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Nowadays, soft tissue restoration techniques are mainly focused on volume regeneration instead of function re-
covering. So far, autologous fat transplant has been the most popular method although its multiple reported
problems like volume and function loss. Adipose tissue engineering therefore emerges as a solution for develop-
ment of biological substitutes for soft tissuewhich promotes not only volume regeneration but also function res-
toration with minimal consequences. Here we tested fibrous-structured atelocollagen (FSA) scaffolds and
honeycombatelocollagen (HCA) scaffolds for their ability to induce adipogenesis in vivo. Implantswere subjected
to histological and immunohistochemical assessment after 1, 2, and 4weeks of implantation. Our studies showed
that FSA scaffolds induced in vivo a markedly adipogenic response, whereas an acute inflammatory process was
observed at HCA scaffolds without tissue regeneration detected within them. Our histological findings
concerning FSA scaffolds clearly showed the presence of adipose-like tissue surprisingly composed by a mixture
of brown-like and white-like adipocytes at week 2 whereas only white-like adipocytes at week 4. Subsequent
positive Pax7 immunostaining at weeks 1 and 2 suggested the existence of a common myogenic progenitor
shared by brown-like andwhite-like adipocytes observed. Then, in this workwe present FSA scaffolds as a prom-
ising structure for brown and white adipose tissue engineering.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Contour defects caused by tumor resection, trauma or congenital ab-
normalities have represented an interesting challenge for health sci-
ences. Until recently, restoration strategies of natural tissue were not
often the primary goal in reconstruction; rather, restoration of soft tis-
sue aesthetic function was targeted in order to minimize anxiety and
negative psychological feelings associated with disfigurement [1,2].

Autologous fat tissue has been so far the most used repairing mate-
rial for soft tissue defects. Although its use is logical in its approach, this
method has not been consistently successful in patients. When autolo-
gous fat tissue is transplanted from one location to the defect site, the
common occurrence is significant resorption of transplanted tissue
over time, resulting in 40–60% of graft volume loss [3–5]. Then, only
small defects can be corrected with this repairing material, and even
these limited applications require repeated procedures to maintain
the desired volume [3]. Adipose Tissue Engineering (ATE) therefore
emerged like a promising technique for development of biological
).
substitutes which promote not only volume regeneration but also func-
tion restoration of soft tissues with minimal rejection.

Tissue regeneration by ATE is achieved not only by controlling cell
sources and biochemical environment but also through suitable scaf-
folds, which are required for support, migration and proliferation of
anchorage-dependent adipocytes and preadipocytes [2]. Scaffolds for
ATE may be either synthetic or natural, regarding the biomaterial cho-
sen for their construction. Up to date, synthetic scaffolds based on e.g.
polylactic acid, hydrogels and poly(lactic-co-glycolic acid) have been
used successfully in ATE [6–8]. Nevertheless, they have some disadvan-
tages such as lack of mechanical integrity and stiffness mismatch com-
pared to native tissue, lack of biodegradability or generation of acidic
microenvironments upon degradation with eventual inflammatory re-
actions and implant rejection [9–11]. Therefore, biocompatibility and
biomimeticity hold by natural scaffolds become a main advantage
over aforementioned synthetic structures. Several natural biomaterials
like e.g. fibrin, gelatin, hyaluronan and matrigel have been studied for
such purpose [12–14]. However, collagen remains as the most widely
used scaffold natural material for ATE given its ability to support adipo-
genesis from several cell sources [15–18]. An alternative collagen-based
biomaterial with extremely low antigenicity is produced by telopeptide
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removal from natural collagen molecule and it is known as
atelocollagen which has been used mainly for e.g. cartilage restoration,
bone and connective tissue engineering [19–21]. Nevertheless, prelimi-
nary works of this group showed that atelocollagen scaffolds also en-
hanced bone and adipose tissue formation [22,23]. Therefore, in this
study we investigate and systematically evaluate in vivo adipogenic in-
duction ability of fibrous-structured atelocollagen (FSA) scaffolds and
honeycombatelocollagen (HCA) scaffolds as afirst approach concerning
adipose tissue restoration.

2. Materials and methods

2.1. Animals

Twelve 4-week-old male severe combined immunodeficient (SCID)
mice were used in this study in accordance with the Guidelines for
Animal Experiments at Graduate School of Medicine and Dentistry
Okayama University, Japanese Government Animal Protection and
Management Law (No. 105) and Japanese Government Notification on
Feeding and Safekeeping of Animals (No. 6).

2.2. Intramuscular implantation and explantation

FSA and HCA scaffolds (Fig. 1) of 3 × 3 × 2 mm3 were used for this
work (Koken, Japan). SCID mice were subjected to intramuscular anes-
thesia with Ketamine (Fuji Chemical Industry, Japan) and Dormitol
(Meiji Seika, Japan). The skin of the legs was shaved and disinfected
with 70% alcohol and iodine. Subsequently, the scaffolds were im-
planted into intramuscular pockets made by blunt dissection between
tibialis anterior and soleus muscles. The animals were sacrificed with
an overdose of ether at 1, 2, and 4 weeks after implantation. For hema-
toxylin–eosin (H&E) staining, specimens and surrounding tissues were
removed, fixed by 4% paraformaldehyde. Then, the samples were em-
bedded in paraffin, sectioned at 4 μm in thickness and finally stained.

2.3. Adipose tissue staining by Oil Red O

To assess adipogenic differentiation, lipid deposits were visualized
through Oil Red O staining. Briefly, frozen sections were prepared by
embedding implants in Tissue Tek (Sakura Finetek, USA) followed by
specimen freezing in liquid nitrogen bath and trimming. Then, they
were dried with warm air and embedded in 60% propanol for 2 min.
Subsequently, sections were stained with 0.3% Oil Red O solution at
37 °C for 7 min, provided by Kayayama Chemical (Japan). The dye was
washed out with 60% propanol for 2 min. Thereafter, sections
were rinsed in distilled water, stained with Mayer's hematoxylin and
mounted with Aqueous Mounting Medium.
Fig. 1. SEM micrograph showing the (A) fibrillar microstructure of FS
2.4. Transmission Electron Microscopy (TEM)

TEM of implanted samples was performed by negative staining.
Specimens and surrounding tissues were pre-fixed with 2.5% glutaral-
dehyde and 2% paraformaldehyde solution, post fixed with 1% osmium
tetroxide dehydrated with a series of alcohols and infiltratedwith resin.
The resin sample blockwas trimmed, thin-sectioned thickness of 70nm,
and collected on formyar-coated copper grids. Before examining under
the TEM, these grids were stained by uranyl acetate and lead citrate,
followed by blottingwith a filter paper and air drying. Sampleswere ex-
amined with Philips CM10 at 200 kV.

2.5. Immunohistochemical staining of CD34 and Pax7

The sections were immunostained with monoclonal antibodies
against CD34 (abcam, UK) and Pax7 (Santa Cruz Biotechnology,
USA) using Vectastain ABC Rat Kit method (Adivin-Biotin-peroxi-
dase Complex, USA). Themain steps were as follows: (1) inactivation
of endogenous peroxidase with hydrogen peroxide in methanol for
30 min; (2) the activation of antigenicity was done with microwave
treatment before blocking nonspecific protein binding with rabbit
normal serum and horse normal serum, respectively, for 10 min at
room temperature; (3) incubation with the primary antibody at
4 °C overnight. The optimal dilutions of each primary were (CD34)
1:100 and (Pax7) 1:200; (4) incubation with anti-rat IgG (1:200)
and anti-mouse IgG (1:200), respectively, for 30 min; (5) incubation
with ABC at a dilution of 1:50 for 30min; and (6) treatment with DAB
color development and counterstaining with Mayer's hematoxylin.

3. Results

3.1. Histological examination

In Vivo response to FSA and HCA scaffolds at weeks 1, 2 and 4 was
initially studied through H&E staining. As it is observed in Fig. 2, low
or no inflammatory reaction was noticed at FSA scaffold periphery and
bulk. At week 1, spindle cells attached to FSA scaffold fibers were
stained whereas at week 2 numerous rounded cells were colored.
Some of them contained multiple cytoplasmic lipid droplets surround-
ing the nucleus, as it was confirmed by Oil Red O assay (Fig. 3). Striking-
ly, H&E assay revealed at week 4 the absence of such cells as well as the
presence of white-like adipose tissue, composed by white-like adipo-
cytes with single large cytoplasmic lipid droplets and flattened stained
nucleus located on the cell periphery. Similar responses were observed
at all FSA specimens.

Oppositely, no tissue regeneration at HCA specimens in addition to
an acute inflammatory response at weeks 2 and 4 was observed
(Fig. 4). Giant bodies stained at week 4 might indicate scaffold
A scaffolds; and (B) honeycomb-like structure of HCA scaffolds.



Fig. 2. Histological examination of implant specimens of FSA scaffolds at different weeks
(Hematoxylin & Eosin staining). (A and B) Week 1: Note the presence of stained spindle
cells attached to scaffold fibers. A weak inflammatory reaction is only seen at scaffold
boundaries. (C and D) Week 2: Black narrows indicate brown-like adipocytes within the
scaffold, with multiple cytoplasmic lipid droplets. Note the presence of some small
spherical cells close to scaffold fibers. No inflammatory reaction is observed. (E and
F) Week 4: Multiple white-like adipocytes within scaffold bulk are observed, with large
cytoplasmic lipid droplets. Bars at the top of micrographs show respective magnifications.

Fig. 4. Histological examination of implant specimens of HCA scaffolds at different weeks
(Hematoxylin & Eosin staining). (A and B) Week 1: A markedly inflammatory reaction is
observed mainly at scaffold periphery. Few spindle-like cells are only stained at scaffold
borders. (C and D) Week 2: An acute inflammatory response at the periphery is
observed. Some inflammatory cells are stained within scaffold bulk. (E and F) Week 4:
Generalized inflammatory response is observed at the periphery as well as at scaffold
bulk. Black arrows indicate giant bodies within scaffold bulk. Bars at the top of
micrographs show respective magnifications.
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degradation though cell phagocytosis. HCA scaffolds were negative
stained for Oil Red O (data not shown).

3.2. TEM

Further analysis of cell features at week 2 in FSA specimenswas per-
formed by TEM. Surprisingly, sample exploration revealed two cell phe-
notypes at week 2: (1) brown-like adipocytes containing small
cytoplasmic lipid droplets and numerous mitochondrias with abundant
cristae (Fig. 5A); and (2) white-like adipocytes, with a single large cyto-
plasmic lipid droplet, fewmitochondrias and a flattened nucleus located
at cell periphery (Fig. 5B).
Fig. 3. Oil Red O staining of FSA scaffolds at week 2. (A and B) Multiple cytoplasmic lipid
droplets within the cells are stained, as it is clearly shown at the zoomed micrograph.
3.3. Immunohistochemical examination

Immunohistochemical analysis was necessary in order to better un-
derstand former findings in FSA scaffolds. As shown in Fig. 6, Pax7 im-
munostaining revealed that such protein was expressed by spindle
cells and brown-like adipocytes observed in FSA specimens at weeks 1
and 2 respectively. However, Pax7 assaywas negative for white-like ad-
ipocytes in FSA scaffolds at week 4. HCA specimens, as it is shown in Fig.
6, were negative stained for Pax7 at weeks 1, 2 and 4.

Regarding CD34 immunoassay performed on FSA specimens, many
endothelial cells in developing vessels at scaffold peripherywere clearly
positive with CD34 immunostaining at weeks 1, 2 and 4 according to
Fig. 7. Contrastingly, angiogenesis processes were not observed within
scaffolds bulk as the negative reaction for CD34 assay indicated. HCA
specimens showed vessel development at scaffold periphery at weeks
1 and 2 as well. However, in contrast with FSA specimens, new vessels
within HCA scaffold bulks were positive stained for CD34 at week 4, as
it is shown in Fig. 7F.
4. Discussion

The major findings of the present study suggest, for the first time,
that FSA scaffolds without pre-seeded cells successfully induce adipo-
genesis at intramuscular in vivo environment. Compared against HCA
scaffolds, fibrous microstructure of FSA scaffolds definitively aroused
as a key factor for adipogenic response development. H&E staining as
wells as Oil Red O assay proved the existence of adipose-like tissue
within FSA scaffold bulk. Strikingly, TEM micrographs revealed differ-
ences at the tissue cell composition between week 2 and 4, with a mix-
ture of brown-like andwhite-like adipocytes atweek 2whereas atweek
4 a clear predominance of white-like adipocytes. Latter observations in



Fig. 5. TEM micrographs of cells observed within FSA scaffolds bulk at week 2. (A) Brown-like adipocyte containing numerous mitochondrias with abundant cristae and few and small
cytoplasmic lipid droplets. (B) Early white-like adipocyte, with a large cytoplasmic lipid droplet surrounded by medium-size lipid droplets merging between each other. Observe the
flattened nucleus close to the cell periphery.
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addition to the positive Pax7 immunostaining of cells within FSA scaf-
folds at week 1 and 2 suggest a common myogenic progenitor shared
by brown-like and white-like adipocytes.

For many years it was considered that Pax7 expression was restrict-
ed to myogenic cells and their muscular progeny given that it is a key
protein for their survival and expansion [24–26]. However, Lepper
et al. demonstrated that Pax7 is not exclusively expressed by these
cells but also transiently by brown adipocytes during their early stages
[27]. Subsequently, it was accepted a model arguing that brown adipo-
cytes could be delineated from white adipocytes by their ancestral ex-
pression of myogenic proteins (e.g. Pax7, Myf5). Such theory was valid
until the findings of Sánchez-Guraches et al., which clearly proved the
existence of subsets of white adipocytes originated by myogenic line-
ages similar to those responsible for brown adipocytes proliferation
[28,29]. Therefore, our results certainly support such approach regard-
ing white and brown adipocytes commonmyogenic ancestors and sug-
gest a migration of myosatellite cells from muscles surrounding the
Fig. 6. Immunostaining for Pax7 of FSA scaffolds andHCA scaffolds at (A and B)week 1, (C
andD)week 2 and (E and F)week 4. At FSA scaffolds note that spindle cells atweek 1 and
brown-like adipocytes at week 2 are positive stained for Pax7, whereas at week 4 all
specimens were negative stained for such protein. HCA scaffolds were negative stained
for Pax7 at all weeks.
implants which subsequently gave rise to the observed adipocyte-like
cells.

Regarding the observed cell composition differences, the apparently
prevalence of white adipose tissue over brown at week 4 might have
been induced by the lack of vascularization within FSA scaffolds bulk.
It is known that white adipocytes grow up in hypoxic environments
with low irrigation [30]. Furthermore, the enlarged they are the less ir-
rigated they become [31]. In contrast, brown adipose tissue is highly
vascularized containing many small capillaries which individually sur-
round brown adipocytes so that to deliver anti-apoptotic molecules
(e.g. norepinephrine), adequate amounts of oxygen and lipids necessary
for heat production. Moreover, the delivery to the organism of the heat
produced by brown adipocytes is equally dependent on the heated
blood leaving the tissue [32,33]. Therefore, the lack of angiogenesis at
scaffold bulk, shown by CD34 immunostaining, could have induced
the enlarging of white-like adipocytes as well as apoptosis of brown-
like adipocytes observed at week 2.
Fig. 7. Immunostaining for CD34 of FSA and HCA scaffolds at (A and B)week 1, (C and D)
week 2 and (E and F)week 4. Positive staining exclusively at theperiphery of FSA scaffolds
and weeks 1, 2 and 4. Note the low vessel development within FSA scaffold bulk,
considering the weak immunostaining inside the structures. HCA scaffolds show vessel
development within scaffold bulk at week 4.
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Positive adipogenic reaction at FSA scaffolds compared against neg-
ative adipogenic response for HCA scaffolds in addition to the acute in-
flammatory process observed clearly suggested that fibril organization
of atelocollagen induced myosatellite-like cell migration followed
by adipose tissue regeneration. Some authors demonstrated that
myosatellite cells migration might be induced either by tissue injuring
or by new fibrous tissue development [34,35]. However, as at HCA scaf-
folds there were no spindle-like cells observed in addition to negative
Pax7 immunostaining, myosatellite-like cells migration induced by in-
jured tissue could be discarded as hypothesis. Hence, fibril organization
of FSA scaffolds arises as apparent cause of cell migration from sur-
rounding muscles. Additionally, fibril organization might have induced
myosatellite-like cells differentiation into adipocytes considering sever-
al studies which have shown that when preadipocytes differentiate into
adipocytes, extracellular matrix goes from spiny to fibril organization
[36,37]. Therefore, it can be assumed that fibril organization of FSA scaf-
folds might have induced the attraction of myosatellite-like cells, which
consequently gave rise to generation of adipose tissue [23,24,26,32].

Finally it should be noted that even though SCIDmicewere used as ex-
perimental animals, an acute inflammatory responsewas observed atHCA
scaffolds in contrast to aweak reaction at FSA scaffolds. Such responsewas
also registered after subcutaneous implantation performed by this group
during previous studies [23]. Therefore, this work demonstrates that scaf-
fold structure is also an essential parameterwhich influences inflammato-
ry reaction. However, further assays are necessary in order to
systematically evaluate additional parameters e.g. porosity, mechanical
properties and fibers diameter capable to modify inflammatory response.

5. Conclusion

In this study, we evaluated through histological and immunohisto-
chemical techniques FSA and HCA scaffolds. Our results demonstrated
FSA scaffold ability to induce adipogenesis in vivo without pre-seeded
preadipocytes or adipogenic factors. Compared against HCA scaffolds,
it was demonstrated that fibril organization of FSA scaffolds was a key
factor for adipogenic response development. In addition, it was shown
that the primary adipose tissue obtained at FSA scaffolds was composed
by a mixture of brown and white adipocytes which arise from a com-
mon myogenic ancestor. Hence, FSA scaffolds demonstrated to be a
promising structure for adipose tissue engineering.
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