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Nonlinear theories generalizing Maxwell’s electromagnetism and arising from a Lagrangian formalism
have dispersion relations in which propagation planes factor into null planes corresponding to two effective
metrics which depend on the pointwise values of the electromagnetic field. These effective Lorentzian
metrics share the null (generically two) directions of the electromagnetic field. We show that the theory is
symmetric hyperbolic if and only if the cones these metrics give rise to have a nonempty intersection,
namely, that there exist families of symmetrizers in the sense of Geroch [26] which are positive definite for
all covectors in the interior of the cones intersection. Thus, for these theories, the initial value problem is
well posed. We illustrate the power of this approach with several nonlinear models of physical interest such
as Born–Infeld, Gauss–Bonnet, and Euler–Heisenberg.
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I. INTRODUCTION

Nonlinear electrodynamics (NLED) is relevant in several
areas of physics. In QED, the polarization of the vacuum
leads naturally to nonlinear effects (such as the light-light
scattering) which are effectively described by a Euler–
Heisenberg’s Lagrangian [1–6] (see also Ref. [7] for a
pedagogical review). In some dielectrics and crystals, the
interaction between the molecules and external electro-
magnetic fields can be described by an effective nonlinear
theory, which is typically observed at very high light
intensities such as those provided by pulsed lasers [8,9].
Possible consequences of NLED have been explored also
in cosmology and astrophysics. In particular, it is believed
that nonlinearities may play important roles in the descrip-
tion of the dark sector of the Universe [10–15], in the
avoidance of singularities (when coupled to Einstein’s
equations), or in the physics of charged black holes
[16–21]. These models have the advantage of using only
electromagnetic fields, without invoking yet unobservable
scalars or more speculative ideas related to higher dimen-
sions and brane worlds. Finally, the Born–Infeld nonlinear
model [22–24] has mathematical connections to string
theory, for its Lagrangian appears in relation with the
gauge fields on a D-brane (see, for instance, Ref. [25]). In
general, NLED theories attract attention because they offer
insight into light propagation in the experimental and
theoretical studies of relativity.
A key feature to elucidate about the partial differential

equations (PDEs) governing NLED is whether they pose an

initial value formulation. Well posedness is at the roots of
physics, for it amounts to the predictability power of the
theory, asserting that solutions exist, are unique, and
depend continuously on the initial data. The mathematical
theory dealing with the initial value formulation is well
developed, and for this case it amounts to checking whether
the first-order system of quasilinear PDEs is hyperbolic and
what the maximal propagation speeds are. Roughly, hyper-
bolicity is an algebraic property of the principal symbol
(the differential operator consisting of the highest derivative
order terms of the PDE), which is essential to prove local
well posedness of the noncharacteristic Cauchy problem. In
theories like NLED, the analysis of hyperbolicity needs,
however, a careful manipulation. Because constraints are
present, the evolution equations are not uniquely defined
for one can add to any one of them constraint terms and
obtain another equivalent evolution system. The distinction
of an evolution system over the others generally implies a
choice of 3þ 1 decomposition of space-time and, as such,
breaks covariance.
In this paper, we shall treat the equivalent evolution

systems in an equal footing so as to assert the desired
hyperbolicity properties keeping covariance as much as we
can. The tools to deal with hyperbolicity in this way has
been provided by Geroch in Ref. [26]. However, as there
are many different notions of hyperbolicity available in the
literature (see, e.g., Refs. [27–29]), we now recall some
previous results concerning the evolutionary aspects of
NLED. In Ref. [30], for instance, Brenier uses the energy
density and the Poynting vector as additional unknowns to
augment the original 6 × 6 Born–Infeld system to a system
of 10 × 10 hyperbolic conservation laws (for which well-
known results can be directly applied [31–33]). A similar
analysis using convex entropies (actually the energy) may
be found in Ref. [34], where Serres extends a method
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designed by Dafermos [35] (see also Ref. [36]) to the class
of models described by Coleman and Dill [37]. As a result,
he shows that the polyconvexity of the energy density
implies the local well posedness of the Cauchy problem
within smooth functions of class Hs with s > 1þ d=2.
Another approach using a 3þ 1 splitting was provided
by V. Perlick in Ref. [38], assuming that the constitutive
equations FAðH;FÞ ¼ 0 can be solved for ~E and ~H.
Several results that are relevant for the question of whether
the evolution equations are hyperbolic, strongly hyperbolic,
or symmetric hyperbolic are investigated in detail. It is
worth mentioning also the global results by Speck [39].
Using ideas presented by Christodoulou and Klainerman
[40,41], he establishes the existence of small-data global
solutions to the Born–Infeld system on the Minkowski
space background in 1þ 3 dimensions. Roughly, he con-
cludes that, if the initial data for the Born–Infeld equations
are sufficiently small as measured by a weighted Sobolev
norm, then these data launch a unique classical solution
to the equations existing in all of Minkowski space.
Furthermore, he shows that these solutions decay at exactly
the same rates as solutions to the linear Maxwell system.
Here, we adopt a different strategy. Working within

Geroch’s geometrical formalism, we find the most general
hyperbolizations NLED theories admit and show that they
are parametrized by an auxiliary vector field tqðxÞ (as is
also the case for linear electrodynamics). This construction
allows us to find necessary and sufficient conditions
theories and fields must satisfy in order to have a well-
posed initial value formulation. It happens that such a
condition translates very nicely into geometrical terms: the
system is symmetric hyperbolic, if and only if the two
cones arising from the dispersion relations (or, conversely,
the characteristic surfaces) of the given NLED theory have
a nonempty intersection. This constitutes one of the main
results of the present article. Our construction also allows
us to find the causality cone (the maximal propagation
speeds) each hyperbolization has. These cones could be, in
principle, different from the physical cones as defined by
the dispersion relations, for the latter ones use all equations,
including the constraints, to assert the propagation veloc-
ities of plane waves, while the hyperbolization cones use
only the corresponding evolution equations. We find that,
nevertheless, they coincide.

A. A warning on terminology

In the present context, cones appear in several related
disguises. First, we have the familiar cones arising in
Lorentzian geometry, namely, those arising from the set of
all timelike vectors fv ∈ TpMjgabvavb > 0g, which splits
into two disjoint sets, the “future” and “past” propagation
cones. We shall refer to them as the cones of a given metric.
Second, now allowing for more general symmetric-
hyperbolic systems, the cones that appear as the set of
covectors which make positive definite a certain symmetric

hyperbolizer, C�
H ≔ fna ∈ T�

pMjHa
αβna > 0g. These cones

are clearly open and convex, for ifna andn0a belong toC�
H, so

does λ1na þ λ2n0a for all positive λ1, λ2, since the sum of
positive bilinear forms gives another positive bilinear form.
They represent planes on the tangent space. Once a plane is
found within C�

H, the others are found tilting it until Ha
αβna

gets a kernel. Each one of these planes represents a plane
wave perturbation solution to the underlying equations out
of which the symmetrizer was built upon. Third, we can
construct the cocones, duals to the previous ones; that is,
given a cone,C ∈ V, we can define a cone in the dual space,
C0 ≔ fσ ∈ V 0jσðvÞ ≥ 0; ∀ v ∈ Cg, and this is clearly
also a convex close cone. The Cocones dual to the cones
defined from hyperbolizers, are called the propagation
cones, for they determine the directions along which
perturbations propagate. Notice that the cocones of a given
metric cone are precisely those covectors obtained by low-
eringwith themetric the indices of the all thevectors forming
the cones, so the distinction is lost. However, since in this
work there appear several Lorentzian metrics, it is best to
keep cones and cocones as separate geometrical entities.
This article is organized as follows. In Sec. II, we

introduce NLED equations and point out some of their
basic structural properties. We then review some important
results concerning characteristic surfaces and geometrical
aspects these theories exhibit. In Sec. III, an intrinsic
geometrical formulation of PDEs due to Geroch is intro-
duced, and the notion of symmetric hyperbolicity is
presented. We then investigate the algebraic core of the
NLED equations and find the most general hyperboliza-
tions these theories allow. Our main results are presented in
this section in the form of two theorems, together with (we
hope) comprehensive descriptions of the key ideas behind
the proofs. In Sec. IV, we provide the reader with the
detailed steps to prove the theorems, and Sec. V deals with
the constraints. Finally, Sec. VI explores our results for
some particular realizations of the Lagrangian.

II. GENERAL REMARKS

A. Lagrangians and equations of motion

Write ðM; gÞ for a (1þ 3)-dimensional space-time, with
signature convention ðþ;−;−;−Þ, and Fab for the electro-
magnetic 2-form. Let

F ≔ FabFab ¼ 2ðH2 − E2Þ G ≔ FabFab

� ¼ 4~E: ~H

ð1Þ

denote the field invariants, where Fab

� ¼ 1
2
ηabcdFcd stands

for the dual, ηabcd stands for the completely antisymmetric

Levi-Civitá tensor, and ð~E; ~HÞ stands for the electromag-
netic fields. We consider nonlinear models of electrody-
namics in vacuum provided by the action
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S ¼
Z

LðF;GÞ ffiffiffiffiffiffi
−g

p
d4x; ð2Þ

where the Lagrangian density LðF;GÞ is an arbitrary
smooth function of the invariants and g ≔ detðgabÞ. The
first-order, quasilinear, equations read as

∇aðLFFab þ LGFab
�
Þ ¼ 0; ∇½aFbc� ¼ 0; ð3Þ

with ∇ denoting covariant derivative and LX ≔ ∂L
∂X, for

conciseness. Here, the lhs system is obtained via the
variational principle, while the rhs system is assumed from
the very beginning, thus guaranteeing the existence of a
4-potential such that Fab ¼ ∇½aAb�. We define also, for
future convenience, the quantities

ξ1 ≔ 2LFF=LF; ξ2 ≔ 2LFG=LF; ξ3 ≔ 2LGG=LF:

ð4Þ

Remark 1: In Maxwell’s electrodynamics, there exists
a particular gauge which considerably simplifies the
second-order equations for AaðxÞ. Unfortunately, this is
not the case for more general nonlinear theories, and it will
be convenient to focus our analysis on the first-order
equations (3) only. Also, currents jaðxÞ are irrelevant for
the question of whether the initial value problem is well
posed. Therefore, they will play no role in our further
discussion.

B. Dispersion relations, characteristics,
and effective metrics

It is well known that high-frequency perturbations about
a smooth background solution of Eqs. (3) are controlled
by two effective metrics.1 The core of this result was first
presented by Boillat [44] and Plebanski [45] in the early
1970s using Hadamard’s method of discontinuities [46].
More recently, Obukhov and Rubilar [47] noticed that
quasilinear PDE’s of the form (3) are particular instances of
electrodynamics inside media described by general non-
linear constitutive laws. As a consequence, they showed
that, if Σ is a characteristic hypersurface described by
fðxaÞ ¼ const, the wave normals km ≔ ∂mf are given by
the vanishing sets of a fourth-order multivariate polynomial
in the cotangent bundle T�M,

P�ðx; kÞ ≔ GabcdðxÞkakbkckd ¼ 0: ð5Þ
Here, GabcdðxÞ is a completely symmetric quantity (35
independent components) depending implicitly on the
background solution. Physically, Eq. (5) plays the role

of a dispersion relation for the linearized waves and gives
rise to some sort of covariant Fresnel equation [48,49].
For the class of nonlinear Lagrangian models provided

by (2), a remarkable property holds due to algebraic
conditions: the multivariate polynomial (5) always reduces
to the simpler form

P�ðx; kÞ ¼ ak4 þQk2l2 þ Rl4; ð6Þ

with k2 ¼ gabkakb, l2 ¼ Fa
cFbckakb, for conciseness, and

a ≔ ð1þ ξ2G − ξ3F − RG2=16Þ; ð7Þ

Q ≔ 2ðξ1 þ ξ3 − RF=4Þ; ð8Þ

R ≔ 4ðξ1ξ3 − ξ22Þ: ð9Þ

A closer inspection of (6) reveals that the quartic Fresnel
surface of the wave normals factorizes to the product of
two second-order surfaces, given in terms of the quadratic
forms

gab1 ðxÞkakb ¼ 0; gab2 ðxÞkakb ¼ 0; ð10Þ

with the reciprocal effective metrics given by

gab1 ≔ agab þ b1Fa
cFbc; ð11Þ

gab2 ≔ gab þ ðb2=aÞFa
cFbc; ð12Þ

according to the following definitions2:

b1 ≔
Qþ ffiffiffiffi

Δ
p

2
; b2 ≔

Q −
ffiffiffiffi
Δ

p

2
; Δ ≔ Q2 − 4aR:

ð13Þ

As stressed by Boillat [44], the roots always exist since
the discriminant is actually a sum of squares, i.e., Δ ¼
4ðN2

1 þ N2
2Þ with

N1 ≔ ðξ1 − ξ3Þ − RF=4; N2 ≔ 2ξ2 − RG=4: ð14Þ

Obukhov and Rubilar proceed by showing us that gab1
and gab2 are Lorentzian whenever the background space-
time metric is Lorentzian. Their results are in qualitative
agreement with previous results by Novello et al. [50,51],
wherein the rays spanning the characteristic surfaces are
often described in terms of effective null geodesics.
Therefore, in what follows, we shall assume that the

1See Refs. [42] and [43] for a wealth of details in the context of
analog models of gravity.

2If a → 0 but b1 ≠ 0, the left-hand side of (12) is still finite
since b2=a ¼ R=b1. When a → 0 and b1 → 0 simultaneously,
we can, using the conformal freedom, redefine the metrics as
~gab1 ≔ ð1=b1Þgab1 ; ~gab2 ≔ b1 ~gab2 . The results we shall obtain do not
depend on this reparametrization.
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effective metrics are always Lorentzian.3 For the covariant
components of the latter, we write g1ab and g2ab. They are
such that gac1 g1cb ¼ δab and gac2 g2cb ¼ δab.

C. Geometrical structure: The cones

The effective metrics are defined up to a conformal
transformation. However, they have an intrinsically
geometric property which does not depend on conformal
redefinitions, namely, their cones.4 We will denote
by Cgi the set of all timelike (future-directed) vectors
with respect to the metrics gi

5, and C�
gi ≔

intðfna ∈ T�
pMjnava > 0; ∀ va ∈ CgigÞ6 their dual

cocones. We study here some geometrical relations among
these cones, since they will play an important role in the
description of hyperbolicity. To do that, we distinguish
between two different cases, according to the nature of
the electromagnetic field Fab: i) nondegenerate fields
(F2 þ G2 ≠ 0) and ii) degenerate fields (F ¼ G ¼ 0). As
these cases have different geometric interpretations, we
shall treat them separately (see also Ref. [52]).

1. Nondegenerate Fab

A nondegenerate 2-form at a point p has (at that point)
two null eigenvectors ka and la (see Appendix A for further
details). The directions of these vectors are called the
principal null directions (PND’) [53–55] and will play a
key role in our description.
Remark 2: ka and la are null with respect to the three

metrics, that is, the background and the effective metrics.
We shall say henceforth that the closures of all cones share
these principal null directions. The plane spanned by ka and
la forms the essential geometrical structure of the system.
The PNDs help us to construct a frame which simplifies

calculations considerably. In this frame, ~E∥ ~H, gab reduces
to ηab, and one obtains the quadratic forms

giabt
atb ≔ α−1i ðt20 − t23Þ − β−1i ðt21 þ t22Þ

gabi nanb ≔ αiðn20 − n23Þ − βiðn21 þ n22Þ ð15Þ

with i ¼ 1; 2 and

α1 ≔ aþ b1
1

4

�
F −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ G2

p �
β1 ≔ aþ b1

1

4

�
F þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ G2

p �
α2 ≔ 1þ b2

a
1

4

�
F −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ G2

p �
β2 ≔ 1þ b2

a
1

4

�
F þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þG2

p �
: ð16Þ

Note that the quantities involved in (16) are covariantly
defined; i.e., they are functions of the invariants F and G.
A closer inspection of (15) reveals that the effective

cones are characterized by the signs of the coefficients (16).
We introduce to this matter two useful quantities

Ωi ≔ αiβi ðfor i ¼ 1; 2Þ ð17Þ

and present a table illustrating all possible sign
combinations:

Sign
ðαiÞ

Sign
ðβiÞ

Signature
of gi

Timelike
vector giabt

atb
Sign
ðΩiÞ

i) þ þ ðþ;−;−;−Þ ta ¼ ð1; 0; 0; 0Þ α−11 > 0 þ
ii) − − ð−;þ;þ;þÞ ta ¼ ð1; 0; 0; 0Þ α−11 < 0 þ
iii) þ − ðþ;þ;þ;−Þ ta ¼ ð0; 0; 0; 1Þ −α−11 < 0 −
iv) − þ ð−;−;−;þÞ ta ¼ ð0; 0; 0; 1Þ −α−11 > 0 −

Note that the signatures of the effective metrics are not
determined by their Lorentzian character. In particular, the
norm of timelike vectors depends on the background field
and does not have a preferred sign7 The cones, on the other
hand, are clearly independent on how these signatures turn
out, and the same will apply to all our future results, as we
shall see later.

Proposition 1: (i) If Ωi > 0, then Cgi ∩ Cη ≠ ∅.
[where ηab ≔ Diagð1;−1;−1;−1Þ]. (ii) If Ωi < 0, then
Cgi ∩ Cσ ≠ ∅. [where σab ≔ Diagð−1;−1;−1; 1Þ].
Therefore, there are only three qualitatively different

configurations for the effective cones in TpM: the three
cones intersect [Fig. 1(a)]; the two effective cones intersect
each other, but do not intersect the background cone
[Fig. 1(c)]; or they do not intersect [Fig. 1(b)].
Moreover, when the effective cones do intersect each other,
it turns out that it is always possible to single one as being
included inside the other. Thus, the following holds:
Proposition 2: Whenever the effective cones intersect

each other, i.e., Cg1 ∩ Cg2 ≠ ∅, then
(i) C�

g1 ⊆ C�
g2

(ii) Cg2 ⊆ Cg1

3A degenerate metric does not give rise to a cone
according to our definition. Therefore, we analyze them sepa-
rately in Appendix B, where we conclude those systems are not
symmetric hyperbolic.

4By a cone, we mean the interior of a proper cone. Recall
that a proper cone C is a subset of a vector space V such that
ðαuþ βvÞ ∈ V ∀ u; v ∈ V ∀ α; β > 0, and C̄ ∩ −C̄ ¼ ∅.

5For symmetric hyperbolic systems once a symmetrizer is
given we will adopt for all effective metrics the convention that
the future cones are those with a nonvanishing intersection with
the corresponding propagation cone. In the case the system is not
symmetric hyperbolic we shall take into account all cones, two
for each metric, and refer to all of them as cones.

6We choose the interior, so as to make the dual cones open, and
thus put them in an equal footing with the cones Cgi .

7One could in principle redefine the metrics to fix both
signatures in accordance with the convention chosen for the
background metric, but these redefinitions are going to depend
generically on the background fields.
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Proof.—We begin our proof with the following impor-
tant observation:
Lemma 1: The following inequalities appear as alge-

braic consequences of the definitions:

α1β2 ≤ 1 ≤ α2β1: ð18Þ

Indeed, starting from the full expressions,

α1β2 ¼ 1þ 1

2

�
ðFN1 þ GN2Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

1 þ N2
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ G2

p �
α2β1 ¼ 1þ 1

2

�
ðFN1 þ GN2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

1 þ N2
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ G2

p �
;

ð19Þ

and the trivial inequality α2β1 ≥ α1β2, one obtains, after
some simple manipulations,

−ð1 − α1β2Þð1 − α2β1Þ ¼
1

4
ðGN1 − FN2Þ2 ≥ 0: ð20Þ

The positivity of the left-hand side, together with condition
α2β1≥α1β2, forces the inequalities of the lemma to hold.
We now define two auxiliary quantities which capture

the notion of how much the given cone (or cocone) opens
in any direction orthogonal to the PNDs plane in this
particular frame,

γi ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jαi=βij

p
: ð21Þ

Despite the fact that this is a coordinate-dependent notion,
it allows us to compare the cones and tell which of them is
included in the other. The latter statement has a well-
defined geometrical meaning and directly extrapolates to
any other frame. The argument goes as follows. The
assumption Cg1 ∩ Cg2 ≠ ∅ translates into

signðΩ1Þ ¼ signðΩ2Þ or equivalently

0 < Ω1Ω2 ¼ α1β2α2β1; ð22Þ

which, together with (18), implies α1β2 > 0 and, conse-
quently, γ1 ≤ γ2. Now, suppose Ω1 > 0 and Ω2 > 0, and

consider a continuous transition from a timelike to a
spacelike covector (with respect to the effective metrics)
parametrized by x ∈ ½0; 1� in the form

naðxÞ ¼ ð1 − xÞð1; 0; 0; 0Þ þ xð0; cosϕ; sinϕ; 0Þ ð23Þ

with ϕ ∈ ½0; 2πÞ. The idea is to find x1 and x2 such that the
covector becomes null, i.e, gabi naðxiÞnbðxiÞ ¼ 0ði ¼ 1; 2Þ.
The solutions are given by

xi ¼
1

1þ γ−1i
; ð24Þ

which determines x1 ≤ x2. Conversely, assuming Ω1 < 0
and Ω2 < 0, we consider the family

naðxÞ ¼ ð1 − xÞð0; 0; 0; 1Þ þ xð0; cosϕ; sinϕ; 0Þ

and get precisely the same answer, i.e., x1 ≤ x2. This allows
us to conclude that C�

g1 ⊆ C�
g2 as claimed in (i). To prove

(ii), we basically apply the same strategy. Instead of using
the reciprocal effective metrics, we now look at the
covariant objects giab, and the relevant quantities become
γ�i ≔ γ−1i . One then concludes that our previous inequality
is inverted, i.e., x1 ≥ x2. The latter directly leads us to the
desired result (ii). ▪

2. Degenerate Fab

For a degenerate 2-form, the two null directions collapse
into a single one (see Fig. 2). Roughly, this means that
either the cones do not intersect each other or one of them
is included in the other.8 Again, we refer the reader to
Appendix A for more details on frames. In particular, one
can reduce the metrics and inverses to

giabt
atb ¼ ðt20 − t23Þ þ ε4biðt0 − t3Þ2 − ðt21 þ t22Þ

gabi nanb ¼ ðn20 − n23Þ − ε4biðn0 þ n3Þ2 − ðn21 þ n22Þ ð25Þ

FIG. 1 (color online). Nondegenerate case. Possible configurations for the null surfaces of the metrics: g1ab (red), g2ab (blue), and
background metric (meshed gray). (a) Ω1 > 0andΩ2 > 0, (b) Ω1 > 0andΩ2 < 0, (c) Ω1 < 0andΩ2 < 0.

8This do not exclude the possibility they coincide.
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with ε ≠ 0 a free parameter, a remaining freedom in our
frame choice that we will fix in a convenient way later on.
Note that when bi ¼ 0 the effective metric reduces to a
background metric.
Proposition 3: For adegenerateFab, the effective cones

always intersect among each other, i.e, C�
g1 ∩ C�

g2 ≠ ∅, and
also with the background metric i.e., C�

g1 ∩ C�
g2 ∩ C�

η ≠ ∅.
Furthermore, (i) C�

g1 ⊆ C�
g2 (ii) Cg2 ⊆ Cg1 .

Proof.—First, we want to see whether there is a non-
empty intersection among the effective cocones. The idea is
to choose the parameter ε “sufficiently small” so as to
construct an explicit timelike covector with respect to both
reciprocal effective metrics
Lemma 2: If ε4 < mini¼1;2ðjbij−1Þ, there exists a

covector which is timelike with respect to both reciprocal
effective metrics.
Proof.—Let us consider, in the present frame,

four linearly independent covectors: τa ¼ ð1; 0; 0; 0Þ;
xa ¼ ð0; 1; 0; 0Þ; ya ¼ ð0; 0; 1; 0Þ; za ¼ ð0; 0; 0; 1Þ. One
obtains

gabi τaτb ¼ ð1 − ε4biÞ > 0

gabi xaxb ¼ −1gabi yayb ¼ −1

gabi zazb ¼ −ð1þ ε4biÞ < 0:

Therefore, there exists a common timelike covector τa, and
thus C�

g1 ∩ C�
g2 ∩ C�

η ≠ ∅. ▪
To prove (i), we proceed along the same lines as in the

nondegenerate case. First, from the definitions of b1 and b2,
there follows b2 ≤ b1. We then consider a continuous
transformation from a timelike to a spacelike covector,
parametrized by x ∈ ½0; 1� in the form

naðxÞ ¼ ð1 − xÞτa þ xza ð26Þ

with τa and za as defined above. Again, we look for x1 and
x2 within the range ½0; 1�, for which the covector becomes
null with respect to both metrics, i.e, gabi naðxiÞnbðxiÞ ¼ 0

(for i ¼ 1; 2). Then,

xi ¼
1 − ε4bi

2
; ð27Þ

which implies x1 ≤ x2. Consequently, C�
g1 ⊆ C�

g2 .
9 We

remark that (ii) can be easily obtained along the same
lines. ▪

III. HYPERBOLIZATIONS

To analyze the evolutionary properties of the system (3)
more closely, we shall recast it in the geometrical frame-
work suggested by Geroch [26],

KA
m
αðx;ΦÞ∂mΦα þ JAðx;ΦÞ ¼ 0; ð28Þ

where KA
m
αðx;ΦÞ is called the principal part and JAðx;ΦÞ

stands for semilinear contributions (the explicit form of
which is unnecessary for our discussion here). In this
expression, capital Latin indices, A, stand for the space of
tensorial equations; lower Latin indices,m, stand for space-
time indices; and Greek indices, α, stand for for multi-
tensorial unknowns.
Remark 3: Typically, smooth solutions of (28) are

interpreted as cross sections ΦαðxÞ over a smooth fiber
bundle B, with points κ ¼ ðxa;ΦαÞ, and we interpret the
fiber over xa as the space of allowed physical states at xa,
i.e., as the space of possible field values at that point.
Definition 1: By a hyperbolization of (28) over a

submanifold S ∈ M, we mean a smooth symmetrizer
hAα such that:
(1) the field hAαKA

m
β is symmetric in α; β in S

(2) there exists a covector nm ∈ T�S such that
hAαKA

m
βnm is positive definite.

FIG. 2 (color online). Degenerate case. Possible configurations for the null surfaces of the metrics: g1ab (red), g2ab (blue), and the
background metric (meshed gray). (a) 0 < b2 ≤ b1, (b) b2 < 0 < b1, (c) b2 ≤ b1 < 0.

9Notice that, in order to conclude this, it is enough to start from
the common timelike covector and “move” in any direction, since
we already know there is one (and just one) common null
direction among the effective metrics. Thus, we argue it is not
possible to find different results in different directions. As
observed in the beginning of this section, once they have a
nonempty intersection, one of the cones must be included on the
other.
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If a system of first-order PDEs admits a symmetrizer
satisfying the above conditions, we say that it is symmetric
hyperbolic.
Once a hyperbolizer exists, standard theorems apply,

and we know that, given any smooth data in a hypesurface
such that na is normal to it, a local solution for it would
exist. Notice that, since the set of covectors na for which
the hyperbolizer is positive is open, we can always choose
them in a neighborhood of a point so that they are surface
forming. We introduce also, for later convenience, the
notion of physical propagation in this context. We denote
by C�

H the collection of all covectors na satisfying

condition (2) above. Then, C�
H is a nonempty open

convex cone.
Definition 2: The “signal-propagation directions” will

be given by all tangent vectors pa, such that pana > 0,
∀na ∈ C�

H. The set of pa also forms a (nonempty) closed
convex cone denoted by CH, the “dual cone” of C�

H.
Remark 4: These cones could depend, in principle, on

the hyperbolization selected. But it turns out that, for most
physical examples, these cones are essentially independent
of hyperbolization.
For NLED, we declare Φα → Fbc, and a closer inspec-

tion of (3) allows us to read off the principal symbol

KA
m
α →

�
−½gambc þ Fa

mðξ1Fbc þ ξ2Fbc

� Þ þ Fa
m

� ðξ2Fbc þ ξ3Fbc

� Þ�; 1
2
ηa

m
bc

�
; ð29Þ

with gabcd ≔ 1
2
ðgacgbd − gadgbcÞ. In what follows, we shall

see that symmetric hyperbolicity holds for NLED under
some basic assumptions. Basically, the latter are conditions
on the Lagrangian, its derivatives, and field strengths.

A. Symmetrizer

Our first task is to find a symmetrizer for (29). In other
words, we look for an hAα such that δΦαðhAαKA

m
βÞδΦ̂β

is symmetric in δΦ and δΦ̂. Making the identifications
δΦα → Xab and δΦ̂α → Yab, with Xab and Yab arbitrary
antisymmetric tensors, one has

KA
m
βδΦ̂

β ¼ ð−½Ya
m þ AYFa

m þ BYFa
m

� �; Ya
m

� Þ; ð30Þ

where

AY ≔ ½ξ1ðF:YÞþξ2ðF
�
:YÞ� BY ≔ ½ξ2ðF:YÞþξ3ðF

�
:YÞ�

ð31Þ

and X:Y ≡ XabYab. Note that the above relations depend
on the background field, the background metric, and the
particular Lagrangian theory. It is natural to expect that hAα
depends also on these quantities. Also, when the theory is
linear, i.e., AY ¼ BY ¼ 0, we know that

hAαδΦα ¼ ðXa
q;−Xa

q

� Þtq; ð32Þ

where tq is an auxiliary smooth vector field. Therefore, the
full nonlinear symmetrizer must i) reduce to (32) in the
linear case and ii) depend on at least one smooth vector
field tqðxÞ. We claim that it is given by the formula

hAαδΦα ¼ ðXa
q;−Xa

q

�
− AXFa

q

� þ BXFa
qÞtq: ð33Þ

To show that it is indeed a symmetrizer, we first multiply
(33) by (30). It follows that

δΦαðhAαKA
m
βÞδΦ̂β ¼ ð−Xa

qYa
m − AYXa

qFa
m − BYXa

qFa
m

�
− Xa

q

�
Ya

m
�

−AXFa
q

�
Ya

m
� þBXFa

qYa
m

� Þtq:

Recalling that any pair of antisymmetric tensors satisfies

Xaq
�

Yam

� ¼ −
1

2
ðX:YÞδmq þ XamYaq; XaqYam

� ¼ 1

2
ðX� :YÞδmq − Xam

�
Yaq; ð34Þ

we obtain

δΦαðhAαKA
m
βÞδΦ̂β ¼ ðMq

m þ Nq
m þ Lq

mÞtq; ð35Þ

with
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Mq
m ¼ þðXq

aYq
m þ Yq

aXa
mÞ þ 1

2
ðX:YÞδqm;

Nq
m ¼ −ðAYXq

a þ AXYq
aÞFa

m − ðBYXa
q þ BXYa

qÞFa
m

�
;

Lq
m ¼ þfξ1ðF:XÞðF:YÞ þ ξ2½ðF

�
:XÞðF:YÞ þ ðF� :YÞðF:XÞ� þ ξ3ðF

�
:XÞðF� :YÞgδqm=2;

which are symmetric quantities in X and Y. Note that this
result is general and does not depend on the specific form of
the Lagrangian. Note also that the symmetrizer splits into a
main term, which coincides with Maxwell’s symmetrizer
and two nonlinear terms involving the background 2-form
and its dual.

B. Positive definiteness

We now investigate when the symmetrizer constitutes a
hyperbolization of the equations of motion. For the sake of
conciseness, let us define the symmetric object

Hαβðt; nÞ≡ hAαðtÞKA
m
βnm: ð36Þ

We emphasize here the linear dependence of this object
with respect to both the vector ta (in the symmetrizer) and
the covector nm, a fact that will be important later on. We
shall see that the admissible range for the quantities ðtq; nmÞ

has a nice geometrical interpretation in terms of the
effective metrics.
According to our previous definition, the system will be

symmetric hyperbolic if Hαβðt; nÞ constitutes a positive
definite bilinear form, i.e.,

ΦαHαβðt; nÞΦβ > 0; ð37Þ
for any nonzeroΦα. Here,Φα represents an arbitrary 2-form
and as such can be thought of as a vector in R6. Therefore,
the family of symmetric maps Hαβðt; nÞ∶R6 → R. One can
build a natural basis for this space by taking the six possible
antisymmetrized pairs of basis elements in T�

pM.
From (35), we get

Hαβðt;nÞ¼Hαβðt;nÞjMþHαβðt;nÞjNþHαβðt;nÞjL: ð38Þ

A tedious but straightforward calculation yields

Hαβðt; nÞjM ¼ ðgabq½cδmd þ gcdq½aδmb� þ gabcdδmq�Þtqnm;
Hαβðt; nÞjN ¼ ððξ1Fab þ ξ2Fab

� Þgq½cFd�m þ ðξ1Fcd þ ξ2Fcd

� Þgq½aFb�m

þ ðξ2Fab þ ξ3Fab

� Þgq½cFd�m
� þ ðξ2Fcd þ ξ3Fcd

� Þgq½aFb�m
� Þtqnm;

Hαβðt; nÞjL ¼ 1

2
ðξ1FabFcd þ ξ2ðFab

�
Fcd þ Fab

�
FcdÞ þ ξ3Fab

�
Fcd

� Þðt:nÞ:

We now address the following. What are the conditions
on the particular NLED theory (and fields) in order to have
at least a pair ðta; naÞ satisfying the positivity requirement
(37)? Among the symmetric hyperbolic cases, what are the
sets of admissible ta giving rise to a hyperbolization, and
what are the associated propagation cones? The answers to
these questions are provided by the following theorems.
Theorem 1: The system is symmetric hyperbolic if

and only if the effective cones (cocones) have a nonempty
intersection, i.e., Cg1 ∩ Cg2 ≠ ∅ (C�

g1 ∩ C�
g2 ≠ ∅). This will

be the case whenever

α1β2 ¼ 1þ 1

2

�
ðFN1 þ GN2Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

1 þ N2
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ G2

p �
> 0: ð39Þ

The strategy behind our proof is as follows: write
Hαβðt; nÞ in a preferred representation, and build a mixed

matrix Tα
β (by means of an auxiliary Riemannian inner

product pαβ of R6), such that

Hαβ ¼ pαγTγ
β: ð40Þ

In particular, we choose pαβ ¼ δαβ, with δαβ the six-dimen-
sional Kronecker delta. We then look for the positiveness of all
the eigenvalues of Tα

γ which is essentially equivalent to the
positive definiteness of Hαβ.

10 It turns out that the above

10The reason to introduce pαβ is simply because it only makes
sense to talk about eigenvalues when the operator acts from one
vector space to itself. It might sound like a rather technical
subtlety, but is not, since there is not a unique (or natural) metric
to raise the index here. There is an arbitrariness involved on the
inner product, and the resulting eigenvalues are not going to be
covariantly definded in general; one is implicitly introducing a
coordinate dependence on the election of a particular pαβ.
Nevertheless, the positive character of the eigenvalues is in fact
invariant, and it will guarantee the positive definiteness ofHαβ, as
long as pαβ is an inner product.
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requirement imposes a restriction on the allowed values of the
background invariants (and on the theories, through ξi); such
restriction is precisely (39), and it is equivalent to the statement
that the effective cones do intersect each other. This result
reveals an interesting geometrical aspect of NLED regarding
hyperbolicity. Also, it provides a simple diagnostic tool for
computing whether such a geometrical property holds in a
particular situation. Note that (39) is a local condition which
contains information on the particular theory but also depends
on the background solution and space-time point one is
looking at. Thus, it might be possible to have theories which
are symmetric hyperbolic only for a reduced subset of field
configurations.
Theorem 2: A theory satisfying (39) admits a collec-

tion of symmetrizers parametrized by vectors ta such that
ta ∈ Cg1 ∩ Cg2 ¼ Cg2 . Regardless of the particular choice,
the resulting propagation coneCH is given by the closure of
the union of the effective cones, i.e, CH ¼ C̄g1∪C̄g2 ¼ C̄g1 .
The starting point underlying the second proof is the

construction of an explicit pair (tao; noa) satisfying the positivity
condition. We then show this particular couple necessarily lies
in the intersections of the cones (cocones) engendered by the
effective metrics. Then, by looking at the determinant of Tα

γ ,
we will argue how much we can extend the vector tao and the
covector noa without losing the positive character of the
eigenvalues. It turns out that the limits for extending them
are just the closures of the above-mentioned intersections.
Finally, once one finds all possible covectors na, a simple
computation yields the propagation coneCH, which we find to
be CH ¼ C̄g1∪C̄g2 , and, as a consequence of proposition 2,
there follows CH ¼ C̄g1 .

IV. PROOF OF THE MAIN THEOREMS

To begin with, note thatHαβðt; nÞ is linear with respect to ta
and na. Thus, once a pair ðtao; noaÞ satisfying Hαβðto; noÞ > 0

is found, then (by keeping one of them fixed, say tao) there will
exist a neighborhood (around the other, noa) for which
Hαβðto; nÞ will remain positive definite for all n in that
neighborhood. These neighborhoods necessarily define open
and convex sets which characterize them as cones according to
our definition.

A. Nondegenerate Fab

We start by writing Hαβðt; nÞ in a convenient represen-
tation. Our choice is irrelevant from the conceptual per-
spective but important from the operational point of view.
We rely on the same frame used in Sec. II. C and consider
as a basis for R6 all antisymmetrized pairs of the covectors
τa; xa; ya; za (see Appendix A). A well-established alge-
braic result [56] states that the positive definiteness of
Hαβðt; nÞ is equivalent to the positivity of all eigenvalues of
a matrix Tα

β, related via (40), for any Riemannian inner
product pαβ.

Thus, we seek for a specific pair ðtao; noaÞ, rendering all
eigenvalues positive. Unfortunately, we were not able to
explicitly calculate them for the most general pair.
However, assuming that tao and noa lie within the plane
defined by the principal null directions, calculations sim-
plify considerably. In the chosen frame, this hypothesis is
equivalent to

tao ¼ ðt0; 0; 0; t3Þ ; noa ¼ ðn0; 0; 0; n3Þ:

For such pairs, the six eigenvalues λi were computed using
Mathematica and are given by

λ1;2 ¼ ðn0 − n3Þðt0 þ t3Þ
λ3;4 ¼ ðn0 þ n3Þðt0 − t3Þ
λ5 ¼ ðn0t0 þ n3t3Þα1α2
λ6 ¼ ðn0t0 þ n3t3Þβ1β2:

Consequently, λ5 and λ6 will be positive if
signðα1α2Þ ¼ signðβ1β2Þ. Equivalently, we have

0 < α1α2β1β2 ¼ Ω1Ω2:

These relations imply the following: i) signðΩ1Þ ¼
signðΩ2Þ, which, as we have seen, means that the two
cones have a nonempty intersection, and ii) recalling that
α1β2 ≤ 1 ≤ α2β1 (from Lemma 1 in Sec. II. C), one has
α1β2 > 0, which is precisely expression (39) from Theorem
1. Under these assumptions, there are only two possible
cases to analyze: Ωi > 0, which corresponds to Fig. 1a
(Sec. II. C), and Ωi < 0, as illustrated in Fig. 1c. These two
cases are considered separately below:
(1) If Ωi > 0, we choose tao ¼ ð1; 0; 0; 0Þ and

noa ¼ ð1; 0; 0; 0Þ. And we get

λ1;2;3;4 ¼ 1 ; λ5 ¼ α1α2 > 0 ; λ6 ¼ β1β2 > 0:

(2) If Ωi < 0, we choose tao ¼ ð0; 0; 0; 1Þ and
noa ¼ ð0; 0; 0; 1Þ. Obtaining [once the symmetrizer
is multiplied by ð−1Þ]

λ1;2;3;4 ¼ 1 ; λ5 ¼−α1α2 > 0 ; λ6 ¼−β1β2 > 0:

Thus, we conclude that (39) is a sufficient condition for
the system to be symmetric hyperbolic. To prove it is also
necessary, we still need to justify the restriction of ðtao; noaÞ
to those lying on the PNDs plane. We will return briefly to
complete this part of the proof. For the time being, we now
concentrate on the question regarding how far the neigh-
borhoods of (tao, and noa) can be extended, while still
preserving the positivity condition. We already discard
the spacelike part (with respect to the effective metrics) of
the null plane, for in this case, some eigenvalues become
negative.
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The determinant of Tα
β was calculated using

Mathematica and is given by

detðTα
βÞ ¼ Ω1Ω2ðgab1 nanbÞðgab2 nanbÞðnataÞ2

× ðg1abtatbÞðg2abtatbÞ
¼ λ1λ2…λ6 ð41Þ

for the generic vector ta and covector na. This result is at the
base of the following discussions.
First, notice that the vector tao (and covector noa) we

find above belongs to the intersection of the two cones
(cocones). In other words, tao ∈ Cg1 ∩ Cg2 and
noa ∈ C�

g1 ∩ C�
g2 .

11 Now, whenever an eigenvalue becomes
zero, one of the following must hold: (a) na is a null
covector of either gab1 or gab2 , (b) ta is a null vector of either
g1ab or g2ab, or (c) t

ana ¼ 0.
Proposition 4: If ta ∈ Cg1 ∩ Cg2 and na ∈ C�

g1 ∩ C�
g2 ,

then tana > 0.
Proof.—We rely on previous results from Sec. II. C, in

particular, Proposition 2, which states (i) C�
g1 ⊆ C�

g2 and
(ii) Cg2 ⊆ Cg1 . Thus,

Cg1 ∩ Cg2 ≡ Cg2

C�
g1 ∩ C�

g2 ≡ C�
g1 ⊆ C�

g2 :

It is straightforward to see now that any covector na ∈
C�
g1 ⊆ C�

g2 will satisfy (recalling the definition of dual cone)
that tana > 0, for any vector ta ∈ Cg2.
From this result, we conclude that the set of all the ta for

which the symmetrizer is positive is just Cg1 ∩ Cg2 ≡ Cg2
and similarly that the set of all na is given by
C�
g1 ∩ C�

g2 ≡ C�
g1 . As a corollary, and according to

Geroch’s definition of a propagation cone (we gave in
Sec. III, Definition 2), we find

CH ¼ C̄g1 ≡ C̄g1∪C̄g2 : ð42Þ

This concludes the proof of Theorem 2 for a non-
degenerate Fab. To complete the demonstration of
Theorem 1, we proceed by contradiction.
To show (39) is also a necessary condition for (sym-

metric) hyperbolicity, we assume Cg1 ∩ Cg2 ¼ ∅ and that
there exists a pair ðtao; noaÞ satisfying λi >0; ∀ i¼1;2;::;6.
This will lead us to a contradiction. Indeed, if tao (or noa) lies
outside both cones (cocones), then the resulting set of
allowed vectors (covectors) acoording to (41) does not
configure a convex cone. In fact, Eq. (41) directly implies
that if such a vector (covector) existed one would be able to

keep the positivity of the symmetrizer by reflecting the
corresponding vector through the preferred plane.
However, it turns out that their sum would fall into a part
of the null plane in which the system is not hyperbolic.
Thus, the set of vectors would not characterize a cone
according to our definition, which is a contradiction.
Therefore, both tao and noa must belong to one of their
respective cones/cocones. The contradiction came from
assuming one could find a pair ðtao; noaÞ satisfying
λi > 0; ∀ i ¼ 1; 2; ::; 6 for the cases in which the cones
do not intersect. Thus, Eq. (39) is also a necessary condition
which finishes the proof of THM 1 (for the nondegener-
ate cases).

B. Degenerate Fab

To complete our proofs, we consider here the cases
where the background field is degenerate. It turns out that
these cases are much simpler, since (as we have already
seen) there is always a nonempty intersection of the two
cones. Thus, it only remains to be proven that there exists
a common timelike vector tao and covector noa (respect
to both effective metrics) for which the six eigenvalues
λi of Tα

β are positive. We can do this explicitly, using the
results from Sec. II. C. Recall that a common timelike
vector and covector were found, which in our particular
frame reads

tao ¼ ð1; 0; 0; 0Þ; noa ¼ ð1; 0; 0; 0Þ:
Computing the eigenvalues for this pair, one obtains

λ1 ¼ 1þ ε4jb1j > 0

λ2 ¼ 1 − ε4jb1j > 0

λ3 ¼ 1þ ε4jb2j > 0

λ4 ¼ 1 − ε4jb2j > 0

λ5 ¼ λ6 ¼ 1:

Then, for the second part of the proof, we follow the same
lines as for the nondegenerate case. Notice that expressions
(41) and Proposition 4 also apply in the degenerate case.
In addition, we have provided (in Sec. II C) the analog of
Proposition 2, namely, Proposition 3. Therefore, everything
follows identically as before and as such concludes the
proofs of Theorems 1 and 2.

V. CONSTRAINTS

The symmetrizer hAα may be understood as map from
the space of equations (indexed by “A”) to the space of
unknowns (indexed by “α”). In other words, it selects from
the entire set of first-order equations some combinations of
equations which we can evolve along some direction which
we usually relate to time. What are the remaining equations
the symmetrizer does not capture? For the system to be

11In our frames, this can be seen in a rather direct way for each
of the two situations, namely,Ωi > 0 and Ωi < 0. That is why we
believe it is not necessary to further justify this statement.
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consistent, they should not be of the evolution type, for in
that case, they are either a linear combination of the ones
already selected by the symmetrizer or they would be
incompatible with the previously chosen evolution. In other
words, they must be satisfied automatically once they are
satisfied initially; i.e., they should be what we normally call
the constraints. In Geroch’s formalism, a constraint is a
tensor cAn such that

cAðnKA
mÞ

α ¼ 0: ð43Þ

When this formalism is applied to the equations of nonlinear
electrodynamics, we obtain a linear space of constraints
characterized by vectors ðx; yÞ in R2 of the form
cAn ¼ ðxgan; yganÞ. To check that this cAn does indeed satisfy
(43), we combine it with the principal symbol to obtain

cAnKA
m
α ¼ −x

�
1

2
gnmbc þ Fnmðξ1Fbc þ ξ2Fbc

�
Þ þ Fnm

� ðξ2Fbc þ ξ3Fbc
�
Þ
�
þ 1

2
yηnmbc; ð44Þ

which is antisymmetric in the quantities n and m. The
constraints are complete in the sense that the dimension of
evolution equations provided by the symmetrizer plus the
dimension of constraint equations gives the correct number
of PDEs. Note that, contrarily to KA

m
α, the tensor cAn does

not depend on the electromagnetic field Fab and coincides
with those of the linear theory. We now show that this two-
dimensional system is integrable, i.e., that it satisfies

∇nðcAnKA
m
α∇mΦαÞ ¼ ∇nðcAnKA

m
αÞ∇mΦα

þ∇n∇mðcAnKA
m
αΦαÞ ¼ 0 ð45Þ

identically. The second-derivative term drops out, as a
consequence of (43), and so we are left with an algebraic
equation in the first derivatives, of the form

∂
∂Φβ ðcAnKA

m
αÞ∇mΦα∇nΦβ ¼ 0: ð46Þ

This is an integrability condition for the equations as a
whole. If it holds as a trivial algebraic consequence of the
equations of motion, we say that our constraint is inte-
grable. To show that this is indeed the case for any NLED
derived from a Lagrangian, it is convenient to rewrite the
equations of motion in the form

∇mð ~KA
m
αΦαÞ ¼ 0 ð47Þ

with ~KA
m
α →

1
2
ðLFgambc þ LGηa

mbc; ηambcÞ. Multiplying
by cAn∇n and noting that cAn commutes with the deriv-
atives, we obtain for the left-hand side

∇n∇mðcAn ~KA
m
αΦαÞ: ð48Þ

Now, because cAn ~KA
m
α is also antisymmetric in n and m,

this quantity is identically zero. Thus, Eq. (46) holds
trivially, and the constraints are therefore integrable; i.e.,
they remain true on the whole domain of dependence
provided they were so at the initial time. When the
constraints are integrable, by studying the properties of

the compound hyperbolic PDE system, it follows that all
the well-posed results for symmetric hyperbolic systems
also apply in the presence of constraints.

VI. EXAMPLES

In this section, we discuss several examples illustrating
the power of the results discussed so far. The latter serve
as simple diagnostic tools in testing whether well posed-
ness (hyperbolicity) holds and what the associated
physical propagation cones are. In particular, if
α1β2 > 0, Theorem (1) guarantees a nontrivial intersection
between the effective cones and therefore hyperbolicity.
When this condition is fulfilled, we shall check whether
these cones intersect the background cone or not and
whether the propagation speeds (given by C̄g1) are sub-
or superluminal.
We will perform this analysis based on γ1 for non-

degenerate cases and b1 for degenerate ones. It follows
from Propositions 1 and 2 that: (a) when γ1 < 1, then
C̄ηðor C̄σÞ ⊆ C̄g1 ; (b) when γ1 ¼ 1, then C̄g1 ¼ C̄ηðor C̄σÞ
the effective metric becomes in the background (of a
rotation of it); (c) finally in the sub-luminal case 1 < γ1
then C̄g1 ⊆ C̄η or ðC̄σÞ. Notice that, since all the metrics
share at least one null direction along that direction, all
propagation speeds coincide, so we always have some
directions with speed of light propagation.
For degenerate Fab, the causal structure depends on b1,

therefore, it follows from Propositions 3, there are 3
possibilities: (a) b1 < 0 then C̄g1 ⊆ C̄η; (b) b1 ¼ 0 then
C̄η ¼ C̄g1 ; (c) 0 < b1 then C̄η ⊆ C̄g1 .
In the next examples, we shall use a frame in which ~E∥ ~H

(A3); in that case,
ffiffiffiffiffiffiffiffiffiffiffi
F2þG2

p
−F

4
¼ E2 and

ffiffiffiffiffiffiffiffiffiffiffi
F2þG2

p
þF

4
¼ H2.

A. Born–Infeld
The Born–Infeld theory is the paramount example of

nonlinear electrodynamics. It was proposed to remove the
divergence of the electron’s self-energy at the classical
level. The idea was to use a nonlinear generalization to
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Maxwell’s theory, which deviates from it at very strong
fields. It naturally introduces a cutoff β limiting of
maximum electric fields around a static charge, thus
avoiding the singularity at r → 0. The Lagrangian expres-
sion is

L ¼ β2

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F

2β2
−

G2

16β4

s
þ 1

1
A:

One interesting property of this theory is the absence of
birefringence; since N1 ¼ N2 ¼ 0 [47], the two effective
metrics are identical, and so are the propagation speeds of
all physical modes. In this case, the cones’ intersection is
obvious, and the systems is symmetric hyperbolic. In
addition, the propagation cone is contained in the light
cone of the space-time metric, so propagation speeds are
lower than or equal to the speed of light:

(i) Nondegenerate case F2 þG2 ≠ 0:
Before starting the hyperbolicity analysis, it is

important to note that, when β2 →
ffiffiffiffiffiffiffiffiffiffiffi
F2þG2

p
−F

4
,

∂L
∂F → ∞, and if β2 <

ffiffiffiffiffiffiffiffiffiffiffi
F2þG2

p
−F

4
, then L becomes

complex. Thus, we shall restrict attention to the

range
ffiffiffiffiffiffiffiffiffiffiffi
F2þG2

p
−F

4
¼ E2 < β2, which is consistent

with the original idea of a limited electric field
strength in the Born–Infeld theory.
The effective metrics are conformally related,

gab2 ¼
�
−G2þ16β4þ8Fβ2

4ð2β2þFÞ2
�
gab1 , and it easy to check that

0 < α1β2 ¼ 1 (and 0 < α1α2β1β2 ¼ 1Þ, so, as we
have said, the theory is symmetric hyperbolic.

In addition, Ω1 ¼ 1
Ω2

¼ 4
ð2β2þFÞ2

16ðβ2þH2Þðβ2−E2Þ > 0, and

thus when E2 < β2, the effective metrics have cone
intersections with the background metric. We com-
pute now

γ21 ¼
					
ð1þ H2

β2
Þ

ð1 − E2

β2
Þ

					
and conclude that 1 < γ21, i.e., it is a subluminal case,
and only propagations speeds up that of light are
allowed.
In the limit of weak fields, E2; H2 ≪ β2, γ1 → 1,

and so, as expected, the theory becomes closer to
Maxwell’s.

(ii) Degenerate case F2 þ G2 ¼ 0:
As we have established, degenerate cases are

always hyperbolic, and we can check the cone
intersection. In this case, using (25), gab1 ¼ gab2 , with
b1;2 ¼ − 1

β2
< 0, and the propagation speeds are

lower than light.

B. Toy model 1

The present example, like the Born–Infeld one, has only
one effective metric (N1 ¼ N2 ¼ 0), so it is symmetric
hyperbolic for any value of the fields, but unlike the former,
the effective metric cone never intersects the background
metric cone [see Fig. 1c]. Its Lagrangian is given by

L ¼ F
G
:

The theory is not defined for G ¼ 0 since ξ2; ξ3; a; Q,
and R blow up in this limit, so the degenerate case will not
be discussed.
The effective metric definitions (12) we are using also go

bad at F ¼ 0, but they can be rescaled (see footnote 2) so
that they become finite. We can use these re-scaled metrics
in place of the former ones for this case, and obtain the
same results as before. We obtain ḡab2 ¼ ð− 16

G2Þḡab1 , so they
are conformally related and therefore share the same cone,
implying the system is symmetric hyperbolic. In addition,
Ω̄1 ¼ 1

Ω̄2
¼ −H2E2 < 0, so the effective metrics cone has

no intersection with the background metrics cone. This
implies that initial data must be given in spacelike hyper-
surface, for the effective metrics, and evolution occurs in
their temporal directions. Note however, that the hyper-
surfaces are timelike for the background metric, showing
that this metric does not play any role in the hyperbolicity
properties of the theory.

C. Electrodynamics from Kaluza–Klein theory

We shall analyze three examples introduced in Ref. [57].
The authors start from the Kaluza–Klein metrics in
5 ¼ dþ 1 dimensions and add a Gauss–Bonnet term (that
in five dimensions is not a topological invariant) to the
Einstein–Hilbert action. They arrive at an effective electro-
dynamics theory in d ¼ 3þ 1 dimensions. The resulting
Lagrangian is

L ¼ −
1

4
F þ 1

16
γ

�
ðb − 1ÞF2 −

3

2
G2

�
ð49Þ

with γ a perturbation parameter from the Lagrangian,
associated with Gauss–Bonnet terms, which will be inter-
preted as a function of physical quantities ðe;me;ℏ; cÞ, and
b a parameter associated to a term in the action quadratic
in Ricci scalar. This last parameter is chosen in order to
avoid ghost propagation and will give rise to very different
electromagnetic theories.
The symmetric hyperbolic condition is

α1α2β1β2

¼ ððFð1 − 4bÞγ þ 4Þ2 − ð5γ − 2bγÞ2ðF2 þ G2ÞÞ
ð2Fγ − 2Fbγ þ 4Þ:2 > 0:

We shall check under which conditions this is fulfilled in
the following examples.
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1. Gauss–Bonnet electrodynamics

For this theory, b ¼ 1, and it is interpreted as the first-
order string theory corrections to general relativity [58].
The symmetric hyperbolic condition becomes

α1α2β1β2 ¼ ð1 − 3H2γÞð1þ 3γE2Þ > 0: ð50Þ

Because signðγÞ is not defined, and this gives rise to
different hyperbolicity conditions and different effective
metrics, we need to study each case in particular:
(1) If γ > 0, condition (50) implies H2 < 1

3γ.
(i) Nondegenerate case.—The effective metrics

have cone intersections with background metric
ones because

Ω1 ¼ ð1 − 3H2γÞð1þ 3γE2Þ > 0:

In addition, propagation faster than light is allowed,
and this is so even for the degenerate case, as we will
check,

1 > γ1 ¼
1 − 3H2γ

1þ 3γE2
> 0: ð51Þ

(ii) Degenerate case.

b1 ¼ 3γ > 0:

(2) If γ < 0, the dominant energy condition is satisfied,
and condition (50) implies E2 < 1

3jγj in concordance
with Gibbons and Herdeiro.
The effective metric g1 is conformal to the back-

ground metric, so they have the same cone:
(i) Nondegenerate case.

gab1 ¼ ð1 − 3γH2 þ 3γE2Þηab:

(ii) Degenerate case.

gab1 ¼ ηab:

2. Born–Infeld to second order

For b ¼ − 1
2
and γ ∝ β2, Eq. (49) approximates the Born–

Infeld Lagrangian to second order, so we recover
birefringence:

(i) Nondegenerate case.—The condition for hyperbol-
icity is

α1α2β1β2 ¼
16ð1þ 3γH2Þð1 − 3γE2Þ

ðð1þ 3γH2Þ þ ð1 − 3γE2ÞÞ2 − 3 > 0:

Then, one can prove the last expression is positive
when

1

3
<

ð1þ 3γH2Þ
ð1 − 3γE2Þ < 3:

This implies the nonempty cones intersection of
the background with effective metrics

Ω1 ¼
ð3γH2 þ 3γE2 þ 2Þ2
ð3γH2 − 3γE2 þ 2Þ2

�
3 − ð1þ3γH2Þ

ð1−3γE2Þ
�

�
1þ ð1þ3γH2Þ

ð1−3γE2Þ
� > 0:

Moreover,

γ1 ¼
3 − ð1þ3γH2Þ

ð1−3γE2Þ

1þ ð1þ3γH2Þ
ð1−3γE2Þ

:

In the symmetric hyperbolic range:

If 0 < γ ⇒ 1 < ð1þ3γH2Þ
ð1−3γE2Þ < 3 ⇒ 0 < γ1 < 1 the

theory allows superluminal propagations.
If γ ¼ 0 ⇒ the system reduces to Maxwell theory.

If γ < 0 ⇒ 1
3
< ð1þ3γH2Þ

ð1−3γE2Þ < 1 ⇒ 1 < γ1 the theory

allows only subluminal propagations, except in the
preferred null direction where is luminal.

(ii) Degenerate case.

b1 ¼ 3γ:

If γ > 0, then b1 > 0, and propagations faster than
light are allowed.
If γ ¼ 0, then b1 ¼ 0, and we recover Maxwell’s

theory.
If γ < 0, then b1 < 0, and propagations up to the

speed of light are allowed (the propagation speed
along the unique null direction of Fab will be that
of light).

3. Euler–Heisenberg

For b ¼ 1
7
and γ ∝ α, the fine structure constant, the

Euler–Heisenberg theory becomes the effective Lagrangian
for QED due to one-loop corrections [2]:

(i) Nondegenerate case.

α1α2β1β2 ¼
270�

6ðð7þ3γH2Þ
7−3γE2 þ 1Þ − 63

7−3γE2

�
2

×

�
6

5
−
ð7þ 3γH2Þ
ð7 − 3γE2Þ

�

×

�ð7þ 3γH2Þ
ð7 − 3γE2Þ −

5

6

�
> 0:

Then, the systems is symmetric hyperbolic when

5

6
<

ð7þ 3γH2Þ
ð7 − 3γE2Þ <

6

5
:
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The analysis of the propagation velocity in this case
will not be studied due to its difficulty.

(ii) Degenerate case.

b1 ¼
33

14
γ þ 9

14
jγj

If γ > 0, then b1 > 0, and propagations higher
than light are allowed.
If γ ¼ 0, we recovery Maxwell’s theory.
If γ < 0, then b1 < 0, and propagations up to the

speed of light are allowed.

D. Euler–Heisenberg II

We present another approach given in Ref. [59]; it is
a strong field approximation for the Euler–Heisenberg
action, with the Lagrangian

L ¼ −
1

4
κFjFGjδ2

with κ ¼ E−2δ
c , a critical field, and δ ¼ 1

3
ð e2
4πℏcϵ0

Þ for spinors
QED and δS ¼ δ

4
for scalar QED.

The degenerate cases are not well defined because some
quantities blow up.
For the nondegenerate case, we define

y� ¼ −ð6δ4 þ 44δ3 þ 92δ2 þ 64δþ 16Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ðδþ 2Þ3ð2δþ 1Þ2ð6δ2 þ 5δþ 2Þ

p
2ð16δþ 28δ2 − 9δ4Þ :

Thus, the system is symmetric hyperbolic when we have
the following:

(i) If ð16δþ 28δ2 − 9δ4Þ > 0,

F2

G2
< y−oyþ <

F2

G2
:

(ii) If ð16δþ 28δ2 − 9δ4Þ < 0,

y− <
F2

G2
< yþ:

E. Toy model 2

We consider an arbitrary Lagrangian as function only ofF,

L ¼ LðFÞ:

Then, ξ2 ¼ ξ3 ¼ 0 and b1 ≔ ðξ1 þ jξ1jÞ; b2 ¼ ðξ1 − jξ1jÞ.
(i) Nondegenerate case.—We will see that the hyper-

bolicity condition is

−
1

2H2
< ξ1 <

1

2E2
:

(1) If ξ1 ≥ 0, the systems is symmetric hyperbolic if
0 < α1β2 ¼ 1 − 2ξ1E2; then,

0 ≤ ξ1 <
1

2E2
:

In addition,

γ1 ¼
1 − 2ξ1E2

1þ 2ξ1H2
:

If ξ1 ¼ 0 (and γ1 ¼ 1), the theory behaves as
Maxwellian, the birefringence effect disappears, and
the propagation is given for the background cone. If
0 < ξ1 <

1
2E2, then γ1 < 1, and propagations faster

than speed of light are allowed.
Moreover,

Ω1 ¼ ð1 − 2ξ1E2Þð1þ 2ξ1H2Þ > 0;

then, the effective metric has a cone intersection with
the background metric.

(2) If ξ1 < 0, the systems is symmetric hyperbolic if
0 < α1β2 ¼ 1þ 2ξ1H2,

−
1

2H2
< ξ1 < 0;

and cone propagation is given for the background
cone,

γ1 ¼ 1Ω1 ¼ 1:

(i) Degenerate case.
If ξ1 > 0 then b1 ¼ 2ξ1 > 0 and propagation

faster than light are allowed
If ξ1 < 0 then b1 ¼ 0 the background metrics is

the causal cone.
The particular case L ¼ e

ψ
2
F with ψ ¼ 3

2
γ is similar to the

previous Gauss–Bonnet theory. The hyperbolicity range
coincides under the change E → H and H → E.

VII. CONCLUSIONS

Nonlinear generalization of Maxwell’s theory arises
naturally in many circumstances, some of which were
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discussed in the examples presented above. In most cases of
interest, they are generated from a variational principle
involving aLagrangian functionof the twoLorentz-invariant
scalars one can form fromMaxwell’s tensor. It is well known
that all these theories have a dispersion relation (set of
hyperplanes allowing solutions which are constant along
them) determined by the null vectors of two effective
conformal Lorentzian metrics, which we call gab1 and gab2 .
These cones share a very important property: generically,
they have a pair of null directions in common with the
background metric, and thus a preferred two plane contain-
ing these two vectors is preferred, too [in some degenerate
(nongeneric) cases, these two directions collapse into a
single one]. Since they are null cones of conformal
Lorentzian metrics, we can define their propagation cones,
namely, the coneof all vectors ofwhichnormswith respect to
each one of these metrics are positive definite. The shared
null direction property implies that either the propagation
cones are nested, one inside the other, or they are not, having
no vector in common.
A first question one might ask when one is faced with any

one of such generalizations is whether they are well posed,
namely, whether the solutions are continuous functions of
their initial data. Without this requirement, the theories are
powerless; they do not have any predictive power. Using the
covariant approach to symmetric hyperbolicity introduced by
Geroch, we developed simple criteria for nonlinear electro-
dynamics theories arising fromarbitraryLagrangians to shield
a well-posed system of evolution equations.
The criteria we found are of two kinds, and of course

equivalent to each other. One of them is geometric in nature;
it says that whenever the propagation cones of the two
conformal effectivemetrics haveanonempty intersection the
theories are symmetric hyperbolic. There are two cases here:
in one of them, the conformal metrics propagation cones
have also an intersection with that of the background
relativistic metric, and in the other, this is not the case. As
can be seen from the examples, the Born–Infeld model,
Gauss–Bonnet model, Euler–Heisenberg model, and toy
model II have cone intersection with the backgroundmetric,
and only the toy model I does not. In this second case, the
propagation has the particularity that the propagation is
along spacelike directions with respect to the background
metric; nevertheless, the theory is perfectly causal and has an
initial value formulation in which data must be given along a
timelike (with respect to the background metric) hypersur-
face. Of course, coupling this theory with other fields with
causal propagation along the background metric would
result in an ill-posed system. In addition, in both cases,
one of the propagation cones is always inside the other, so
causality is always given by the cone of the metric with the
largest propagation cone, which, according to our defini-
tions, is alwaysg1ab.Thereare cases inwhich thispropagation
cone strictly contains the backgroundmetric cone, and sowe

have propagation speeds larger than “light,” namely, larger
than those allowed at the background propagation cone. In
other cases, the smaller cone is strictly inside the background
cone, and we have relativistic causality.
The other criteria are algebraic; the cones nonempty

intersection is equivalent to the positivity of the scalar
expression α1β2 which can be explicitly computed from the
Lagrangian function and its derivatives and depends only
on the values of the two Lorentz-invariant quantities.
Whether the biggest of the metrics propagation cones is
contained or contains the background metric cone depends
on whether the quantity γ1 is bigger or smaller than the one
for nondegenerate cases and on b1 being negative or
positive for degenerate cases. The algebraic criteria are
very easy to check in actual examples. It is important to
realize that whether a theory is hyperbolic or not might
depend on the field strength of it (the values the invariant
scalars take), and so along evolution, a perfectly nice
solution might cease to be well posed. Using the algebraic
conditions, one could characterize the set of theories in
which hyperbolicity holds for all values of the field. That
set of theories should be preferred. In addition, there are
some generalizations to nonlinear electrodynamics, for
instance, those that use non-Abelian fields (see, for
instance, Ref. [60]); it would be nice to see how much
of our analysis goes through in these cases.
The proof of the above-mentioned criteria involves the

explicit construction of hyperbolizers; thus, when trying to
evolve the equations of these theories, we provide a set of
evolution equations which can be safely used. The propa-
gation cones of these symmetrizers coincide with the
smaller one of the effective metrics, and so we recuperate
for them the same causality properties as discussed above.
Thus, these hyperbolizations are optimal, and they allow
for all possible hypersurfaces where initial data can
be given.
We also assert that the constraints arising in the theories

are in all cases integrable (in the sense of Geroch). In some
sense, this is so because the constraint structure is close to
the one of Maxwell. This means that in all cases, if they are
satisfied for initial data and the system is hyperbolic, they
remain satisfied along evolution as long as the system
remains hyperbolic and inside the corresponding domain of
dependence.
Notice that at no point do we use energy conditions; this

is so because hyperbolicity depends on second-derivative
conditions of the Lagrangian, while energy conditions
involve only first derivatives. To some extent, energy
conditions are related (through energy-momentum conser-
vation) to causality conditions. Their imposition probably
would prevent those cases in which the effective cones have
no intersection with the space-time cone. But in those
cases, one probably would require a different energy
condition.
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APPENDIX A: FRAMES

To facilitate calculations, we work in a family of
preferred frames; to build it, we use the principal null
directions of Fab. To display it, we use spinors [53–55], but
this is not essential.
We know that in the spinorial form the electromagnetic

field is

Fab → ϵABϕ̄A0B0 þ ϵA0B0ϕAB ðA1Þ
with ϕAB ¼ ϕðABÞ and

ϵAB ¼
�

0 1

−1 0

�

.
1. Nondegenerate case

In the nondegenerate case, ϕAB is characterized by two
different principal null directions,

ϕAB ¼ ϕθðAμBÞ

where θAμ
A ¼ 1 and ϕ is a complex normalization factor.

Using these spinors, we can construct a (complex) null
tetrad,

ka → θAθ̄A0 la → μAμ̄A0

ma → θAμ̄A0 m̄a → θ̄A0μA; ðA2Þ

where kaηablb ¼ 1, maηabm̄a ¼ −1, and all other contrac-
tions vanish.
We observe they are eigenvectors of the electromagnetic

field, namely,

Fa
bkb ¼ ReðϕÞka Fa

blb ¼ −ReðϕÞla
Fa

bmb ¼ iImðϕÞma Fa
bm̄b ¼ −iImðϕÞm̄a:

So, by noticing that F ¼ −ðϕ2 þ ϕ̄2Þ and G ¼ iðϕ2 − ϕ̄2Þ,
it follows that

ReðϕÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−F þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ G2

p

4

s

ImðϕÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ G2

p

4

s
:

Notice G ¼ ReðϕÞImðϕÞ, and so the signs of ReðϕÞ and
ImðϕÞ must be properly fixed according to the sign of G.
Finally, we build our (real) tetrad as

τa ¼ 1ffiffiffi
2

p ðka þ laÞ za ¼ 1ffiffiffi
2

p ðka − laÞ

xa ¼ 1ffiffiffi
2

p ðma þ m̄aÞ ya ¼ iffiffiffi
2

p ðma − m̄aÞ: ðA3Þ

In this frame, the background metric is
ηab ¼Diagð1;−1;−1;−1Þ; τa is timelike, while xa; ya; za

are spacelike vectors. The electromagnetic field and its dual
read

Fij ¼

0
BBB@

0 −E1 −E2 −E3

E1 0 H3 −H2

E2 −H3 0 H1

E3 H2 −H1 0

1
CCCA ¼

0
BBB@

0 0 0 −ReðϕÞ
0 0 ImðϕÞ 0

0 −ImðϕÞ 0 0

ReðϕÞ 0 0 0

1
CCCA

F�
ij ¼

0
BBB@

0 H1 H2 H3

−H1 0 E3 −E2

−H2 −E3 0 E1

−H3 E2 −E1 0

1
CCCA ¼

0
BBB@

0 0 0 ImðϕÞ
0 0 ReðϕÞ 0

0 −ReðϕÞ 0 0

−ImðϕÞ 0 0 0

1
CCCA; ðA4Þ

where it follows that ~E and ~H are parallel, both lying on the za direction. And one can immediately see how calculations will
become simpler by adopting this frame.
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a. Boost freedom

Since the length of the two principal null directions (or
corresponding spinors) is arbitrary, there is a freedom on
the frame choice which does not alter the above form of
Fab. If one considers the transformation θA → 1

ε θA and
μA → εμA, it can be noticed that ϕAB, and therefore Fab,
remains unchanged. Thus, if we choose ε real, the null
tetrad (A2) changes to

k̂a →
1

ε2
θAθ̄A0 l̂a → ε2μAμ̄A0

ma → θAμ̄A0 m̄ → θ̄A0μA; ðA5Þ

and in the new frame,

τ̂a ¼ 1ffiffiffi
2

p ðk̂a þ l̂aÞ ẑa ¼ 1ffiffiffi
2

p ðk̂a − l̂aÞ

xa ¼ 1ffiffiffi
2

p ðma þ m̄aÞ ya ¼ iffiffiffi
2

p ðma − m̄aÞ:

So, this freedom corresponds to a boost in the null plane
defined by the two null directions. The choice of ε
imaginary causes a rotation of the frame components
perpendicular to the null plane form by the two null
directions. Both the metric ηab and Maxwell tensor com-
ponents remain invariant.

2. Degenerate case

As before, the electromagnetic tensor takes the spinorial
form (A1), but now there is just a single null direction
associated to it:

ϕAB ¼ θAθB: ðA6Þ

To complete the frame then, we shall choose an arbitrary
null direction μA, such that θAμ

A ¼ 1, and we proceed
building a null tetrad like in (A5),

ka →
1

ε2
θAθ̄A0 la → ε2μAμ̄A0

ma → θAμ̄A0 m̄ → θ̄A0μA;

where we set kaηablb ¼ 1, maηabm̄a ¼ −1, and in analogy
to the previous case, any other contractions vanish, with ε
being a real positive parameter that we can freely pick up.12

It follows that

Fabkb ¼ 0; Fablb ¼ −ε2ðma þ m̄aÞ;
Fabmb ¼ −ε2ka; Fabm̄b ¼ −ε2ka:

Now, we build the frames as in (A3) and get the following
expressions for Fab and F�

ab:

Fij¼

0
BBB@

0 −E1 −E2 −E3

E1 0 H3 −H2

E2 −H3 0 H1

E3 H2 −H1 0

1
CCCA¼

0
BBB@

0 −ε2 0 0

ε2 0 0 −ε2

0 0 0 0

0 ε2 0 0

1
CCCA

F�
ij¼

0
BBB@

0 H1 H2 H3

−H1 0 E3 −E2

−H2 −E3 0 E1

−H3 E2 −E1 0

1
CCCA¼

0
BBB@

0 0 ε2 0

0 0 0 0

−ε2 0 0 ε2

0 0 −ε2 0

1
CCCA:

Thus, the vectors ~E ¼ ðε2; 0; 0Þ and ~H ¼ ð0; ε2; 0Þ are
orthogonal each other (i.e., G ¼ 0) and have equal norms
(i.e., F ¼ 0), as they should.

APPENDIX B: DEGENERATE
EFFECTIVE METRICS

In this Appendix, we want to show that if one of the two
effective metrics becomes degenerate (noninvertible) then
the system is not symmetric hyperbolic. Such degenerate
cases will occur whenever one of the variables in (16)
becomes zero. From Eq. (18), we see that only the cases
α1 ¼ 0 or β2 ¼ 0 are allowed. When α1 ¼ 0, say, the metric
gab1 will no longer be invertible. However, we stress here
that the determinant from expression (41) still factorizes
into four metrics (gab1 , gab2 , ~g1ab, g

2
ab), where now ~g1abt

atb ¼
β1ðt20 − t23Þ [Fig. 3a] is obviously not the inverse of gab1 .
When β2 ¼ 0, the determinant factorizes into four metrics
(gab1 , gab2 , g1ab, ~g

2
ab), where ~g

2
abt

atb ¼ −α2ðt21 þ t22Þ [Fig. 3b].
We first analyze in detail the case α1 ¼ 0. Suppose for

contradiction there exist noa and tbo such that the matrix
Tα

βðno; toÞ has all its eigenvalues positive, and let us
generically write noa ¼ ðn0; n1; n2; n3Þ. Then, by following
similar arguments to those used on the proofs of the main
theorems, we will reach a contradiction. The construction

FIG. 3 (color online). Null surfaces of the metrics are
illustrated: ~g1ab (red), g2ab (blue), and ηab (gray).
(a) α1 ¼ 0andα2; β1; β2 ≠ 0 and (b) β2 ¼ 0andα1; α2; β1 ≠ 0.

12Notice we strongly rely on this freedom in Sec. II C 2,
particularly on proving Lemma 2.
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goes as follows. we first show it is possible to continuously
connect noa with a second covector, n̂oa ¼ ðn0;−n1;−n2; n3Þ,
without changing along the path the sign of the eigenvalues.
The path we propose is ðn0; n1; n2; n3Þ → ðn0; ϵn1;
ϵn2; n3Þ → ðn0; ϵn1; 0; n3Þ → ðn0; ϵn1;−ϵn2; n3Þ → ðn0; 0;
−ϵn2; n3Þ → ðn0;−ϵn1;−ϵn2; n3Þ → ðn0;−n1;−n2; n3Þ, for
some positive but small parameter ϵ.
Then, as argued at the beginning of Sec. IV, since

both Hαβðno; toÞ and Hαβðn̂o; toÞ will be positive definite,
it turns that Hαβðno þ n̂o; toÞ must be positive definite as
well. But a simple computation shows that

noa þ n̂oa ¼ 2ðn0; 0; 0; n3Þ, which should also be in the
cone, is null for gab1 , and so one of the eigenvalues must
be zero, leading us to a contradiction. Hence, to conclude,
no such pair (noa, tbo) can exist.
The exact same construction (but now with ta) can be

applied when β2 ¼ 0, where one of the effective metrics in
their covariant version degenerates. Thus, the system
is not symmetric hyperbolic for anyof these two “pathological”
cases. However, the last casemight still be strongly hyperbolic,
and we shall study this case in a future work.
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