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Abstract
We show that a spacetime satisfying the linearized vacuum Einstein equations
around a type-D background is generically of type I, and that the splittings of
the principal null directions (PNDs) and of the degenerate eigenvalue of the
Weyl tensor are non-analytic functions of the perturbation parameter of the
metric. This provides a gauge-invariant characterization of the effect of the
perturbation on the underlying geometry, without appealing to differential
curvature invariants. This is of particular interest for the Schwarzschild
solution, for which there are no signatures of the even perturbations on the
algebraic curvature invariants. We also show that, unlike the general case, the
unstable even modes of the Schwarzschild naked singularity deform the Weyl
tensor into a type-II one.

Keywords: linear perturbations, black holes, Petrov classification

1. Introduction

Itis a rather intricate problem to understand how the background geometry is affected by
gravitational waves, here meaning solutions hab to the linearized vacuum Einstein’s equation
(LEE) around a vacuum solution gab:

R g h
lim 0,

ab cd cd

0





+
=



⎡⎣ ⎤⎦

or, more explicitly,

h g h h2 0, 1c
c ab a b

cd
cd

c
a b c( ) ( )( )  +  -   =

which is partly due to the gauge issue of linearized gravity, i.e. the fact that, given a solution
hab of (1) and an arbitrary vector field Vc, hab¢ defined by
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h h g£ , 2ab ab V ab ( )¢ = +

is also a solution, although physically equivalent to hab. We are only interested in the
equivalence classes of solutions of (1) under the equivalence relation h h g£ab ab V ab¢ ~ + , and
in functionals of hab that are gauge-invariant, i.e., depend only on the equivalence class of hab.
The linear perturbation Td of a tensor field T that is a functional of the metric transforms as
T T T£Vd d + under the gauge transformation (2), therefore only constant scalar fields and
tensor products of the identity map b

ad are gauge invariants.
A possibility explored in [1] is to parametrize the equivalent classes of metric pertur-

bations in terms of the perturbations of a set of curvature scalar fields that vanish in the
background. In vacuum, there are only four functionally independent algebraic invariants of
the Weyl tensor Cabcd and its dualCabcd* (recall that left and right Hodge duals of Cabcd agree);
these are

Q C C

C C C C

Q C C

C C C C

:

: ,

: ,

: . 3

abcd
abcd

ab
cd

cd
ef

ef
ab

abcd
abcd

ab
cd

cd
ef

ef
ab

1
48
1
96
1
48
1
96

( )

*

*

=

=

=

=

+

+

-

-

For the Schwarzschild black hole onlyQ- andC- vanish in the background, and it is shown in
[1] that Qd - parametrizes the space of odd (also called vector, see, e.g., [2]) metric
perturbations, and that C Qd dµ- - and therefore adds no information. On the other hand,
under even (or scalar [2]) perturbations, every gauge-invariant combination of the perturbed
scalars in (3) vanishes identically. For this reason, the gauge-invariant combination

M r Q r X9 4 3 3( )d d- ++ , which involves the differential invariant X C1 720 a bcde( )( )= 
Ca bcde( ) was added to Qd - in [1] to parametrize the entire set of perturbations using

geometrically meaningful quantities. A natural question to ask is what—if any—are the
effects of the even perturbations on the curvature itself; in other words, do we really need to
look at differential invariants to find a geometric signature of the perturbation? That
contractions of products of the curvature tensor hide vital information in Lorentzian geometry
is not a surprise: pp-waves are an extreme example of non-flat vacuum metrics for which
every scalar made out of Cabcd and arbitrary covariant derivatives of it vanish [3].

The Weyl tensor of a generic metric is of type I in the Petrov classification. This means
that the eigenvalue problem

C X X X X, 4ab
cd

cd ab ab ab1
2

( )[ ]l= =

admits three different solutions with 01 2 3l l l+ + = or, equivalently, that the equation

k C k k k k k0, 0, 5e a bc d f
b c a

a ( )[ ] [ ] = =

admits four solutions spanning four different null lines (called principal null directions or
PNDs). type-D spacetimes, instead, are characterized by the fact that the eigenvalue
equation (4) admits three linearly independent solutions with 1 2

1

2 3l l l= = - , a condition
that turns out to be equivalent to the existence of two so-called double PNDs, that is, two non-
proportional null vectors satisfying an equation stronger than (5):

C k k k k k0, 0. 6abc d e
b c a

a ( )[ ] = =

It should be stressed that equations (5) and (6), being homogeneous, do not define (null)
tangent vectors at a point p of the spacetime (i.e., elements of TpM), but instead
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one-dimensional subspaces through the origin of TpM (this is why we talk of null directions),
that is, points in the projective space P T Mp( ). We may think that type-I (D) spacetimes have
four (two) smooth-valued functions that assign to every p MÎ a point in P T Mp( ). Now
suppose that gab ( ) (ò in an open interval around zero) is a mono-parametric family of
vacuum solutions of type I for 0 ¹ and type D for 0 = . The tensor

h
g g

lim
0

, 7ab
ab ab

0

( ) ( )
( )




=
-



satisfies (1) and the four PNDs of Cabcd ( ) coalesce pairwise into two PNDs as 0  . We
can choose solutions k k k, ,a a a

1 2 3( ) ( ) ( )   and k a
4 ( ) of k C k k k 0e a bc d f

b c( )[ ] [ ] = such that
k k0 01 2( ) ( )= and k k0 03 4( ) ( )= are the two non-proportional solutions of the type-D
equationC k k k0 0abc d e

b c( )[ ] = . Similarly we can label the eigenvalues ,1 2( ) ( ) l l and 3 ( )l
of (5) such that 0 0 01 2

1

2 3( ) ( ) ( )l l l= = - . This suggests using either the splitting of type-D
PNDs in P T Mp( ) into a pair of PNDs or the eigenvalue splitting

82 1( )( ) ( ) ( ) l l -

to measure the distortion of the unperturbed 0 = metric. Note that the sign ambiguity in (8)
comes from the 1 2« freedom in labeling the two eigen-bivectors (4) that degenerate in the

0 = limit. We have found that for 0  , these are appropriate, gauge-invariant estimates of
the distortion of the geometry by a gravitational wave involving only the Weyl tensor.

The reason why we expect these quantities to be non-trivial is that the bulk of vacuum
solutions of Einstein’s equation are type I, while algebraically special solutions comprise a
zero-measure subset . The curve gab ( ) will generically be transverse to  at g 0ab ( ) (as
assumed above); its ‘tangent vector’ hab will stick out of  (more on this in section 4.3).

A speciality index  was introduced in [6] based on the fact that a vacuum spacetime is
algebraically special if and only if C Q2 3=+ +; it was defined as C Q2 3≔ + + and the departure
of this index from unity is regarded as a measure of the ‘degree of non-speciality’ of a metric.
Although useful in numerical evolutions of the full Einstein equation, 1 - vanishes
identically in linear theory, suggesting the—wrong—conclusion that linearly perturbed
algebraically special spacetimes remain special. This error was nicely clarified in [8], by
taking advantage of the fact that a mono-parametric set of vacuum solutions within the Kasner
family, with g 0ab ( ) being type D, can be explicitly constructed. From the results in [8] it is to
be expected that the PND splitting will be a power series in 1 2 . This non-analyticity on ò
comes from the fact that the associated algebraic problem involves radicals that vanish for

0 = [8].
Stationary electro-vacuum black holes have the algebraic symmetries of type D.

Deviations from these metrics represent a number of very important astrophysical processes
and, as argued above, will not be algebraically special. Thus, in the context of black hole
perturbation theory it is important to study whether or not the perturbative techniques capture
these algebraic aspects of the geometry. In numerical applications this question has been
analyzed in [6, 7], and from the analytical side in [8] for the Kasner type-D solutions. In the
present work we focus on the problem of finding expressions for the eigenvalue and PND
splittings of the type-D background under arbitrary linear perturbations.

As an application, we consider the effects of linear perturbations of the Schwarzschild
black hole solution and show that the even or scalar gravitational waves (those that do not
leave a visible trace in the perturbed algebraic curvature invariants) do affect the Weyl tensor
by turning it into type I, and that this effect is accounted for by the proposed gauge invariants
above, and we also show that these invariants mix harmonic modes. As far as we are aware,
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these signatures of the black hole linear perturbation are analyzed in this form for the first
time here.

Kerr black holes and Chandrasekhar algebraically special modes in Schwarzschild naked
singularities are also briefly considered.

2. Petrov types

Although the simplest approach to the Petrov classification is accomplished using spinor
methods, perturbation theory is much more tractable in tensorial language, which is the one
we adopt in this paper. The Newman–Penrose equations will also be avoided, although
complex methods and, in particular, a complex null tetrad will be used. For the sake of
completeness, and to clarify some aspects of the linearized theory calculations, we briefly
review the eigenvalue and PND approaches to the Petrov classification in this section.

2.1. Eigenvalue approach

The eigenvalue approach to the Petrov classification regards the Weyl tensor as a linear map
X C Xcd ab

cd
cd in the space of rank-two antisymmetric tensors (also called ‘bivectors’), and

analyzes the eigenvalue equation (4). The six-dimensional bivector space is real isomorphic to
the complex three-dimensional space of self-dual bivectors (SDB), which are those satisfying
S S Siab

ab
cd

cd ab1

2
≔*  = - . The isomorphism is given by

X X X X , 9ab ab ab
cd

cd abi
2

≕ ˜ ( ) +

its inverse being

X X c.c. 10ab ab1
2 ( )˜ ( )= +

The space of SDBs, in turn, is isomorphic to u^ , the complexification of the space of vectors
orthogonal to a given unit time-like vector ua. The isomorphism is

X X u X 11ab ab
b

a˜ ˜ ≕ ( )

and its inverse is

X u X u X2 i . 12ab a b ab
cd

c d˜ ( )[ ] = +

If a
bL is a Lorentz transformation of unit determinant

g g , , 13a
c

b
d

cd ab a
p

b
q

c
r

d
s

pqrs abcd ( ) L L = L L L L =

one obtains from (13) that a
b b

a1( )L = L- and

. 14a
p

b
q

pq
cd

ab
rs

r
c

s
d ( ) L L = L L

Equation (14) implies that the unit-determinant Lorentz transformations commute with the
map (9), as expected from

X X X X X X4 . 15ab
ab

ab
ab

a
a

1
2

˜ ˜ ( )= = -

The second equality above, obtained from (12) together with u X 0a
a = , indicates that Λ acts

on u^ as an SO 3,( ) transformation X A Xa a
b

b . With the help of (12) and (11) we find
that this gives an isomorphism between SO 3,1( ) (the group of unit-determinant Lorentz
transformations preserving time orientation, i.e., u u 0a

b a
bL < if u c is time-like) and

SO 3,( ) :
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A i , 16a
k

a
k

a
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a
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q l
k

0
0 0

0 0
0 ( )= L L - L L + L L

where a zero down (up) index means contraction with ub ( ub- ). To gain some intuition on the
isomorphisms (9) and (11), note that if Xab is the electromagnetic tensor, then
X E Bia a a= + , the electric and magnetic fields measured by an observer moving with
velocity ua. If u ua

b
b aL = , then Λ is a rotation, and (16) reduces to

A u u 17a
k

a
k

a
k ( )= + L

which belongs to SO 3,( ) and simply rotates E

and B


independently. Otherwise, Λ is a

boost and (16) a complex rotation mixing E

and B


, as expected.

We can replicate the above constructions for the self-dual piece of the Weyl tensor Cabcd

by regarding it as an element of the symmetric tensor product of bivector space, and using the
fact that left self-duality implies right self-duality. Define

C C C , 18abcd abcd ab
kl

klcd
1
2

i
2( )˜ ≔ ( )+

and introduce the map Q u u:  ^ ^

Q C u u . 19a
c

a
bcd

b d≔ ˜ ( )-

The above equation can again be inverted [4],

C u Q u g Q g Q u u Q u u Q4 i i ,

20

abcd a b d c a c d b b c d a abef
e

c d
f

cdef
e

a b
f1

2
˜

( )

[ ][ ] [ ] [ ] [ ] [ ] - = + - + +

and the eigenvalue problem (4) is easily seen to be equivalent to C X Xab
cd

cd ab1

4
˜ ˜ ˜l= , and also

to

Q X X X X u, . 21a
b

b a a ab
b˜ ( )l= =

We should stress here that, althoughQa
b and X

b were defined using a particular unit time-like
vector u c, the eigenvalue equation (21), being equivalent to (4), gives covariant information
and therefore is fully meaningful. Let e u e e e, , ,o

a a a a a
1 2 3{ }= be an orthonormal tetrad

(g e e diag 1, 1, 1, 1ab
a b ( )= -a b ) adapted to ua, and

k
e e

l
e e

m
e e

m
e e

2
,

2
,

i

2
,

i

2
, 22a

a a
a

a a
a

a a
a

a a
0 3 0 3 1 2 1 2¯ ( )=
+

=
-

=
-

=
+

the related complex null tetrad. A basis of self-dual two-forms is [4]

U m l V k m W m m l k2 , 2 , 2 23ab a b ab a b ab a b a b( )¯ ¯ ( )[ ] [ ] [ ] [ ]= = = +

(note that the only non-zero contractions are U V 2ab
ab = and W W 4ab

ab = - ). These can be
used to expand

C UU UW WU VU UV WW VW WV VV

24

1
2 0 1 2 3 4˜ ( ) ( ) ( )

( )

= Y + Y + + Y + + + Y + + Y

where UV stands for U Vab cd , etc, and

C k m k m C k l k m

C k m m l C k l m l

C m l m l
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: ,

: . 25

abcd
a b c d

abcd
a b c d

abcd
a b c d

abcd
a b c d

abcd
a b c d

0 1

2 3

4

≔
¯ ≔ ¯

¯ ¯ ( )

Y = Y
Y = Y
Y =
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u^ is the complex span of e e e, ,a a a
1 2 3{ } and, in this basis,

Q

1

2

1

2

i

2
i

2

1

2

1

2
i

i 2

26i
j

0 2 4 4 0 1 3

4 0 0 2 4 1 3

1 3 1 3 2

( )

( ) ( )
( )

( )=

- Y + Y - Y Y - Y Y - Y

Y - Y Y + Y + Y Y + Y

Y - Y Y + Y - Y

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

If Q has three distinct eigenvalues, then the algebraic type of the spacetime is I. If instead
two of them are equal, say 1 2 ≕l l l= , the space is of type II if Q Idim ker 1( ( ))l- = or
type D if Q Idim ker 2( ( ))l- = . Finally, in the case in which all three eigenvalues are
identical (then necessarily equal to zero, since Q 0i

i = ), the Petrov type will be III, N or O, if
Qdim ker 1( ( )) = , 2 or 3, respectively. The matrix (26) representing Qi

j can be put in normal
form (that is, diagonal or Jordan form) by acting on it with elements of SO 3,( ) . As
SO 3,( ) is isomorphic to SO 3, 1( ) (cf equation (16)), any such transformation is uniquely
associated with a (proper, orthochronous) Lorentz transformation on the spacetime, and this
transformation, acting on the null tetrad above, produces what is called a principal tetrad. The
transformation leading to the normal form of Q, and therefore the principal tetrad, is uniquely
determined in the cases of Petrov types I, II and III (neither k a nor l a of the unique principal
tetrad gives a PND in type-I spacetimes [5]). For a type-D space, however, there is a two-
dimensional residual U C1 0( ) ´ =>

´ ´ subgroup of SO SO3, 1 3,( ) ( )  of boost and
rotations preserving the normal form (and thus the PNDs):

k k l l m e m m e m, , , , 27a a a a a a a a1 i i¯ ¯ ( )a a   q q- -

In this case, k a and l a are aligned along the repeated PNDs, i.e., they satisfy (6). Principal null
tetrad components of tensors are said to carry spin weight s and boost weight q if under (27)
they pick up a factor e s qi aq (e.g., 3Y has s q 1= = - ). Truly scalar fields, such as
Q 2

2( )µ Y+ R , of course, carry zero weights.

2.2. Principal null directions

An alternative approach to the Petrov classification consists of studying the PNDs of the Weyl
tensor, i.e. solving equation (5), which is equivalent to

k C k k k 0. 28e a bc d f
b c ( )[ ] [ ] =

~

Starting from a generic null tetrad with associated Weyl scalars (25) we find that (see (24))

k C k k k k m m k , 29e a bc d f
b c

e a d f
1
2 0 ¯ ¯ ( )[ ] [ ] [ ] [ ]= -Y

~

so the k a vector of the tetrad is a PND if and only if the 0Y component of the Weyl tensor in
this tetrad vanishes. If we apply a null rotation (boost) to the given null tetrad around l a,

l l l
k k k zzl zm zm
m m m zl

,
,

, 30

a a a

a a a a a a

a a a a
¯ ¯ ¯

( )

 ¢ =
 ¢ = + + +
 ¢ = +

the resulting k a¢ will sweep the S2 set of null directions as z moves in the complex plane,
avoiding only the l a direction, which corresponds to z = ¥ (S2 = complex plane plus point
at infinity). So we can calculate z0( )Y¢ in the primed tetrad and solve the fourth-order equation

z 00( )Y¢ = to find the four PNDs. It can easily be checked using (25) that
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z z z z z4 6 4 310 0 1
2

2
3

3
4

4( ) ( )Y¢ = Y + Y + Y + Y + Y

Generically (type-I spaces), there will be four different solutions z j, 1, 2, 3, 4j =
corresponding to four PNDs. The special cases are those for which the polynomial (31)
has repeated roots, and can be classified according to the partitions of 4 as shown in table 1.
PNDs associated to roots with multiplicity higher than one are called repeated PNDs.
According to the Goldberg–Sachs theorem these are tangent to shear-free geodesic
congruences. Type-D spacetimes have two double roots, and the corresponding null
directions satisfy the stronger equation (6). For a null tetrad with k a and l a aligned along the
two repeated PNDs, equations (6) and (25) give

0, 0 type D . 320 1 3 4 2 ( ) ( )Y = Y = Y = Y = Y ¹

Similarly, different sets of Weyl scalars vanish for the other algebraically special spacetimes
for adapted tetrads. Type O corresponds to conformally flat spaces, for which C 0abcd = .

2.3. Physical interpretation

The characteristics of the different Petrov types, as well as the meaning of the Weyl scalars,
can be realized by analyzing the geodesic deviation equation. The following interpretation is
adapted from [15].

Let ua be the unit future tangent vector to a congruence of time-like geodesics, Xa a
geodesic deviation vector. Then

A u u X R u u X 33a b
b

c
c

a a
bcd

b c d( )≔ ( )  =

measures the relative acceleration of neighboring test particles. Since the Riemann curvature
tensor equals the Weyl tensor in vacuum, the contribution of the latter in (33), obtained by
setting R 0ab = , i.e. replacing Ra

bcd with Ca
bcd , gives the effects of the gravitational field on

the acceleration Aa. If we use C C c.c.a
bcd

a
bcd

˜= + together with (24), and choose e ua a
0 =

in (22), we find the following contributions to Aa:

A p p p p X

e p p e m

2 ,

, i
34

a a
d

a
d

d

a a a

4 4 2 2 1 1

4 4
2i

1 2
i4 4

( )∣ ∣
∣ ∣

( )( ) = Y -

Y = Y - =a a

A s e s e s e s e X

e s s e m

2 ,

, i

35

a a a
d d

a a
d d

d

a a a

3 3 1 3 1 3 1 3 1 3

3 3
i

1 2
i3 3

( ) ( )∣ ∣ ( ) ( )

( )

( ) = Y + + - - -

Y = - Y - =a a

⎡⎣ ⎤⎦

Table 1. Petrov type according to the multiplicity of the roots of the polynomial in (31).

Petrov type PNDs

I 1111{ }
II 211{ }
D 22{ }
III 31{ }
N 4{ }
O {-}
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A e e I X

I e e

2 2 ,

the identity map in the 2 plane orthogonal to and .

36

a a
d

a
d

d

a
d

2 2 3 3

0 3

{ }( )

( )

( ) =- Y -

-

R

A wave with wave vector k u ea a a
3µ + (equation (22)) is seen moving along the e a3

direction by the observer with velocity ua. The spatial vectors p p,a a
1 2 in (34) constitute a pair

of polarization axes, and the acceleration vector lies in the 2-plane spanned by them, which is
orthogonal to e uo

a a= and e3
a. This property allows us to interpret of (34) as a transverse

mode. By adapting the null tetrad so that k a is along the fourfold PND of a type-N spacetime,
we find that 0jY = for j 4¹ and that (33) reduces to (34).

The mode associated to 3Y has a longitudinal polarization plane spanned by e3
a and s1

a,
whereas the 2Y mode produces a deformation of a sphere of free-falling particles to an
ellipsoid by expanding it along the wave direction e3, just like the effect of tidal forces on a
sphere of particles under the influence of a Coulomb-like potential in Newtonian gravity. For
this reason, 2Y is usually interpreted as a Coulomb term. For type-D spacetimes, we can
choose the tetrad as in (32), and find that this is the only contribution to Aa.

Note that the change k la a« (which is equivalent to e ea a
3 3« - ) together with m ma a¯«

produces 4 0Y « Y , 3 1Y « Y while keeping 2Y unchanged. This implies that 4Y and 0Y are
associated to transverse radiation propagating in opposite directions, and 3Y and 1Y to
longitudinal waves in opposite directions. Therefore, we refer to 0Y and 4Y as in- and
outgoing transverse radiation terms, respectively, whereas 1Y and 3Y are referred to as in- and
outgoing longitudinal radiation terms, where e3

a is defined as the outward direction.
The effects in type-I and -II and type-III spaces are a combination of those described

above.

3. Linear perturbations

Let gab ( ) be a mono-parametric family of vacuum solutions with g g0ab ab( ) ≕ of type D.
Assume ea ( )a is an orthonormal tetrad of the metric gab ( ) , smooth in ò, and such that the
associated null tetrad (22) has k 0a ( ) and l 0a ( ) aligned along the repeated PNDs of the type-D
background gab, i.e. they satisfy (6). If ( )L is a curve in SO 3,1( ) with 0( )L the identity, then
the tetrad e ea a˜ ( ) ≔ ( ) ( )  Lb

a
b a satisfies this same condition (this is sometimes called the

‘tetrad-gauge ambiguity’). In any case C V V1 40( ) ( ) ( ) ( ) ( )   Y = (using (24) and an
obvious notation) and

C VV C VV CV V C VV
d

d
, 370 0 0

1
4

1
4

≔ ∣ ( ) ( )
 d d d d dY Y = + + ==

since C VV CV V V V 0ab
ab

2d d d= = Y = . Equation (37) implies that 0dY is tetrad-gauge
invariant. The reader can check that 2dY and 4dY are also tetrad-gauge invariant, with

C UU. 384
1
4

( )d dY =

Note from (23), (27), (37) and (38) that 0dY ( 4dY ) has spin weight two and boost weight two
(minus two and minus two respectively).
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3.1. Perturbed eigenvalues

If we insert in (26) the first-order corrections to equation (32),

i, , 0, 1, 3, 4, 39i i2 2 2( ) ( ) ( )   d dY = Y + Y Y = Y =

we find that the perturbed eigenvalues to order ò are

, 401 2 2 0 4( )( ) ( ) l d d d= Y + Y - Y Y

, 412 2 2 0 4( )( ) ( ) l d d d= Y + Y + Y Y

2 2 , 423 2 2( ) ( ) l d= - Y - Y

and the eigenvalue splitting (8) is

2 , 430 4 ( ) d dY Y

the branch choice of the (complex) square root being responsible for the sign ambiguity
anticipated in (8). It is important to emphasize that 0dY and 4dY are both free of the tetrad-
gauge ambiguity and that they carry opposite spin and boost weights (see the discussion
around equation (27)). Thus (43) is a well defined scalar field that carries information on the
distortion of the Weyl tensor due to the perturbation, information that is missing, e.g., in the
perturbed curvature scalars in the even sector of the Schwarzschild perturbations.

If either 00dY = or 04dY = , the space degenerates into a type D or II, depending on the
dimension of the eigenspace Q Iker 2( )l- . We will comment on these algebraically special
perturbations in section 4.3.

3.2. Splitting of the PNDs

Inserting (39) in (31) gives

P z z z z z4 6 4 . 440 1 2 2
2

3
3

4
4( )( ) ≔ ( )    d d d d dY + Y + Y + Y + Y + Y

The equation to be solved is P z 0( ) = up to order ò. Note, however, that the solutions z of
the simpler equation z0 60 2

2d= Y + Y ,

z
6

, 450

2
( )d

=  -
Y
Y



satisfy

P z 0 , 463 2( )( ) ( )= +

i.e., they are (to order ò) two of the four solutions of P z 0( ) = . Since z 0 with ò, these
two solutions are easily guessed to be those related to the splitting of k a into two different
PNDs. Explicitly, in the leading order we have

k k m m
6 6

. 47a a a a1 2 0

2

0

2
( ) ≔ ¯ ( )  d d

 -
Y
Y

+ -
Y
Y

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

According to the discussion between equations (22) and (31) the other two solutions of
P z 0( ) = should be near the unperturbed repeated PND l a, which corresponds to z = ¥ in
S2 { } È= ¥ , thus we expect the other two solutions to behave as an inverse power of ò (cf
[8]). To obtain these, we can either switch to x z1= or work with null rotations around l a

and solve the equation 04Y = . In either case we arrive at
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l l m m
6 6

48a a a a1 2 4

2

4

2
( ) ≔ ¯ ( )  d d

 -
Y
Y

+ -
Y
Y

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

It is important to note that (47) has zero spin weight and boost weight one, and thus defines a
PND, for which the overall scaling is irrelevant. Similarly (48) carries zero spin weight and
boost weight minus one. The non-analytical character of the splitting, discussed in some detail
in [8], can be avoided by a re-parametrization of gab ( ) .

4. Applications

4.1. Gravitational perturbations of the Schwarzschild black hole

For the Schwarzschild solution

s f t
r

f
r fd d

d
d sin d , 1 , 49M

r
2 2

2
2 2 2 2 2( ) ( )q q j= - + + + = -

we use the orthonormal tetrad

e
f t

e f
r

e
r

e
r

1
, ,

1
,

1

sin
, 50

a
a

a
a

a
a

a
a

0 3

1 2 ( )
q q f

=
¶
¶

=
¶
¶

=
¶
¶

= -
¶
¶

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

then k a and l a in (22) are along the repeated PNDs, only 2Y is different from zero, and the
outgoing direction introduced in the end of section 2.3 agrees with r¶ ¶ . The perturbed
metric admits a series expansion in terms of S2 harmonic tensors [2]. These are labeled
ℓ m, ,( ) and can be obtained by applying a differential operator to the standard spherical
harmonic scalars Y ℓ m,( ). Their further classification into even (+, or scalar) and odd (–, or
vector) types describes the behavior of these tensors under the discrete parity isometry

, ,( ) ( )q j p q j p - + . The linearized Einstein’s equations reduce to two-dimensional
wave equations for functions t r,ℓ m, ( )( )f (see [1, 2]). These are the Regge–Wheeler equation

for ℓ m,( )f- (equation (7) in [2], where Φ corresponds to ℓ m,( )f- ) and the Zerilli equation for ℓ m,( )f+

(equation (28) in [2], where Ψ corresponds to ℓ m,( )f+ ). In terms of these potentials we have
found that

A t r Y, , , 51
ℓ m

ℓ m
ℓ m

0
, ,

, 2
,( ) ( ) ( )

( )
( )

( )åd q fY =




B t r Y, , , 52
ℓ m

ℓ m
ℓ m

4
, ,

, 2
,( ) ( ) ( )

( )
( )

( )åd q fY =



-

where

A
M

r

ℓ

ℓ
M r

r
r

r M

r M t

r M r
r

r
t r

ℓ ℓ M

r

3i

8

2

2

3

2

2
1

2

3

ℓ m, 3

2

2
2

2

( )!
( )!

( )

( ) ( )

( )
f f

f f
f

= -
+
-

-
¶
¶

-
-
-

¶
¶

+ -
¶
¶

-
¶
¶ ¶

+
+

-

-
- -

- -
-⎜ ⎟

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥
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A
ℓ

ℓ

M r

r r r r t

K r

r D r r

L r

r r M D r t

N r

r D r

2

2

2

2

1

2

2 2 2 4
,

53
ℓ m, 2

2

2

2

3 2 4

( )!
( )!

( )
( )

( )
( ) ( )

( )
( )

( )
( )

f f

f f
f

= -
+
-

- ¶
¶

-
¶
¶ ¶

+
¶
¶

+
-

¶
¶

+

+
+ +

+ +
+

⎡
⎣⎢

⎤
⎦⎥

B
M

r

ℓ

ℓ
M r

r
r

r M

r M t

r M r
r

r
t r

ℓ ℓ M

r

B
ℓ

ℓ

M r

r r r r t

K r

r D r r

L r

r r M D r t

N r

r D r

3i

8

2

2

3

2

2
1

2

3

2

2

2

2

1

2

2 2 2 4
,

54

ℓ m

ℓ m

, 3

2

2
2

2

, 2

2

2

2

3 2 4

( )!
( )!

( )

( ) ( )

( )!
( )!

( )
( )

( )
( ) ( )

( )
( )

( )

( )

( )

f f

f f
f

f f

f f
f

= -
+
-

-
¶
¶

+
-
-

¶
¶

+ -
¶
¶

+
¶
¶ ¶

+
+

-

= -
+
-

- ¶
¶

+
¶
¶ ¶

+
¶
¶

-
-

¶
¶

+

-
- -

- -
-

+
+ +

+ +
+

⎜ ⎟

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

f stands for ℓ m,( )f , Ys
ℓ m,( ) are the normalized spin weight s spherical harmonics on S2 [2], and

D r ℓ ℓ r M2 1 6 55( ) ( )( ) ( )= + - +

K r ℓ ℓ M r r M2 1 6 , 562( ) ( )( )( ) ( )= + - - -

L r ℓ ℓ M r r M2 1 3 6 , 572( ) ( )( )( ) ( )= + - - +

N r ℓ ℓ ℓ ℓ r

M ℓ ℓ r M ℓ ℓ r M

2 1 1

6 2 1 36 2 1 72 .

58

2 2 3

2 2 2 2 3

( ) ( ) ( ) ( )
( ) ( ) ( )( )

( )

= + + -

+ + - + + - +

Note that the eigenvalue splitting (43), as well as the repeated PND splittings (47) and
(48), being proportional to 0Y and/or 4Y , will contain multiple harmonics even if the
metric perturbation contains a single non-zero ℓ m,( )f .

4.2. Gravitational perturbations of the Kerr black hole

The Teukolsky equations [9] are a set of separable partial differential equations for linear
fields on type-D backgrounds. Two of them describe the behavior of 0dY and 4dY for the type-
D background (e.g., a perturbed Kerr black hole), assuming a background null tetrad with k a

and l a aligned along the repeated PNDs. Although the connection of these quantities with the
corresponding metric perturbation is rather intricate [10], the Teukolsky equations—unlike
the Regge–Wheeler and Zerilli equations for a Schwarzschild background—are particularly
well suited to our purposes since they give the quantities needed in (43), (48) and (47).

It was shown in [11] that for well behaved (meaning satisfying suitable boundary con-
ditions at the horizon and infinity) non-stationary black hole perturbations 0dY and 4dY
uniquely determine each other. In particular, 00dY = if and only if 04dY = , and this cor-
responds to a trivial perturbation. In view of (47) and (48), both repeated PNDs split and the
perturbed metric is type I. Non-stationary perturbations are those relevant to the black hole
stability issue and are the ones we focus on in this work.
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4.3. Chandrasekhar algebraically special modes and Schwarzschild’s naked singularity
instability

In his 1984 paper [12], Chandrasekhar dealt with the problem of finding perturbations of
black holes in the Kerr–Newman family such that one of ,0 4d dY Y vanishes while the other
does not. It follows from the comments in the previous subsection that these perturbations do
not satisfy appropriate boundary conditions at the horizon or at infinity of a Kerr–Newman
black hole. The requirement that 00dY = or 04dY = leads to an algebraic condition (the
vanishing of the Starobinsky constant) that gives a relation among the black hole parameters,
the harmonic number of the perturbation and its frequency ω (perturbations behave as e ti~ w

for pure modes). Although Chandrasekhar’s algebraically special (AS) modes in the Kerr–
Newman family diverge either at infinity or at the horizon of a black hole background, for
naked singularities in the Kerr–Newman family some AS modes are indeed very relevant, as
they satisfy appropriate boundary conditions both at infinity and at the singularity, and they
grow exponentially with time (i.e., have a purely imaginary ω). The existence of these modes
was indeed crucial for proving the linear instability of the negative-mass Schwarzschild
solution and of the super-extreme Reissner–Nordström solution (for the super-extreme Kerr
solution, however, none of the AS modes satisfies appropriate boundary conditions and other
methods were required to establish its linear instability).

The instability of the Schwarzschild solution (49) with M 0< is due to the existence of a
family of even/scalar solutions of the Zerilli equation of the form

r r M

ℓ ℓ r M

k r t

M
k

ℓ

ℓ

2

2 1 6
exp

2
,

2

6 2
. 59ℓ m

k

,
( )

( )( )
( ) ( )!

( )!
( )( )f =

-
+ - +

-
=

+
-

+ ⎜ ⎟⎛
⎝

⎞
⎠

These were found in [13], then recognized in [14] to agree with the AS modes in [12]. The
facts that they behave properly for r 0,( )Î ¥ (keep in mind that M 0< and that ℓ 2 for
non-stationary perturbations, for further details see [13]) and grow exponentially with time
indicate that the naked sigularity is unstable. For the perturbations (59) we find

k

M
r M ℓ ℓ

M

r

k r t

M
Y0,

6
2 2 1

6
exp

2

60

k ℓ m
0 4 2

1
2
,( ) ( )( ) ( )

( )

( )d dY = Y = - + - +
--

-⎜ ⎟⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

According to (47) and (48) the double PND k a will remain double whereas l a will split, the
perturbed spacetime being of type II according to table 1. Note, however, that this can only be
accomplished by fine tuning the perturbation to restrict to the modes (59). A general
perturbation will also contain the stable, oscillating modes, and the PNDs will split into four,
that is, to type I.

5. Discussion

We have found explicit formulas for the splitting of the repeated PNDs of type-D spacetimes
under gravitational perturbations, and also for the splitting of the repeated eigenvalue in (4).
These are given in equations (47) and (48), and in (43). These are observable (gauge-
invariant) effects of the perturbation on the background geometry that do not require deri-
vatives of the metric higher than two, in contrast to differential invariants.

In view of (47), (48) and the results in [11], perturbed black holes within the Kerr–
Newman family suffer a PND splitting to type I, except for stationary perturbations, which by
the black hole uniqueness theorems are restricted to changes in the mass and/or angular
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momentum parameters, and therefore trivially keep the type-D structure. This gives sense to
the notion that the ‘tangent vector’ hab of a curve gab ( ) at a black hole metric g 0ab ( ) will
‘stick out’ of the set of algebraically special metrics. Note, however, that boundary conditions
play a crucial role in these assertions: the example in section 4.3 shows the flow of the type-D
Schwarzschild naked singularity to a type-II spacetime, triggered by the instability. This flow,
however, can only occur for finely tuned initial conditions, allowing only the (infinitely
many) modes (59). A generic perturbation will contain modes other than these and will
therefore split the two repeated PNDs into four single PNDs.

As a final comment, the non-analytical behavior of the PNDs in the perturbation para-
meter (the dominant order in the perturbed PNDs is 1 2 ) is to be expected from the poly-
nomial character of the PND equation and the confluence of the solutions as 0  . This fact
was clarified in [8], whose results are in total agreement with ours.
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