r′

12; t̂) =
∫

V0
[
r
(
t̂′)]D [r (t̂′)] (44)

with

V0
[
r
(
t̂′)] = exp

{
−b

∫ t̂

0

(
m
4
[
r
(
t̂′)]2 + W0

[
r
(
t̂′)]) dt̂′

}
(45)

and W
[
r
(
t̂′)] is given by

W
(
r′

1,2
)

=
1

t2
0b

gStill

(
r′

1,2, d
)

g
(

r′
1,2

) , (46)

where t0 = d/〈|v2 −v1|〉. We observe that W
(

r′
1,2

)
is “globally” more

small (<1) when the region in which gStill(r, d) �= g(r) is larger, say

for d small (see Eq. (24) and Fig. 2). According to Eq. (37), we have
(W = 0)

ĥ∼† (r, r′; d, t̂
)

= ĥ∼†
0

(
r, r′; t̂) = Ĝ

(
r, r′; t̂) . (47)

Therefore we are in position to solve the path integral (Eqs. (40),
(42) and (43)) by perturbation expansion. To second order in the
perturbation W we have:

ĥ∼† (r, r′; d, t̂
)

= ĥ∼†
0

(
r, r′; t̂)

− b

t̂∫
0

dt̂′
∫

dsĥ∼†
0

(
r, s; t̂ − t̂′)W(s; d)ĥ∼†

0

(
s, r′; t̂′)

+ b

t̂∫
0

dt̂′
t̂′∫
0

dt̂′′
∫

ds
∫

ds′ĥ∼†
0

(
r, s; t̂ − t̂′)W(s; d)

× ĥ∼†
0

(
s, s′; t̂′ − t̂′′)W(s′; d)ĥ∼†

0

(
s′, r′; t̂′′)+ · · · (48)

The function h†∼† (r12, r′
12; d, t

)
is then calculated

h†∼† (r12, r′
12; d, t) =

[
gStill(r1,2, d)

g(r1,2)

]
× ĥ∼†

(
r12, r′

12; d, t̂ = t2
)

, (49)

and the cluster pair correlation function gPhys(r1,2; d, t) is given by

gPhys(r1,2; d, t) =
∫

h†∼† (r12, r′
12; d, t) dr′

12, (50)

from where the mean cluster size is obtained:

S(q) = 1 + 4pq
∫ ∞

0
gPhys(r1,2; d, t)r2

12dr12. (51)

It should be remarked that, although they were deduced starting
from the expression of G

(
r12, r′

12; t
)

in the CAA which works well just
for short times, the previous path-integral formulas are valid for any
time if an adequate form of G

(
r12, r′

12; t
)

is considered.

4.2. Molecular dynamics

Next we reproduce the algorithm to identify the physical clusters
in the strong sense [44] from the MD trajectories obtained as
indicated in Subsection 2.2.

1) All initial conditions are set for the MD (t = t0).
2) Stillinger clusters are tabulated by standard routines [56]. The

positions of the particles at t = t0 are used in that operation.
3) The MD is carried out one time step (t1 = t0 +Dt). The clusters

obtained at step 2 are updated deleting those particles that do
not belong to them.

4) If t1 − t0 < t go back to step 3, else go to step 5.
5) Save the interesting information. The cluster table contains all

the set of particles which met the physical cluster definition
introduced in the beginning of Section 4.

6) Initial conditions are set from the last configuration and go
back to step 2.

Steps 1 to 6 are the loop to identify the physical clusters for the
final configuration at time t = t1.

In step 3 a clustering count must be done separately over each
initial cluster identified in 2.In this way the connections formed
between different clusters in the time interval [t0, t1] are not included
in the count.

Please cite this article as: F. Vericat et al., Clustering and percolation theory for continuum systems: Clusters with nonspecific bonds and a
residence time in their definition, Journal of Molecular Liquids (2017), https://doi.org/10.1016/j.molliq.2017.11.046

https://doi.org/10.1016/j.molliq.2017.11.046


F. Vericat et al. / Journal of Molecular Liquids xxx (2017) xxx–xxx 9

ARTICLE IN PRESS

4.3. Results

Fig. 4 shows the cluster pair correlation function for the strong
version of the physical clusters gPhys(r1,2; d, t) given by Eq. (50) with
h†∼† (r12, r′

12; d, t
)

calculated from the two first terms of Eq. (48)
for residence times (in reduced units) t∗ = 0.047 and 0.141. The
corresponding curves obtained from MD trajectories following the
recipe of the previous subsection are also displayed for comparison
as well as the PY and MD curves for Stillinger clusters. We note that
when the integration in Eq. (50) is performed the reference term in
Eq. (48) gives, according to Eqs. (49), (47) and (3), just gStill(r1,2, d).
The second term perturbs it lowering its value along the whole range
of r1,2. For the shortest time considered (t = 0.047) both curves
gPhys(r1,2; d, t) and gStill(r1,2, d) practically fix together. For t∗ = 0.141
(panel b) the curves start to differ, the difference being more notable
at distances r1,2 < d. However for times even larger the curves
obtained for gPhys(r1,2; d, t) become unphysical. For example, for t∗ =
0.47 the curve we obtained takes negative values at some points. We
believe that the main reason for this behavior is that the CAA is not a
good approximation at that times (see Fig. 1d). We need expressions
for G

(
r12, r′

12; t
)

that be valid at larger times. Unfortunately there
is no such an analytical expression available at the moment. So, to
roughly check our path integral formula, we improvise an expres-
sion for it such that, at t∗ = 0.47, the resulting curve of g2(r12, t)
compares with MD ’ s better than that shown in Fig. 1d. The proposed
expression is a simple modification of CAA Eq. (15):

G (r12, r′
12; t) = g (r12)

(
mb

c04pt2

)3/2

× exp

{
− bm

c04t2

[
r′

12 − r12

+

[nmax∑
n=1

cn

(
t2

ms

dV (r12)

dr12

)n]
r12

r12

]2
⎫⎬
⎭ , (52)

where cn (n = 0, 1, · · · , nmax) are parameters to be determined. We
remark that the conditions given by Eqs. (2) and (3) follow being
verified. Also we note that for c0 = 1, c1 = 2 and c2 = c3 =
· · · = cmax = 0 the CAA is recovered. By trial and error we find
coefficients cn that give a g2(r12, t) that improves that of Fig. 1d. In
Fig. 5a we show the curve obtained for c0 = 0.5, c1 = 0.05 and

a

b

Fig. 4. Clusters pair correlation functions for physical clusters in the strong version
gPhys(r; d, t) calculated using up to the first order in the perturbation formula (Eq. (48))
with G

(
r12, r′

12; t
)

given in the CAA and from MD simulations.

a

b

Fig. 5. Modified CAA for t∗ = 0.47. Panel a: function g2(r12, t) (see Subsection
2.3). Panel b: clusters pair correlation function for physical clusters in the strong
version gPhys(r; d, t) calculated using up to the first order in the perturbation expansion
(Eq. (48)) with G

(
r12, r′

12; t
)

given by the modified CAA (Eq. (52)) and from MD
simulations.

c2 = c3 = · · · = cmax = 0. It should be pointed out that our search
for these parameters was not exhaustive nor systematic.

The curve for gPhys(r1,2; d, t) given by the two first terms in
the perturbation expansion of the path integral when we use this
expression for G

(
r12, r′

12; t
)

is shown in Fig. 5b. We observe the
notable lowering of it with respect to the curve for Stillinger clusters.
When analyzing this curve we may not forget that we are ignoring
higher terms in the perturbation expansion as well as the rather
approximate character of the expression given by Eq. (52) and the
deficiencies already mentioned about gStill−PY(r1,2, d).

5. Conclusions

In this article we have developed a theory for the physical clusters
previously introduced in our group. The main ingredients in the
theory are the functions G

(
r12, r′

12; t
)

, gStill(r1,2, d) and the approx-
imation given by Eqs. (29), (30) for the connectedness function
for physical clusters in the weak sense

(
h††

W

(
r12, r′

12; d, t
))

at short
times. Although the available expressions for these functions behave
reasonably well at short times at larger times they start to fail. On
the other hand, our expression for gPhys(r1,2; d, t) (Eqs. (50), (49) and
(48)) is of real usefulness just at these larger times, since for the
shorter ones the clusters pair correlations for the strong and also for
the weak versions of the physical clusters do differ little of gStill(r1,2, d)
as the MD simulations show. At this respect the main conclusion
is that an expression for G

(
r12, r′

12; t
)

which has been adequate for
larger values of t is essential. In this vein, some possible ways to
improve the results include: i) To make a more rigorous fitting of
the parameters in Eq. (52) against simulations data; ii) To look for
a better G

(
r12, r′

12; t
)

from physical grounds. One way is to extend
the deduction of Subsection 2.1 to larger times by considering higher
terms in the action expansion (Eq. (9)). Another way is to consider
G
(
r12, r′

12; t
)

as solution of adequate diffusion like equations; iii)
Search for better approximations of gStill(r1,2, d); iv) Study of higher
terms in the perturbation expansion of gPhys(r1,2; d, t); v) To take
for G

(
r12, r′

12; t
)

and gStill(r1,2, d) directly those calculated from MD
simulations; etc. But this is a matter of future work.
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