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Summary

Bacterioplankton communities inhabiting peatlands
have the potential to influence local ecosystem func-
tions. However, most microbial ecology research in
such wetlands has been done in ecosystems (mostly
peat soils) of the Northern Hemisphere, and very little
is known of the factors that drive bacterial community
assembly in other regions of the world. In this study,
we used high-throughput sequencing to analyse the
structure of the bacterial communities in five pools
located in a sub-Antarctic peat bog (Tierra del Fuego,
Argentina), and tested for relationships between bac-
terial communities and environmental conditions.
Bacterioplankton communities in peat bog pools
were diverse and dominated by members of the
Proteobacteria, Actinobacteria, Bacteroidetes and
Verrucomicrobia. Community structure was largely
explained by differences in hydrological connectivity,
pH and nutrient status (ombrotrophic versus
minerotrophic pools). Bacterioplankton communities
in ombrotrophic pools showed phylogenetic cluster-
ing, suggesting a dominant role of deterministic
processes in shaping these assemblages. These cor-
relations between habitat characteristics and bacte-
rial diversity patterns provide new insights into the
factors regulating microbial populations in peatland
ecosystems.

Introduction

Peatlands are ecosystems characterized by high acidity,
low temperatures and low concentrations of mineral nutri-

ents, in which the amount of carbon sequestered in net
primary production, mainly by Sphagnum mosses,
exceeds the amount of carbon lost by decomposition of
organic matter by microorganisms (Dedysh, 2011). Thus,
peatlands are acknowledged as an important sink for
atmospheric CO2, with carbon accumulation rates of
10–30 g C m−2 year−1 and a global carbon pool of 200–
450 Pg of carbon, which constitutes about 30% of the
global soil C pool (Gorham, 1991). Decomposition of
organic matter in deep anoxic peat layers generates
methane (CH4), which diffuses to the surface and is then
partially emitted to the atmosphere, making peatlands a
globally important source of methane (Basiliko et al.,
2013). Furthermore, in addition to their importance in the
terrestrial carbon cycle, these ecosystems hold a key role
in the global water balance, regulating the hydrological
regime of rivers and represent one of the largest reser-
voirs of freshwater (Andersen et al., 2013).

Microbial diversity research in peatlands has shown
these habitats containing highly specific bacterial
communities being dominated by members of the
phyla Acidobacteria, Proteobacteria, Bacteroidetes and
Verrucomicrobia (reviewed in Dedysh, 2011). In these
ecosystems, bacterial communities have been found to
vary along small-scale hydrological and chemical gradi-
ents. For instance, within a given peatland type, dissolved
organic carbon (DOC) content (Lin et al., 2012), as well as
substrate quality and site wetness (Jaatinen et al., 2007),
have been proven to affect the composition of bacterial
communities. Vegetation type also plays an important role
in shaping bacterial communities in peatlands (Bragina
et al., 2012). However, an important limitation is that most
of these researches have been done in a limited number
of peatland ecosystems (i.e. peat soils), mainly situated in
the Northern Hemisphere (see Andersen et al., 2013).
Therefore, more geographically and ecologically diverse
samples (e.g. bog pools) are needed to elucidate the
biogeographic patterns and environmental factors that
shape the structure of bacterial communities in peatland
ecosystems at different spatial scales.

Here we have investigated, for the first time, the bacte-
rial diversity in five freshwater pools located along a
500 m transect in Rancho Hambre peat bog (Tierra del
Fuego, Argentina). Pools are critical habitats for biodiver-
sity in natural peatlands (Mazerolle et al., 2006). Taking
advantage of differences in hydrological connectivity, pool

Received 15 January, 2015; accepted 22 February, 2015. *For
correspondence. E-mail angel.valverde@up.ac.za; Tel. (+27) 012
420 6944; Fax (+27) 012 420 6870. †These authors contributed
equally to this work.

bs_bs_banner

Environmental Microbiology Reports (2015) 7(3), 547–553 doi:10.1111/1758-2229.12287

© 2015 Society for Applied Microbiology and John Wiley & Sons Ltd

mailto:angel.valverde@up.ac.za


morphometry and minerotrophic versus ombrotrophic
status (González Garraza et al., 2012), we addressed the
following questions: (i) Does bacterial community compo-
sition vary within and between pools, and differ from
that of northern peatlands?, (ii) Do variations in bacterial
diversity reflect the underlying environmental conditions
(Table S1)? and, if this is observed, (iii) Are bacterial com-
munities from ombrotrophic (more acidic and hydrologi-
cally isolated) pools more phylogenetically clustered than
those inhabiting minerotrophic pools (less acidic and
interconnected)? Analysis of the degree of phylogenetic
relatedness of taxa found within and between commu-
nities should provide insights into the processes that
organize these communities (Webb et al., 2002). To
answer these questions, we used high-throughput
barcode amplicon pyrosequencing and a set of multivari-
ate statistic tools.

Results and discussion

We have investigated bacterial diversity patterns in five
pools from a sub-Antarctic peat bog located in Tierra del
Fuego, Argentina (see Appendix S1). A total of 897 bac-
terial operational taxonomic units (OTUs, sequences
binned at a 97% similarity cut-off) were identified in
30 225 sequences (2015 per sample, n = 15): an average
of 109 ± 5 OTUs [mean ± standard error (SE)] per sample
(Fig. S1). A collector’s curve of the number of OTUs per
sample revealed that additional bacterial taxa are likely to
appear with every additional sample (Fig. S2). The total
size of the bacterial OTU pool was estimated to be
1764 ± 111 OTUs (mean ± SE of Chao1 estimator of total
OTU pool richness). Minerotrophic (less acidic) pools
(RH1, RH4) typically had higher bacterial diversity than
ombrotrophic (more acidic) pools (Fig. S1), although dif-
ferences were statistically significant only for Shannon
and inverse Simpson indices (paired t-test, P < 0.05),
which agrees with previous results from other peatland
environments (Opelt et al., 2007; Peltoniemi et al., 2009;
Lin et al., 2012).

Thirteen phyla were detected across all samples
(Fig. S3), of which Proteobacteria (51% of all
sequences), Actinobacteria (22%), Bacteroidetes (15%)
and Verrucomicrobia (7%) where the most abundant, con-
stituting 95% of the sequences. These four phyla have
been shown to be widely distributed in Sphagnum-
dominated wetlands (Juottonen et al., 2005; Dedysh
et al., 2006; Morales et al., 2006; Hartman et al., 2008;
Ausec et al., 2009; Kanokratana et al., 2011; Pankratov
et al., 2011; Bragina et al., 2013), although their relative
abundances appear to vary across ecosystems.

In contrast to those studies, although detected, we did
not find members of the Acidobacteria to be important
components of the freshwater bacterial communities,

more likely because of large differences in habitat char-
acteristics (peat soil versus water material). Indeed, bac-
terial communities were found to shift in composition
along the landscape from peat communities dominated by
Acidobacteria to freshwater communities dominated by
Actinobacteria (Kulichevskaya et al., 2011). In spite of
this striking difference, the overlap between peat soil
and freshwater bacterial communities support previous
findings obtained across soil, sediment, stream and lake
habitats, which suggest that aquatic environments are
strongly coupled to terrestrial ecosystems through hydro-
logical networks (Crump et al., 2012, and references
therein).

The vast majority of the taxa found were rare, with
72% of OTUs occurring in a single sample (Fig. S4).
Nevertheless, common and abundant bacterial phylo-
types were also detected. Ten bacterial OTUs belonged
to two phyla that were present in 80% or more of the
samples, representing 1.1% of the bacterial taxonomic
diversity but 53% of sequences (Fig. 1). These phyla
were Proteobacteria (38% of all sequences, mostly
Betaproteobacteria) and Actinobacteria (12%). The
most abundant individual OTUs that could be classified
in the ‘core microbiome’ at the genus level were
Polynucleobacter (11%, Betaproteobacteria) and Novo-
sphingobium (3%, Alphaproteobacteria). Members
of the genera Mucilaginibacter (Bacteroidetes), Flavo-
bacterium (Bacteroidetes) and Limnohabitans (Betapro-
teobacteria) were also abundant (representing 7%, 3%
and 1% of all sequences, respectively), but were found in
a lower number of samples (Fig. 2).

Knowledge is scarce about the specific ecology of
these microorganisms in peatland ecosystems. Many of
the bacterial taxa identified are not available in pure
culture, which hampers determination of their physio-
logies and consequently assessment of their functional
roles in these environments. Nevertheless, bacterial
strains affiliated to Polynucleobacter, namely Polynu-
cleobacter necessarius, have been reported to occur as
obligate endosymbionts of ciliates (subsp. necessarius)
[commonly found in the Rancho Hambre water bodies
(Quiroga et al., 2013)], and also as free living strains
(subsp. asymbioticus). The complete genomic sequence
of both subspecies has shown the inability of either living
forms to exploit sugars as carbon or energy sources or to
perform nitrification, denitrification or nitrogen fixation
(Boscaro et al., 2013). Conversely, the free-living form
can perform the assimilatory reduction of nitrate and
assimilate sulphur and sulphate.

Members of the genus Limnohabitans, highly wide-
spread in freshwater food webs, have been ascribed
a prominent role in the transfer of DOC from both
autochthonous and terrestrial sources to the top trophic
levels (Kasalický et al., 2013; Šimek et al., 2013). Most
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Bacteroidetes (i.e. Flavobacterium and Mucilaginibacter)
have the ability to use a broad range of biopolymers,
particularly polysaccharides and proteins (Thomas et al.,
2011), and it has been proposed that a primary role for
Flavobacteria is the conversion of high molecular weight
(HMW) compounds into low molecular weight com-
pounds (Teeling et al., 2012). Indeed, analysis of DOC
quality in Rancho Hambre pools revealed the predomi-
nance of coloured, aromatic, HMW compounds (Quiroga
et al., 2013), as found in other bog ecosystems
(Hodgkins et al., 2014). Several Novosphingobium
strains seem to have the capacity to degrade phenolic
compounds from Sphagnum-derived litter (DeAngelis
et al., 2013).

Interestingly, all OTUs belonging to Limnohabitans and
Flavobacterium were found exclusively in minerotrophic
pools (Fig. 2), which agrees with the fact that these
genera strongly prefer non-acidic habitats (Šimek et al.,
2010). In direct contrast, members of the Mucilagini-
bacter, which are reported to grow in a wide range of pH
(Pankratov et al., 2007), were only found in ombrotrophic
pools. Whether or not this lack of co-occurrence is due to
biological interactions (e.g. competition or predation) or
species-specific habitat associations deserves future
investigation. All in all, the results suggest that there is a
high degree of niche specialization among these taxa and
that they play an important role for nutrient cycling in
peatland limnetic ecosystems.

Bacterial communities in a given pool were highly
similar and significantly different from those in other
pools (Analysis of Similarity (ANOSIM) R = 1, P < 0.001).

The inverse of Whittaker’s β-diversity measure, in which
mean within-pool diversity (α-diversity) is divided by
overall regional diversity (γ-diversity), was close to 0
(Whittaker’s β−1 = 0.12), indicating that between-pool
diversity contributed more to total diversity than within-
site diversity (Anderson et al., 2011). Variation in bacte-
rial community structure was related to pH, ammonium,
phosphate and total nitrogen. Based on Bray–Curtis dis-
similarities, a permutational multivariate analysis of vari-
ance (PERMANOVA) found each of these four factors to
be significant in structuring pool bacterial communities
(PERMANOVA: P < 0.01; combined coefficient of deter-
mination R2 = 0.69). pH explained most of the variation
(R2 = 0.25), followed by total N (R2 = 0.20), ammonium
(R2 = 0.14) and phosphate (R2 = 0.10). As pH can be
considered a ‘master variable’ for the chemical state of
aquatic ecosystems that influences and is influenced by
other variables (Blodau, 2006), we cannot determine
whether pH has a direct or indirect effect on these com-
munities. Notwithstanding that the amount of community
variation explained by each factor was conditional on the
distance metric used, these four factors always remained
significant (data not shown).

A non-metric multidimensional scaling plot confirmed
the strong effect of these factors in the assembly of bac-
terial communities (Fig. 3), and grouped pools according
to their trophic status, that is, minerotrophic (RH1 and
RH4) versus ombrotrophic (RH2, RH3 and RH5), as
described in González Garraza and colleagues (2012).
When pH, ammonium, phosphate and total N were fitted
to linear vectors in the ordination space, these vectors
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Fig. 1. Phylogenetic assignment and sequence distribution of ‘core’ OTUs (97% cut-off). Taxonomic assignments are the finest level that
passed the Ribosomal Database Project classifier’s (80% confidence threshold).
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were highly correlated with the placement of water pool
centroids (pH: r2 = 0.60, P < 0.01; ammonium: r2 = 0.79,
P < 0.01; phosphate: r2 = 0.95, P < 0.01; total N:
r2 = 0.78, P < 0.01). Strong relationships between pH,
nutrient concentrations and bacterial community compo-
sition have been observed in other wetlands (Hartman
et al., 2008), and suggest environmental filtering (Wang
et al., 2013). Indeed, environmental filtering seems to
shape bacterial communities in some ombrotrophic
pools (i.e. RH3 and RH5) (Fig. 4), as we were able to
detect phylogenetic clustering using ecological null
models (Kembel, 2009). The link between bacterial
phylogenetic clustering and ombrotrophic status
(SES.MPD = −3.1 ± 0.1, SES.MNTD = −1.6 ± 0.1; both
P < 0.05) indicates that the prevailing conditions of these
pools act as a stronger ecological filter compared with
those of minerotrophic pools (SES.MPD = 0.5 ± 0.2,
SES.MNTD = −0.6 ± 0.2; both P > 0.05). Habitat filtering
has also been proposed as the major mechanism

explaining bacterial community assembly in a peaty
acidic soil (Felske et al., 1998).

Ombrotrophic environments are hydrologically isolated
from the surrounding landscape and characterized by
acidic pH and low nutrient values (Wheeler and Proctor,
2000). Both environmental conditions and spatial isolation
can cause phylogenetic clustering in bacterial commu-
nities (Horner-Devine and Bohannan, 2006; Bryant et al.,
2008; Stegen et al., 2013), and suggest that habitat het-
erogeneity can contribute to observable biogeographic
patterns in microbial communities at limited (within-
peatland) spatial scales. It is important to note, however,
that habitat filtering (abiotic factors and biotic interac-
tions), together with differential dispersal (connectivity
among communities as a result of water run out and
physical barriers) and ecological drift (stochastic changes
in the relative abundance of taxa), likely act in concert
(Vellend, 2010; Stegen et al., 2013) to produce the bac-
terial communities studied here.

Fig. 2. Heatmap displaying the most abundant genera for ombrotrophic and minerotrophic samples. Pools are clustered based on the percent
relative abundance of the 23 genus; phylum level classifications shown as rows in this figure. Each row was scaled so that the mean of each
taxonomic group across samples was calculated and coloured by corresponding z-score of each cell.
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Fig. 4. Standardized effect sizes of MPD (SES.MPD) and MNTD (SES.MNTD) for bacterioplankton communities. Asterisks indicate significant
results (P < 0.05).
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sequence data generated in this study were deposited in
the NCBI Sequence Read Archive and are available under
the project number SRP050278. A supplementary table con-
taining sample metadata conforming to MIMARKS standards
is also provided (Table S1).
Fig. S4. Frequency histogram: number of bacterial OTU
(97% cut-off) that occurred in each sample (of 15 possible).
Table S1. Metadata, including the chemistry of the samples,
conforming to MIMARKS standards.
Appendix S1. Materials and methods.
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