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ABSTRACT

Farmers’ perceptions of climate variability is compared with the sensitivity of observed yields for wheat,

maize, soybean, and sunflower crops to interannual and intra-annual climate variability in two districts (Junín
and San Justo) in central Argentina from the 1970s. A recent transition occurred here betweenmixed crop and
livestock farming to a more specialized system, dominated by transgenic soybean combined with glyphosate.
According to the ethnographic fieldwork, farmers ranked drought first and flood second as the main adverse
climate factors in both districts. Overall, the farmers’ representations fit rather well with the observed re-

lationships between interannual variability of yields and rainfall, especially in Junín. The adverse impact of
long-lasting dry spells, especially during the first half of the crop cycle, is usually combined with themore linear
impact of large rainfall amounts (anomalously positive/negative rainfall amounts associated with anomalously
positive/negative yields) during the second half of the crop cycle. This relationship is strong for soybeans,
similarly large for maize, far weaker for wheat, and reversed for sunflower, which is the only crop that benefits,
on average, from anomalously low rainfall amounts at a specific stage of the crop cycle. The adverse effect of
flood on soybeans andmaize seems less phase-locked andmore diluted across the crop cycle. This paper presents
the argument that climate and society have a complex relationship, requiring an integrated analysis of the social
context, people’s perceptions of climate, and scientific climate knowledge. The concept of ‘‘climate social

significance’’ is proposed in order to highlight the strategies implemented by different socioproductive groups

to address adverse climate events.

1. Introduction

The relationship between climate and how it is

understood by local communities is characterized as

‘‘perception,’’ lending this subject to subjectivity analysis

(Leiserowitz 2005, 2007; Schlindwein et al. 2011; Bonatti

2011; Boulanger 2012; Aberra 2012). The studies usually

begin with a questionnaire to evaluate the climatic ef-

fects on various socioeconomic sectors. For example,

farmers are asked to identify the climatic characteristics

they use to establish their agricultural calendar. These

surveys are then compared with climate variability so

that climate experts can assess the accuracy of the per-

ceptions. Therefore, surveys are important for analyzing
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the most important climatic factors affecting perceived

vulnerability, such as the major impact of drought on

most famines in Kenya (Speranza et al. 2008). In a sim-

ilar climatic context, Tanzanian farmers ranked drought

as their major productivity-reducing problem, but they

also scaled drought vulnerability according to different

soils and land uses (Slegers 2008). In Senegal, Mertz

et al. (2009) found that farmers did not assign climate

factors as the main reason for livelihood change. Nev-

ertheless, they identified strong winds and occasional

excessive rainfall as the most destructive climate factors.

Similarly, in central-south Senegal, Tschakert (2007)

showed that climate also did not directly appear in peo-

ple’s risk assessments. In contrast, Thomas et al. (2007)

demonstrated that trends and variations in precipitation

parameters, including intraseasonal characteristics re-

lated to rainfall occurrence and intensity, were clearly

recognized by South African farmers living in affected

areas. Perception of climate is highly dynamic in space,

but also in time—an extreme year can remain prominent

in people’s memories in the years following.

Recently,Meze-Hausken (2004, 2007, 2008) and Sanchez-

Cortés and Lazos Chavero (2011) emphasized the need to

consider the relationships between people and climate

variability in the framework of a contextual analysis that

reevaluates the notion of perception as a result of the

interaction between people’s expectations, the evolu-

tion of societies, and the constructed nature of climatic

data. Through the case of Ethiopian drought in 2002,

Meze-Hausken (2004) showed how the apparent mis-

match between a farmer’s perception of reduced rainfall

(negative anomalies) and the observed amount (close to

normal rainfall) can be reconciled only if we take into

account the historical and social dimensions of the dy-

namic cropping system, including the local-scale in-

crease of the agricultural production due to intensive

farming. As a consequence, the amount of rainfall con-

sidered as ‘‘enough’’ increased and a close-to-normal

year, climatologically speaking, may be perceived as

a drought year. Individual expectations must be related

to societal evolution: in the Ethiopian case, demographic

growth and related increase of food demand should be

taken into account to understand the increase of the

‘‘normal’’ level. This study more generally questioned

the construction of scientific data used to define a reference

level and relative anomalies. For example, ‘‘normality’’ is

a multifaceted state combining many variables from the

economical, social, political, and geographical dimensions

rather than a specific statistical moment. Additionally,

Meze-Hausken (2007) introduced the notion of multi-

dimensionality to account for this comprehensive per-

ception. With the same objective of preserving the

complexity of the phenomena under analysis, Agar (2004)

highlighted the superiority of ethnographic fieldwork

(i.e., questionnaires, focus groups, workshops, and the-

matic seminars) to other methodological procedures. In

fact, the results from ethnographic work are reinforced

by the social interactions that are analyzed in a global

and historical context.

Our methodological approach complements the above

theoretical notions [particularly that of multidimension-

ality proposed byMeze Hausken (2007)] and emphasizes

two supplementary aspects. First, we point out the ne-

cessity of applying microsocial studies to account for the

concrete ways in which diverse social actors consider

climate variables in relation to other socioeconomic

factors. Second, given the interaction between scientific

climate knowledge and its social contexts, we emphasize

the importance of questioning knowledge transfer ap-

proaches. The ways in which climate knowledge is ap-

propriated and engaged are not linear or individually

decided; rather, they are the result of a configuration of

various individual and structural factors such as mac-

roeconomics and soil’s agronomic properties (Gieryn

1999; Gibbons 1999). Thus, climatic variability is socially

constructed through the notion of ‘‘climate social signifi-

cance,’’ which allows us to understand the articulation

modalities among diverse factors built by social actors.

In this paper, we adopt an interdisciplinary approach

with the main goal of analyzing the complexity of

climatic impacts upon observed yields of four main

crops (wheat, soybean, maize, and sunflower) in central

Argentina, and the farmers’ perceptions of the main

climate-related risks in two rural districts of the La Plata

basin in central Argentinean Pampas (Junín and San
Justo), where agriculture is by far the most dominant
sector of the local economy (Magrin et al. 2005; Caviglia

and Andrade 2010). The research sites (mean climate

and crop production, areas, and yields) are presented in

section 2, the ethnological approach is presented in

section 3, the relationship between yields and climate

variability is detailed in section 4, and a discussion and

conclusions close the paper in section 5.

2. Research sites

Junín (348350S, 608560W), located in the northwest of

Buenos Aires province 258 km from the Argentinean

capital (Fig. 1a), covers an area of 226 337 ha and has

a population of 94 926 inhabitants (CNPyV 2010). San

Justo (308470S, 608350W) is in the north-central region of

Santa Fe Province, 557 km from the country’s capital

(Fig. 1a). Its district covers a surface of 557 500 ha and it

has a population of 40 904 inhabitants (CNPyV 2010).

An equivalent area is studied at each site (110 000 ha in

Junín and 116 800 ha in San Justo). These districts are
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;400 km far apart and share a similar temperate humid–

subhumid climate with annual rainfall close to 1000mm,

a long wet season during the warm austral summer, and

a shorter, drier season during the cool winter. The an-

nual temperature cycle is typical for subtropical lati-

tudes with cooler conditions in Junín (by an average
28C) than in Rafaela, a town 70 km from San Justo (no

long-term temperature records exist for this location).

Frost occurs 22 days yr21 with a minimum temperature

below or equal to 08C in Junín and 10 days yr21 in

Rafaela. The absolute minimum temperature is ;288C
at both stations.

Junín soils are dominated by molisols (mineral soils
rich in organic matter) covering pastures suitable for
agriculture activity (Alvarez and Lavado 1998). Alto-

gether, 80% of Junín’s soil is considered best for agri-

cultural use, and the remaining area is used for livestock

production (14%) or covered by lagoons (6%). In San

Justo, poorly drained natracualfes (saline-sodium and

sodium soils) dominate the area west of the Salado

River and east of the Saladillos streams (Fig. 1b), In the

central sector, soils are finer and moderately well

drained (argiudolls). Approximately 44% of the district

is suitable for agricultural use but, within this fraction,

only 29% has high production capability; the rest has

middle–high (40%) and low (31%) suitability. Also,

38% of the land is suitable for livestock activity with

low (45%) and very low (55%) productive capacity.

The remaining 18% of the district is potential flooding

areas.

The agricultural calendar (Fig. 2) is similar for both

sites. Wheat, maize, and sunflower are sown in austral

autumn. Wheat is harvested in the spring. Maize and

sunflower are harvested close to the end of summer,

from January to March. The calendar is more compli-

cated for soybeans, which can be sown after the wheat

and then harvested after the next summer/autumn. A

second season can occur just after this initial harvest

from autumn to the next winter (Fig. 2). Although yields

vary between both harvests, Argentina’s national agri-

culture statistics (SIIA) do not distinguish between the

two types of soybeans.

Both districts are characterized, as is most of the

Argentinean Pampas, by the gradual transition between

mixed cropping systems (including open cattle, dairy

farms, and agriculture) to a dominant transgenic

FIG. 1. Map of location of the two sites of research in Argentina.
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soybean system (referred to as soybeanization1) (Pengue

2005, 2006;Hernández 2007; Caviglia andAndrade 2010).

This process is encompassed by neoliberal policies im-

plemented under President Carlos Menem (1989–99)

and involves a biotechnological package (glyphosate-

resistant transgenic soybean and glyphosate),2 which, in

association with the massive adoption of zero tillage

(Garcia et al. 2000; Diaz-Zorita et al. 2002), reduces the

cost of labor and overhead (fuel, equipment mainte-

nance, etc.) and simplifies crop management (Caviglia

and Andrade 2010).

Figure 3 shows a large increase in the total production

of soybeans from roughly themid-1980s in both districts,

matching the positive trend observed at a larger scale

(Viglizzo et al. 1997; Podestá et al. 1999; Magrin et al.

2005), while the three other crops are quasi-constant or

decreasing. Overall, soybeans account for 75%–80% of

the total production (and more than 85% of the total

surface area) of the four crops at the end of the period.

Production depends on surface area, not easily related

to climate variability, and yields (Figs. 4a,b). The yield

increase, clearest for maize, is due to overall technologi-

cal improvements (mechanization and increased inputs)

and is not directly related to climate. The large increase in

rainfall beginning in the 1940s that partially explains the

multidecadal yield increase (Viglizzo et al. 1997; Magrin

et al. 2005) is not seen at either site. Podestá et al. (2009)
also showed that the long-term multidecadal increase in

rainfall at Pergamino and Pilar (close in latitude to San

Justo, but westward) is clear only before 1970. From

1970 onward, the rainfall trend could not be considered

a significant factor in explaining the yield increase

(Figs. 4a,b)

The trend is adjusted by first removing a low-pass

filtered (cutoff 5 20 yr) time series. This is a better

choice than a straight linear trend since the increasing

annual rate tends to begin in the mid-1990s (Figs. 4a,b).

The residuals from the low-pass filtered time series still

contain some long-term increasing trend in variance.

Therefore, we compute the interannual residuals as the

ratio of the original time series to the low-pass trend at

every point in time. This ratio (Figs. 4c,d) exceeds unity

when the series is above the low-pass trend, and is below

unity when the series is below the trend line. This ap-

proach tends to remove trends in variance that accom-

pany trends in mean. We will focus our analysis on the

interannual variations of yields.

The yield anomalies are variable over time among

crops and districts (Fig. 4 and Tables 1–3, even though

2008–09 was a particularly ‘‘bad’’ year (Fig. 4). Overall,

the correlations among crops for a single district are not

significant at the 90% level except between maize and

soybeans (Tables 1 and 2) when the long-term trend is

FIG. 2. Crop calendar for the four crops in Junín and San Justo.

1 Soybeanization refers to the concentration of large areas on

raising only one soybean crop.
2Glyphosate [N-(phosphonomethyl)glycine] is a broad-spectrum

systemic herbicide used to kill weeds, especially annual broadleaf

weeds and grasses known to compete with commercial crops grown

around the globe.
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filtered out. The correlations between the same crops in

Junín and San Justo are usually moderate (17%–28% of

common variance when the long-term trend is removed)

except for wheat, which is lower (Table 3). This amount

of common variance is similar to that of annual rainfall

[from July to the following June (June11)] in San Justo

and Junín (r 5 0.53, 26% of common variance).

Note that the ethnographic fieldwork (see section 3)

was performed during years with highly different yields:

the 2008/09 season was the worst, while the following

2009/10 season was one of the best for both districts and

all crops (Fig. 4). From the climatic point of view, the

extreme drought in 2008/09 (see section 4 and Fig. 11)

was followed by above normal rainfall in 2009/10. On

a larger scale, the 2009–12 period includes two neutral El

Niño–Southern Oscillation (ENSO) years (2008/09 and

2011/12), a moderately warm (2009/10) ENSO event,

and a cold (2010/11) ENSO event. We can thus hypoth-

esize that the ethnographic fieldwork was not especially

biased by near-constant climatic anomalies during the

surveyed period, although participants’ short-term ex-

periences may play a role in their responses.

3. Ethnological approach

a. Methodology

The ethnographic analysis (Althabe 1990) consists of

the researchers’ long immersion (one year in each site)

in the sociocultural field to be interpreted. During these

long stays, we carried out a territorial scan and surveyed

land use and tenancy data, residence of producers and

landlords, rural infrastructure, etc. In parallel, we made

observations and performed in-depth interviews with

various local-scale stakeholders: small producers, agri-

businessmen, local political authorities, and members

of civil institutions (cooperatives, rural societies, non-

governmental organizations, etc.) in order to learn about

local production activities and daily life in each rural town.

For this paper, a total of 79 interviews from the two

locations (47 in Junín and 32 in San Justo) were made.
Agriculture producers were asked to narrate their life
history, how they organized their enterprises, their pos-
itive and negative experiences with climate events, and
their strategies for mitigating each event. This allowed us
to identify three different productive profiles (see sec-

tion 3b). Based on these profiles, in order to understand

the crop calendar and the relationships between each

productive stage (crop spraying, sowing, harvest, etc.)

and potential damaging climatic events (flood, drought,

hail, frost, heat waves, etc.), we performed two surveys

in July 2010 (a total of 26 and 28 interviews in San Justo

and Junín, respectively) focused on the impacts of cli-
mate events on different types of agriculture production
(dairy, livestock, cereals, oil seeds, etc.) and on the re-
construction of the local-scale agricultural calendar
(Fig. 2). We designed a semistructured questionnaire,

FIG. 3. Total production in metric tons of wheat, maize, soybean, and sunflower in (a) Junín
and (b) San Justo. Production statistics were obtained from the Agricultural Estimates Division
(SIIAP-MINAGRI) and National Institute of Agricultural Technology (INTA). Years in
abscissa refer to January–December (wheat) and July–June11 (other crops) seasons.
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surveying the sown area, kinds of activities, major past

climate events and their impact upon production, climate

events of the ongoing cropping season, and strategies

implemented to copewith the adverse climate events. The

producers were also asked to identify the most significant

adverse factor, not necessarily related to climate, im-

pacting their activity. All answers were open without any

predetermined response. Our posterior analysis grouped

themost significant factor into general categories: climate,

national policy, international market, etc.

Additionally, we performed two transsectorial par-

ticipatory workshops (i.e., with different sectors of the

community) in 2009 in San Justo and 2010 in Junín in
order to address the different meanings of climate events
for diverse productive profiles. A total of 15 individuals
in San Justo and 25 in Junín participated, including ag-
riculture producers, political authorities, NGO repre-
sentatives, and researchers.
Using survey and workshop responses, we built a ma-

trix codifying the answers per participant and climate

event, combining cases in which the same person par-

ticipated in both events to avoid duplicate responses.

Figure 5 shows the frequency of answers for all climate

events, as well as those related to other factors, when

they account at least for 10% of the total of replies.

Subsequently, in an integrative analytical stage, ethno-

graphic material was paired with statistical and histori-

cal data (past yields for each region, local climate

records, and climatic event records through mass media,

etc.), allowing us to understand how each productive

profile constructs meaning and representation from cli-

mate (see section 3b and Fig. 6). We characterized and

analyzed the sensitivity of diverse productive profiles

and strategies (see section 3b and Fig. 6) to coping with

climate variability. In sum, throughout the research

FIG. 4. Yields expressed as (a),(b) raw values (in tons per hectare) and (c),(d) interannual anomalies (as ratio

between raw value and low-pass filtered yields . 20 yr) of wheat, maize, soybean, and sunflower in Junín and San
Justo, respectively. Years in abscissa refer to January–December (wheat) and July–June11 (other crops) seasons.

TABLE 1. Correlations (3100) between raw (under the diagonal)

and high-pass filtered ,20 yr (above the diagonal) yields in Junín.
One, two, and three asterisks indicate significant values at the two-
sided 90%, 95%, and 99% level according to a random-phase test
(Janicot et al. 1996; Ebisuzaki 1997).

Wheat Maize Soybean Sunflower

Wheat 14 1 4

Maize 76*** 60*** 0

Soybean 66*** 82*** 10

Sunflower 69*** 66*** 64***
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process, we analyzed the social livelihood shared by each

rural community. This ethnological approach allowed us

to understand climate events’ meanings and the ways in

which respondents engage them through their respective

productive practices, as well as keeping a record of their

vulnerabilities and mitigation strategies.

b. Climate representations and socioproductive
profiles

Based on interviews and our own observations, we

were able to identify three socioproductive profiles:

agribusiness and capitalized and noncapitalized farmers.

Agribusiness participants (32% of the sample in Junín
and 50% in San Justo) cultivate a large area (usually
.1000 ha), owned or rented, possibly spread over sev-

eral different regions or even countries (i.e., Brazil,

Paraguay, Uruguay, and Bolivia), and are thus able to

sustain geographical and crop diversity, mitigating cli-

mate risks on the local scale (e.g., hail) or regional scale

(e.g., flood or drought). These participants are directly

connected to the international markets (mainly for

soybeans) and organize their business through a net-

work allowing them to control many factors (e.g., land

renting/occupation, third-party labor, professional and

expert boards). Additionally, they are able to negotiate

prices at each stage of the production chain (agro-chemical

suppliers, exporters, etc.) and can improve raw production

(soybean oil and flour, pellets for livestock, agrochemical

retail, grains stock, transport, etc.), generating strategic

agreements with other commercial, financial, and techno-

logical companies (biotechnology, informatics, and agri-

culture machinery). This allows these individuals to build

large-scale transsectoral businesses.

Capitalized farmers (46% of the sample in Junín and
12% in San Justo) cultivate around 500–800 ha and may

also rent lands to increase their production scale, but

they tend to remain within the district (i.e., their rented

lands are generally near an inherited nucleus). Their

capitalization is mostly based on agriculture machinery,

which they use on their own lands, as well as for agri-

cultural services contracts to ensure higher profitability.

Their production is directed toward both international

and national markets (e.g., milk, meat).

Finally, noncapitalized farmers (21% of the sample in

Junín and 38% in San Justo) organize their production

exclusively on their own lands since the current increase
in land rental prices excludes them from the real estate
market. Most of the properties are smaller than 200ha.
These farmers may or may not hire third-party services—

agriculture machinery is usually too expensive to pur-

chase, so they manage old or refurbished mechanical

equipment—and their production is directed mostly to

subsistence and local markets (local and regional fairs).

Neither capitalized nor noncapitalized farmers have the

capacity to really negotiate various inputs, supplies, and

third-party services. Their fixed costs are thus usually

much higher than those of agribusiness (Hernández et al.
2013a,b).
The percentages referred to above for each profile

correspond to what is observed in the mean in both dis-

tricts. In other words, the overall structure is less homo-

geneous in San Justo than in Junín. Among the three
profiles, two of the factors that determine the organization
of a farm show a high sensitivity to climate: 1) the overall
level of capitalization, including the number and sophis-
tication of agricultural machinery, and 2) the total area
cultivated, allowing diversification of crops/varieties and
of the crop calendar, so that some of adverse climate
events could be potentially mitigated.
The answers are ranked into four general categories:

climate (mostly rainfall variability and extremes), in-

ternational markets, national policy and regulation, and

cost of production and credit (Fig. 5). Climate is clearly

the most important adverse factor in Junín, while inter-
national markets, production costs, and national policy
appear to be as important as some climate factors in San
Justo. Eight different climate factors are indexed in San
Justo versus 6 in Junín. Drought and flood (and rainfall
variability in San Justo) are clearly the most frequent
adverse climate factors, more so than frost, extreme
temperature, and hail. The 20% of producers citing bad
drainage of the Salladillos sector in San Justo (Fig. 1c)
also mention flooding. The El Niño effect is cited as
a specific factor in San Justo only. This sensitivity fits well
within the larger amplitude of the ENSO response (i.e.,

TABLE 2. As in Table 1, but for San Justo.

Wheat Maize Soybean Sunflower

Wheat 25* 11 27*

Maize 57*** 49*** 26

Soybean 35** 65*** 217

Sunflower 59*** 59*** 38

TABLE 3. Correlations (3100) between yields in Junín and San
Justo. The high-pass filtered yields are computed as the ratio be-
tween the raw yields and the low-pass filtered yields .20 yr esti-

mated through a Butterworth recursive filter. One, two, and three

asterisks indicate significant values at the two-sided 90%, 95%, and

99% level according to a random-phase test (Janicot et al. 1996;

Ebisuzaki 1997).

Raw yields High-pass filtered yields

Wheat 57*** 21

Maize 84*** 42***

Soybean 53*** 52***

Sunflower 80*** 53***
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negative/positive rainfall anomalies during cold/warm
ENSO events) in the central-north sectors of the Ar-
gentinean Pampas (Messina et al. 1999; Podestá et al.
2002). The fact that frost is more frequently cited at the

warmer location (38% vs 25%) could be related to the

greater impact of negative temperature there.

The exposure of agriculture to climate variability de-

pends on the occurrence of each climatic event during the

agricultural calendar (i.e., soil preparation, sowing,

spraying, and harvesting), the different crop stages, and on

the three productive profiles defined above. We observe

that the sensitivity to drought and flood expressed by

these three kinds of producers (except for noncapitalized

farmers) is more or less similar to that of the overall re-

gions (Figs. 5 and 6).

These results were combined with qualitative inter-

views and contextualized within particular productive

practices and strategies for facing climate events, ac-

cording to each respondent’s socioproductive profile. As

a result, we found the significance of climatic events is

unique to each socioproductive profile (i.e., the same cli-

mate event is experienced differently according to each

person’s material and symbolic resources). Below, we

detail how the same climate event is integrated within the

socioproductive strategies of the three farmer profiles.

c. Strategies and vulnerabilities per socioproductive
profile

The agribusiness profile defines floods as a serious

threat (Fig. 6), but if the flood is moderate and occurs

FIG. 5. Percentage of different factors having an adverse effect on farming systems according to producers (based on

surveys and transectorial workshops only; the people being interviewed during both events are counted just once; see text)

in (a) Junín and (b) San Justo. The number of invoked factors is unlimited and the answers are open. All factors related to
climate are indicatedwhile the other factors are shown only if their percentage. 10%.Climate factors (prefix ‘‘Cl’’) refers

respectively to those roughly related to 1) rainfall variations [‘‘Drought’’ (Cl1), ‘‘Flood’’ (Cl2), ‘‘Rainfall variability’’ (Cl3),

‘‘ElNiño effect’’ (Cl4), ‘‘Bad drainage of Salladillos sector’’ (Cl5)], 2) temperature extremes [‘‘Frost’’ (Cl6) and ‘‘Extreme

temperatures’’ (Cl7)], and 3) other extremes [‘‘Hail’’ (Cl8) and ‘‘Strong Winds’’ (Cl9)]. Factors related to international

markets and exportation (prefix ‘‘Mk’’) denote ‘‘International market pressure’’ (Mk1) and ‘‘Exportation closure.’’

Factors related to national policies and regulation (prefix ‘‘Np’’) denote ‘‘Conflicts with national authorities’’ (Np1),

‘‘Absence of public policies adapted to local producers’’ (Np2), ‘‘Deficiency of farming policy (dependent on the economy

policy)’’ (Np3), ‘‘Lack of land use laws/policies’’ (Np4), and ‘‘Retention/state intervention in the market’’ (Np5). Finally,

factors related to production costs and credits (prefix ‘‘Pc’’) denote ‘‘Production costs’’ (Pc1), ‘‘Lack of availability of

agriculture machinery’’ (Pc2), and ‘‘Lack of funding and credits for agriculture sector’’ (Pc3).
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near the end of the crop cycle, agribusinesses can use

double traction machines for harvesting, and a new

technology (plastic bag storage) allows them to store wet

harvests. In case of long-lasting floods (at least several

consecutive weeks or even months), crops are damaged,

but agribusiness producers (and in some cases, capital-

ized farmers) are able to diversify their crops in different

geographical areas to buffer economic losses.

Another strategy against flooding common to agri-

business and capitalized farmers is to build private

channels, draining the excessive water outside their

productive fields:

Due to the nature of my field—it is a low field—it suffers
excessive rainfall a lot. It has experienced 1993 floods badly,
and afterwards it went through 2000 and 2002 floods too. It

has been channelled. It is to take out the exceeding water . . .
it was approved by the Municipality (Agronomic engineer
and capitalized farmer, Junín, 2010).

In most cases, noncapitalized farmers cannot afford

such drainage, and this specific mitigation strategy could

increase their vulnerability to floods. In case of ENSO

events, agribusiness and capitalized farmers may re-

schedule the sowings and harvests, as well as taking into

account technical advice from climate experts and

agronomists:

Now we are in front of a ‘‘niña’’ we are doing some prac-

tices to not leave weeds, to conserve all water as possible,
because to sow wheat, if we don’t have 150mm accumu-
lated . . . it is very difficult. Luckily, this year, in the fields

with good water penetration, we reached 300mm, but in the
regular fields, we have 150mm . . . We have postponed
sowing since they [theNationalMeteorological Service] say

that rain could be late this season, and perhaps, before the
filling of the grain is completed we can have some water . . .
But for this, we have to have a very well made plant, very
well fed . . .Weare applying fertilizer doses, some quite high.

We are anticipating! (Capitalized farmer, San Justo, 2010)

To cope with drought, agribusiness farmers rely

mostly upon productive and geographic diversification,

and on the flexibility of their agricultural calendar (e.g.,

different crop varieties or cycles):

I planted what I thought necessary to cover the costs . . . It is
a very important issue that we need to think about, because
we have the cattle and the calves, but we also need the rain,
because if you have the cow, you need the grass, and if

not, you can give them corn . . . there are alternatives. In

FIG. 6. Percentage of adverse climatic factors according to the three profiles of producers defined in section 3b

(based on surveys and transectorial workshops only; the people being interviewed during both events are only

counted once; see text). The number of invoked climatic factors is unlimited and the answers are open.
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livestock you have more alternatives than in agriculture. . .
Except for irrigation . . . the intelligent corn that will be
released now in the United States, that grows lower or
higher from the root and it will support the droughts . . .
but that is only concerning corn . . . (Agribusiness farmer,
San Justo, 2009)

With regard to frost and hail, calendar flexibility and

the use of transgenic crop varieties are frequent strate-

gies within the agribusiness profile, but most producers

get crop insurance since losses are unavoidable.

Frosts have influenced sowing dates this year. In my ex-

ploitation, I had almost all corn plots sown after October
10th to avoid any problems or inconvenience. (Agribusiness
farmer, Junín, 2010)

I rememberwhen Iwas a child, we sowed corn, sunflower on

September 21st, now we sow . . . on August 10th . . . August
5th . . . because we found that it does not freeze due to the
improvement of the seeds . . . And this also allows you to

crop a soybean that we call ‘‘soybean III’’ [i.e. three soybean
crops in a year]. (Agribusiness farmer, San Justo, 2009)

The main strategies that capitalized farmers employ

to cope with drought are traditional diversification (i.e.,

increasing livestock if possible), supplies saving (which

implies omitting or shortening soil preparation), and

pluri-activity (as with third-party services for agribusi-

ness). This last strategy is critical since it increases their

income and buffers yield losses.

If you are pressed by drought when harvesting, [then] you
are lost. Because you lose the harvest (. . .). [Instead]
Dairy will force you to give grass to the animals. You’ll

have a serious problem because, how are you going to feed
the animals? [If you don’t have grass.] But you can buy it
elsewhere. One way or another, even though if it is not

economically correct, because it can lead you to a terrible
economic decline, you will be able to maintain the cow
with something. For 3, 4, 5, 6 months, you will be down,

but then you’ll return to your normality. The difference
with agriculture is that you will be lost until the next year!
(Capitalized farmer, Junín, 2010)

When flooding occurs, this profile needs to move

livestock to higher lands. Nevertheless, as previously

mentioned, these farmers may also afford private

channels to drain at least some of the excessive water.3

Like the agribusiness profile, capitalized farmers use

plastic bags to store wet grains/seeds. The situation is

different during the ENSO cycle, and when there is frost

and hail—their sowing and harvesting dates are less

flexible:

This last year, frost and drought were something that was

more or less expected, and we couldn’t escape because the
drought was very long and, even if one hurried to plant the
corn, sooner or later, in the long term, frost would burn it.

So, I planted last year in an average date: October 5th to
10th. Frost combined with drought affected it. (Capitalized
farmer, Junín, 2010)

Additionally, any flexibility is compromised when

farmers are partly bound to the dates arranged with

agribusiness producers, who as third-party services

contractors restrict their machinery availability for their

own work. As this capitalized and contract farmer ex-

plains, despite being out of the regular sowing and har-

vesting dates, he had to run the risk and proceed:

Aswe saw later, the harvesting date will be postponed, and
we should expect flowering and everything later, but that is

why [the crops] are more susceptible to frosts. And that
may generate another loss, another problem, but we star-
ted anyway. (Capitalized farmer, San Justo, 2009)

Noncapitalized farmers do not own their no-tillage

machinery and thus depend on agricultural services com-

panies for spraying, seeding, and harvesting, restricting

their flexibility to modifying their agriculture calendar in

case of an extreme climatic event. This makes their live-

lihoods more vulnerable and highly dependent on their

ability to plan the agriculture system as a whole. For ex-

ample, in case of a drought near the start of the crop

season, the noncapitalized farmers could simply delay

sowing until enough rainfall hasmoistened the upper soils:

If [the National Meteorological Service] announce bad

weather I can’t do anything; for some crops we have to
decide. For example, I could not sow wheat in August
because it will grow in temperatures that wheat does not
support, then I choose not to sow. I could not sow corn in

October because it will flower in the summer, on early
January or late December, then we need to have rain every
3, 4 days at that time. If that is not forecast, sowing is not

convenient. (Noncapitalized farmer, San Justo, 2009)

Last year I left land without sowing, since sowing with-
out any rain is in vain. And rainfall came at the end of
January, then we sowed and we did ok, but that was a

coincidence. (Noncapitalized farmer, Junín, 2010)

In this sense, the dependence upon rainfall vari-

ability is extreme. The same happens with floods and

a frequent answer is ‘‘there is nothing we can do’’ since

the noncapitalized farmers cannot afford private

channeling and usually suffer from arbitrary and dis-

ordered channels built by their neighbors (capitalized

and agribusiness farmers). Finally, in the case of ENSO

events, frost, and hail, these farmers are excluded from

the climate services market (insurance companies, pro-

fessionals, etc.) and their only choice is to refer to

3Although this is a frequent strategy, most of these channels

were done without municipal authority approval.
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traditional knowledge based on the observations of

several generations of producers.

In summary, the strategies used by each socioproductive

profile suggest that agribusiness and capitalized farmers

have a better capability to prepare successful responses.

Noncapitalized farmers have no geographical, techno-

logical, or commercial flexibility at all, and are thus di-

rectly exposed to climatic shocks. Their traditional

strategy for diversifying risks is to combine agriculture

with dairy production and/or livestock. But dairy pro-

duction is also very vulnerable since milk production

decreases in case of flood and drought. Extreme high

temperatures, combined with a water deficit, also threaten

calving in spring and summer. In the case of breeding

stock, cows and feeding pastures are exposed during

drought and floods. The variability of these strategies

indicates that climate events, which have discrete sci-

entific definitions, are considered very differently by the

farmers depending on how each adverse event interacts

with other factors of their socioproductive system. Thus,

it is important to consider the social significance of each

climate event to identify socially relevant scientific

knowledge for each category of farmer.

4. Relationships between yields and climate
variability

a. Annual relationship between yields and climate

The first analyses consider the annual rainfall mean

(Fig. 7) and temperature (Fig. 8) characteristics with the

interannual yield variations defined in section 2. Here we

considered the annual values from January to December

FIG. 7. Explained variance by a univariate quadratic regression (see appendix) with rainfall variables (on the ab-

scissa) as predictor and yield [of (a) wheat, (b)maize, (c) soybean, and (d) sunflower] as response. The rainfall variables

are computed on 1 July of year (21) to 30 June of year (0) except for wheat (from 1 January to 31December). SEAS is

the amount of rainfall. FREQ is the number of wet days $1mm. DRYM is the mean length of the dry spells

(5consecutive days receiving less than 1mm). D7, D11, and D15 are the total number of days included in a dry spell

lasting at least 7, 11, and 15 days, respectively. N90 and N95 are the total number of days $ 90th and 95th percentile

while Q90 and Q95 are the rainfall received during these days. A filled symbol indicates that the variance explained by

the quadratic regression is significant at the 90% level (according to an F test) while a double symbol indicates that the

quadratic term is significant at the 90% level (according to a Student’s t test). It is displayed only when the variance

explained by the quadratic regression is significant at the 90% level (according to an F test). Daily rainfall is obtained

from the National Meteorological Service and the National Institute of Agricultural Technologie (INTA).
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for wheat, and from the start of July until the following

June for maize, soybean, and sunflower (Fig. 2). In this

latter case, 2008 refers to the year from July 2008 to June

2009. Note that we could not separate the two possible

soybean harvests. Figure 7 shows the R2 value of a qua-

dratic function (see appendix) using rainfall variables as

predictors and yields of the four crops as predictand.

Our main goal is to compare farmers’ social represen-

tations of the climatic risks and climate impact on yields.

We saw in section 3 that farmers ranked drought first,

and then flooding, as the main adverse climatic risks.

Drought is a complex concept and its definition and

exact threshold are somewhat arbitrary. Climatologists

usually define drought as a cumulative deficit of rainfall

relative to the local mean (Byun and Wilhite 1999;

Keyantash and Dracup 2002), but this could be defined

either at intra-annual time scales (e.g., a dry spell of N

consecutive days receiving less than 1mm of rainfall) or

at interannual time scales as an overall seasonal deficit

under a given threshold. Moreover, a given 10-day dry

spell may not have the same impact if it occurs just after

sowing or during the maturation stage.

The mean length of dry spells (throughout the year)

equals 6.6 days in Junín and 7 days in San Justo.

FIG. 8. Explained variance by a univariate quadratic regression with temperature variables (abscissa) as predictor

and yield [of (a) wheat, (b) maize, (c) soybean, and (d) sunflower] as response. The temperature variables are

computed on 1 July of year (21) to 30 June of year (0) except for wheat (from 1 January to 31 December). TMAX is

the mean maximum temperature. TMIN is the mean minimum temperature. FROST is the number of days with

minimum daily temperature ,5 08C. TMAX30 and TMAX35 are the number of days with maximum daily tem-

perature $308C and $358C. A filled symbol indicates that the variance explained by the quadratic regression is

significant at the 90% level (according to an F test) while a double symbol indicates that the quadratic term is

significant at the 90% level (according to a Student’s t test). It is displayed only when the variance explained by the

quadratic regression is significant at the 90% level (according to an F test). Daily rainfall and minimum/maximum

temperature are obtained from the National Meteorological Service and the National Institute of Agricultural

Technologie (INTA). As temperature was not available for San Justo, we considered the record at INTA-Rafaela,

almost 70 km southwest of San Justo, as a good proxy since the topography is similarly flat between both stations

without any significant difference in altitude. The daily temperature at Rafaela is missing from 1 March 2007 to

31 December 2007 and is not replaced here.
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Agronomists also consider the amount of rainfall stored
in the upper levels of soils. We expect that farmers have
also a different, and perhaps more comprehensive, view
(Meze-Hausken 2004); they consider any short-term

(but occurring at a critical stage of the crop develop-

ment) or long-term (from seasons to multiple consecu-

tive years) deficit of rainfall leading to economic and

social problems to be drought. A flood may be less

ambiguous, especially in the tropics where wet spells are

usually short (typically lasting between a few hours and

2 days when a single daily recording is used). In that

context, a flood may be easily associated with an ex-

treme daily rainfall event, that is, above the 90th per-

centile (38.3mm in San Justo and 35mm in Junín) or the
95th percentile (50.8mm in San Justo and 47.4mm in

Junín) of wet days (i.e., days receiving at least 1mm of

rainfall). Themean length of wet spells equals 1.5 days in

Junín and 1.6 days in San Justo. Even smooth, but cu-
mulative, positive rainfall anomalies could lead to
a damaging flood without any daily events above the
90th or 95th percentiles.
As drought and flood cannot be strictly and uniquely

defined, in the following analysis we use several indices

either at the annual (section 4a) or at intra-annual scales

(section 4b). The rainfall amount (RA) is the most in-

tegrative characteristic able to monitor short- to long-

term excess or deficit of rainfall. We also compute the

mean length of dry spells (DRYM) and the number of

days in dry spells lasting at least 7 (D7), 11 (D11), and 15

(D15) consecutive days. For characterizing floods, we

compute the number of days equal to and above the 90th

percentile of wet days (N90) and the amount of rainfall

received during these days (Q90). The same is done with

the 95th percentile (N95 and Q95). For temperature, we

consider mostly themean, TMAX and TMIN, but also the

number of frost days (FROST hereafter with TMIN #

08C) as well as the number of days with a maximum

temperature$308C (TMAX30) and$358C (TMAX35).

Remember that the rainfall risks perceived by farmers

suggest a nonlinear relationship broadly associating

anomalously positive and negative rainfall with low yields.

The R2 value is low and usually not significant at the

95% level for wheat (Fig. 7a), suggesting a weak sensi-

tivity to rainfall variability, which is consistent with

previous analyses (Podestá et al. 1999; Letson et al. 2001;
Magrin et al. 2005). For the other three crops, R2 is

usually larger, especially in Junín (Figs. 7b–d). The

yields’ sensitivity to rainfall, and hence water availabil-

ity, fits well with the previous analyses of Magrin et al.

(2005) over a larger area. The largest explained variance

is usually observed for the most integrative variable—

the annual amount of rainfall—but N90 and N95 could

be also significant (Fig. 7). The quadratic term is more

frequently significantly different from zero in Junín than
in San Justo (Fig. 7).
Figure 8 presents the results using annual temperature

characteristics. Note that R2 is almost never significant

at the 95% level at the warmest location (Rafaela/San

Justo), suggesting a weak sensitivity of crops to tem-

perature, whereas R2 is frequently significant in Junín.
This would be expected if the main threat is related to
cold temperatures, but the most important variables at
Junín are then the frequency of hot and very hot days
with the mean maximum temperature (Fig. 8). In the

following, we focus on rainfall since the farmers em-

phasized this variable.

Figure 9 shows scatterplots of the interannual varia-

tion of yield and the annual rainfall in Junín with the
quadratic fit. Maize (Fig. 9b) and soybean (Fig. 9c) re-

flect, at least partly, the farmers’ perception that low

yields could be related either to dry years (as in 2008) or

wet years (e.g., 1992). But even in this case, drought is

more critical than floods and the highest yields are as-

sociated with weak above-normal anomalies (Podestá
et al. 1999). The scatterplot also confirms the relative

absence of a relationship between annual rainfall and

wheat yields (Fig. 9a), and similar annual amounts (as in

2001 and 1992) could lead to contrasting yields. The

sunflower crop is also different from maize and soybean

cases with an almost linear relationship: the highest

yields are correlated with negative rainfall anomalies

(Magrin et al. 2005), still with a large spread and satu-

ration of the positive effect for very dry years.

The scatterplot for San Justo (Fig. 10) confirms

weaker relationships than for Junín. The relationship
between annual rainfall and wheat yield is very weak;
dry or near-normal years could be associated with con-
trasting yields, even if 2008 (a very dry year) resulted in
extremely low yields (Fig. 10a). The other crops indicate
a near-linear positive (maize and soybean; Figs. 10b,c)

and negative (sunflower; Fig. 10d) relationship, but with

a large spread, especially for dry and near-normal years.

The data from both Junín and San Justo also give great
weight to the 2008 season, which combined extreme
drought with very low yields for the four crops. Re-
computing the regression between interannual yield var-
iation and annual rainfall without the 2008 season (Table 4)
decreases the explained variance for almost all crops

(except for sunflower), but its significance is basically

unchanged and the relative impact of annual rainfall on

crop is not critically modified.

b. Subseasonal modulation of rainfall/temperature
anomalies related to yields

The previous section suggests that the climatic risks per-

ceived by farmers fit well with the observed relationship

JANUARY 2015 HERNANDEZ ET AL . 51



between soybean and maize yields and annual rainfall

characteristics, especially in Junín. Figures 9 and 10

show a generally large spread in yield for similar annual

amounts, especially for low and mean annual rainfall

(except for wheat where the spread is also large for wet

years; Figs. 9a and 10a). The intra-annual distribution of

rainfall across the season may be as important as, or

even more than, the mean annual values. Figure 11 il-

lustrates the subseasonal sensitivity of yield to intra-

annual variations in San Justo. Both years (2007/08 and

2008/09) are anomalously dry and receive almost the

same amount of rainfall (697 and 661mm, respectively,

for a long-term mean of 1028mm). The wet season lasts

longer in 2007/08, includingnear-normal rain inSeptember–

October, and there is no long dry spell. In 2008/09,

the rainfall is more concentrated in a single 4-day wet

sequence in early March, which received 24% of the

annual rainfall with a daily maximum of 95mm. There is

almost no rain in December–January at the usual peak

of the summer season, or after the short wet spell in early

March (Fig. 11). The 2007/08 season leads to normal or

above-normal yields, and the 2008/09 season to ex-

tremely low yields (Fig. 11).

The impact of intra-annual modulation of rainfall is

explored using the rainfall anomaly across the annual

cycle. A quadratic regression is fitted using amount of

rainfall (RA), mean length of dry spells (DRYM), and

amount of rainfall received only during wet days. 90th

percentile (Q90) computed on sliding windows of vari-

ous sizes. The most sensitive stages are summarized in

Table 5. The explained variance of interannual wheat

yields using RA as a predictor is only significant around

March, well before the sowing period (Fig. 2 and Table

5). In San Justo, anomalously long dry spells near the

end of the sowing period, and around July–September at

the end of the crop cycle, appear to be detrimental

(Table 5). In Junín, a weak sensitivity to Q90 is observed
near the start of the sowing period around June, associating
low yields with anomalously highQ90 (Table 5). Formaize,

the effect of RA is mostly linear with wetter-than-usual

FIG. 9. Scatterplot of the interannual yield (abscissa) and annual rainfall from January to December (for wheat

only) and from July to June (11) (for maize, soybean, and sunflower) in ordinates in Junín. The yield is the ratio
between the raw values and the long-term trend defined as the low-pass variations$20 years. The crosses denote the

simulation of yields using a quadratic regression. The horizontal black full line is the mean annual rainfall and the

thick horizontal black line is the annual rainfallmaximizing the yield according to the quadratic regression. In the title

of each panel, Rsq indicates theR2 value of the quadratic regression. The F test is the significance of Rsq (R2) and the

significance of the quadratic term (Q term), according to a Student’s t test, is also indicated.
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conditions associated with positive yield anomalies

(Table 5). The delay between San Justo (highest sensi-

tivity around November–December) and Junín (highest
sensitivity around December–February) could partially

be explained by the 1–2-month difference between

sowing periods (Fig. 2). The sensitivity to DRYM is

larger around sowing windows and is usually not linear

due to the negative impact of long-lasting dry spells

(Table 5). The sensitivity to Q90 is larger during (in San

Justo) and at the end (in Junín) of the crop cycle with
a positive effect of large rainfall on fitted yields. For
soybeans, the sensitivity to RA lasts longer in Junín than
in San Justo (Table 5). The highest fitted yields are

clearly associated with positive rainfall anomalies at both

sites. The sensitivity to DRYM peaks around November

with a nonlinear impact of long-lasting dry spells on

lowest fitted yields in Junín. The sensitivity to Q90 is
delayed until February–April, close to the end of the

crop cycle (Fig. 2), with a positive linear effect (Table 5).

For sunflower, the relationships with RA peak around

the middle of the cycle (around January) with a clear

negative effect of positive rainfall anomalies, a charac-

teristic matched by Q90 (Table 5). This is the sole case

where too much rainfall is associated, on average, with

lowest fitted yields.

Additional analyses are performed for soybeans, the

dominant crop in terms of area and total production.

Table 5 suggests that the long-term effect of RA could

be divided into both a high sensitivity to the dry spell

around November, as well as to the abundant wet days

around February–March. Both effects are almost phase-

locked in Junín and San Justo. We computed the mean
length of dry spells inNovember and the amount of rainfall
received during 90th percentile days in February–March

(Figs. 12 and 13). These quantities were then used to

hindcast the interannual yields using linear and quadratic

models, with and without interaction between both

FIG. 10. As in Fig. 9, but for San Justo.

TABLE 4. The R2 (3100) value of the fit provided by a quadratic

regression between interannual variations of yield (5ratio between

the yield and the low-pass filtered yield .20 yr) and the annual

rainfall from 1 July to 30 June. The regression is constructed using

all available years but excludes 2009. One, two, and three asterisks

denote significant value at the 90%, 95%, and 99% level according

to an F test.

Wheat Maize Soybean Sunflower

Junín 7.5 33.7*** 42.9*** 23.3***

Junín (22008/09) 1.6 20.2** 21.1** 27.7***

San Justo 4.5 9.7 35*** 11.9*

San Justo (22008/09) 3.3 4.7 30.7*** 21.1**
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predictors. The model is cross-validated with each year

iteratively hindcast using parameters from the remain-

ing years. We also considered the samemodels using the

mean rainfall amounts in November and February–

March to evaluate the potential gain of intraseasonal

characteristics compared to the usual rainfall amounts.

The highest skill (evaluated here as the correlation be-

tween observed and hindcast yield) is similar at both

locations (Table 6) and in both cases, positive rainfall

anomalies (i.e., short dry spells in November plus

abundant rainfall in February–March) favor anoma-

lously positive yields, but both climatic characteristics

are almost independent of each other. Tailored intra-

seasonal characteristics always explain a larger amount

of variance than usual monthly/seasonal amounts of

rainfall (Table 6).

5. Discussion and conclusions

The first topic analyzed in our paper is the perceived

vulnerability to climate variability in two districts of

subhumid/humid Argentinean Pampas. Both districts

share the same subtropical–temperate climate, even if it

is a little bit warmer in San Justo than in Junín. They also
share the same recent conversion from mixed crop and
livestock farming to a more specialized system domi-
nated by transgenic soybean production (Pengue 2005,

2006). They differ in subtle ways: for example, ENSO

events have a stronger impact on San Justo than Junín
(Messina et al. 1999) and this slight difference is well

perceived by farmers (Fig. 5). The main structural dif-

ference, however, is perhaps not related to the basic

climatic state and variations, but rather to soils. Junín
has more mineral-rich soil, and therefore has slightly
higher mean yields, than San Justo (Fig. 4).
Froma systemicpoint of view, SanJusto’s configuration—

that is, similar climate risks and production costs as

Junín, but lower mean yields (2–2.5 t ha21 vs 3.5–4 t ha21

for soybean)—reflects a larger agricultural sensitivity to

economic factors such as international commodities

market prices, which are highly variable, and commer-

cialization rules of the national market. The investment

returns essentially depend on commodities prices at

Chicago’s Board of Trade as well as on national fiscal

policies. In this sense, San Justo’s farmers rank the in-

fluence of external markets and Argentinean govern-

ment agricultural policies as the major risk variables,

while Junín’s farmers clearly cite climate factors.

Farmers primarily emphasized the role of drought,

and then of flood, as the major adverse climatic factors

(Figs. 5 and 6), well before any thermal event (such as

frost or extreme temperatures, including heat waves). In

fact, the observed relationship between yields and

temperature is weak in San Justo and only slightly

higher in Junín (Fig. 8). The perception of both floods

and drought as adverse effects could be ideally fitted

within a quadratic function where low yields could be

related either to anomalously positive or negative rain-

fall, while the highest yields would be related to near-

normal rainfall. Using only annual rainfall values (Figs. 9

and 10) this relationship somewhat corroborates the

farmers’ perception in Junín, where the main climate-
related threat is tied to low rainfall amounts, with some
saturation associated with high rainfall amounts (Podestá

FIG. 11. Daily rainfall (as black bars) recorded in San Justo in (a) 2007/08 (annual rainfall5
697mm) and (b) 2008/09 (annual rainfall 5 661mm). The black line is the sum on a running

31-day window while the black thick line is the climatology of this 31-day mean. Note that the

ordinate axis differs between both panels by a factor of ;2.

54 WEATHER , CL IMATE , AND SOC IETY VOLUME 7



et al. 1999; Magrin et al. 2005). The adverse effect of

large rainfall amounts is not as evident in San Justo

(Fig. 10). Sunflower yield data reveal the stronger ad-

verse effect of high rainfall amounts in Junín, while
wheat seems to be the least sensitive to rainfall
variability.
By definition, any annual value smooths out any intra-

annual modulation involving reversed polarities across

the crop cycle: a gain associated with a positive anomaly

at one stage could be canceled out by a loss at another

stage. Such inversions seem not to happen for the four

crops studied here, at least not for the analyzed rainfall

characteristics. Moreover, the impact seems restricted

to specific stages of the crop cycle, but seems rather

homogeneous when the explained variance is significant

(Table 5). We have shown that nonlinearity is largely

induced by the negative effect of long-lasting dry spells

during the first half of the crop cycle, while the effect of

Q90 (and rainfall amounts) is usually linear and stronger

from the middle to the end of the crop cycle.

On average, Q90 and rainfall amounts have a positive

effect on yields except for sunflower (and wheat in

Junín). Deconstruction of the seasonal RA into intra-
seasonal components (such asmean length of dry spell or
Q90) agrees with previous studies that use only seasonal
(or monthly) amounts as the predictor of yields (Podestá
et al. 1999; Magrin et al. 2005; d’Orgeval et al. 2010).

Additionally, the ranking of flood as the second greatest

adverse climatic factor by the farmers does not match

with the observed impact (i.e., positive except for sun-

flower) of heavy rainfall on yields. In contrast, heavy

rainfall does not appear as an adverse factor (i.e., asso-

ciated on average with negative yields anomalies) at

intra-annual time scales, except for sunflower, running

contrary to the yields following large rainfall amounts

observed for soybeans and maize in Junín (Fig. 9), as
well as with farmers’ perceptions (Fig. 5). This partial

discrepancy could be explained if the negative impact

of large rainfall is diluted across the crop cycle. In that

case, it will appear at the annual time scale but not

TABLE 5. Sensitive stages of the crop cycle. Three climatic variables are tested independently: amount of rainfall, mean dry spell length,

and amount of rainfall in days receiving a daily rainfall above the 90% percentile (P90) estimated from the whole year. Also, R2 (4th

column) is the explained variance of interannual variability of yields by the climatic variables (in%). The p value ofR2 (5th column) is the

probability that R2 is zero. The p value of the quadratic term (6th column) is the probability that the quadratic term is zero. The last two

columns give the standardized anomaly corresponding to the highest (7th column) and lowest (8th column) yields simulated by the

quadratic regression. For each crop and district, the bold line emphasizes the largest R2.

Climatic

variables

Crop and

district Time period

R2

(%)

p

value

of R2

p value of

quadratic

term

Standardized

anomaly

corresponding

to highest yield

Standardized

anomaly

corresponding

to lowest yield

Amount Wheat Junín Early March–early April 16 0.04 0.66 21.67 3.49

Amount . P90 Wheat Junín Early February–early April 25 ,0.01 0.04 21.41 1.09

Amount . P90 Wheat Junín Late May–late June 15 0.04 0.32 20.27 1.96

Amount Wheat S. Justo Mid February–early April 14 0.05 0.22 2.13 21.41

Dry spell length Wheat S. Justo Late March–early May 25 ,0.01 0.31 21.04 2.39
Dry spell length Wheat S. Justo Mid July–late September 13 0.07 0.33 0.27 5.76

Amount Maize Junín Late November–early March 26 ,0.01 0.81 2.61 21.50

Dry spell length Maize Junín Mid October–late November 30 ,0.01 0.05 20.53 3.93

Dry spell length Maize Junín Late December–mid January 32 ,0.01 0.89 20.93 4.32

Amount . P90 Maize Junín Late January–early March 16 0.04 0.18 2.14 21.01

Amount Maize S. Justo Late October–late December 20 0.02 0.62 2.25 21.36

Dry spell length Maize S. Justo Late October–early December 23 ,0.01 0.02 21.41 1.99
Amount . P90 Maize S. Justo Late October–late January 19 0.02 0.12 1.62 21.13

Amount Soybean Junín Mid October–early February 52 ,0.01 ,0.01 1.19 21.85

Dry spell length Soybean Junín Late October–late November 36 ,0.01 0.10 20.71 4.33

Amount . P90 Soybean Junín Late January–mid March 17 0.05 0.73 3.14 21.31

Amount Soybean S. Justo Late December–mid March 21 0.01 0.35 3.27 21.07

Dry spell length Soybean S. Justo Early November–late November 21 0.02 0.90 21.13 3.42

Amount . P90 Soybean S. Justo Mid January–early April 33 ,0.01 0.33 3.93 21.02
Amount Sunf. Junín Mid December–mid January 15 0.05 0.87 21.22 3.13

Dry spell length Sunf. Junín Mid July–mid September 20 0.02 0.97 3.32 20.73

Amount . P90 Sunf. Junín Late October–early January 21 0.01 0.25 21.18 1.42

Amount Sunf. S. Justo Early December–late February 27 ,0.01 0.43 21.37 2.52
Dry spell length Sunf. S. Justo Early February–late Febraury 25 ,0.01 0.14 0.96 21.62

Amount . P90 Sunf. S. Justo Early January–early March 23 ,0.01 0.05 0.84 2.20

JANUARY 2015 HERNANDEZ ET AL . 55



necessarily at the intra-annual scale, due to the absence

of phase-locking.

We examined the 10 years with the largest residuals

from the quadratic regression, involving the mean

length of dry spells in November and rainfall amount

during 90th percentile days in February–March, as pre-

dictors of the interannual variations of soybean in Junín
where the nonlinearity between annual rainfall and yields
is the strongest (Fig. 8). These 10 years show a relative

positive effect of short dry spells in November and/or

large rainfall amounts in February–March, somewhat

counteracted by any other adverse factor (not necessarily

a climatic one). In these years, heavy rainfall (i.e., many

90th percentile days clustered in 1–2 months) sometimes

occurs, but not at the same time (around September in

1982/83, aroundApril–May in 1992/93, frommid-March to

late May in 1992/93, in October–November and January

in 2000/01, etc.). So, while the beneficial effect of

short dry spells and large rainfall amounts (especially for

soybeans andmaize) is captured on average, the adverse

effect of too much rainfall seems less systematic and less

phase-locked with the crop cycle. In other words, the

farmers’ perception is not necessarily distorted and

could even capture linear and nonlinear effects phase-

locked with the crop cycle, as well as scattered effects.

We have also shown that analysis of tailored intra-

seasonal characteristics (such as mean length of dry

spells or rainfall amounts received during 90th percen-

tile days) accounts for more variance than rainfall

amounts alone (Figs. 12 and 13).

The above climate–yield relationships are compli-

cated in the case of soybeans, due to the fact that crop

statistics do not differentiate between the two harvests.

The percentage of both harvests is variable among the

years, since a relatively bad first harvest may promote an

intense sowing for the second half of the season. If this

season succeeds, the annual production will be dominated

by the second harvest. The average yield would fall be-

tween a deficit and a surplus. Unfortunately, there is no

FIG. 12. (a) Mean length of dry spell (in days) in November;

(b) rainfall received during wet days above the 90% percentile of

wet day in February–March in (in mm); (c) hindcast (line 1 black

square) vs observed (line1 circle) interannual yields of soybean in

San Justo. The hindcast is given by a quadratic regression without

interaction using the two rainfall quantities as predictors of in-

terannual anomalies of soybean yield in cross-validation.

FIG. 13. As in Fig. 12, but for Junín. The hindcast is given as a
linear regression without interaction using the two rainfall quan-
tities as predictors of interannual anomalies of soybean yield in
cross-validation.
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objective measure to systematically weigh the annual

yield by two coefficients. The climate diagnostic seems

to indicate that the most sensitive stages of soybean

production in Junín and San Justo are mostly tailored to
the first harvest between winter/spring and the next
autumn (Table 2).

As shown in section 3, climate factors cannot be isolated

from the technological, socioeconomic, and agronomic

conditions of the whole productive system. Usually, most

of the scientific literature on farmers’ adaptation to cli-

mate variability focuses on the analysis of geographical

and cropping diversification strategies. In this paper, we

stress the need to consider different socioproductive

farmer profiles to identify specific strategies for coping

with climate vulnerability. This social significance of

climate events evidences the need to integrate socio-

productive practices in climate and yield impact ana-

lyses, as well as in the design of climate change adaptation

public policies. In fact, for an agribusiness farmer able to

geographically diversify his production, carry out logis-

tical strategies, modify territories to mitigate some ad-

verse climate events (e.g., channeling in case of floods), or

to negotiate the prices of labor and other inputs, it is clear

that a regional-scale climatic diagnosis (including sea-

sonal prediction) is useful since this kind of stakeholder

conducts business at this spatial scale. In contrast, for

a capitalized and a noncapitalized farmer, whose pro-

ductive (and life) scale is located at the district level,

a climatic diagnosis is useful only if it refers to a more

local scale.

The observed strategies facing floods and droughts

are different: agribusiness and capitalized farmers are

able to integrate economic, social, and cognitive re-

sources to plan successful strategies that allow them to

mitigate adverse climate events. On the contrary, non-

capitalized farmers are not only strongly affected by the

impacts of both hazards, but also by some of the miti-

gating strategies implemented by their agribusiness and

capitalized neighbors. For example, their fields could be

flooded from private channel drainage, they may suffer

from a lack of available agricultural services monopo-

lized by the agribusiness profile, and consequently may

not have full control over their crop calendar, etc.

Therefore, we have shown the importance of analyzing

climate events as a multidimensional phenomenon

(Meze-Hausken 2007), whose social significance is in-

formed by participants according to their position in the

socioproductive and economic structure. The content

and form in which scientific knowledge of climate events

is presented should speak to the needs of each farmer

profile.

We have observed that soybean and maize yields are

the most sensitive to rainfall anomalies. This is espe-

cially relevant because of the recent transition of the

Argentinean Pampas from a mixed crop system (cereal,

oil seed, livestock, etc.) to a more specialized agriculture

system dominated by a single transgenic soybean crop.

As a result, the agriculture sector has become more

vulnerable to rainfall variability, and producers may

have developed a higher sensitivity to climate variation.

This sensitivity has turned into a crucial cognitive tool

allowing the producers to consider and plan their ac-

tivity in an integrated way, identifying possible suc-

cessful strategies for coping with adverse climate events.

Analysis of climate’s social significance points to a com-

plex relationship between producers, their perceptions of

climate, and the strategies implemented to combat ad-

verse climatic factors. Moreover, perceptions of the re-

lationship between crop variation and climate must be

considered in terms of both data format (statistical,

narrative, graphical, etc.) and spatiotemporal scales.

The climate and society relationship is not linear and

requires an interaction between interdisciplinary re-

searchers and stakeholders (Funtowicz andRavetz 1993;

Gallopin et al. 2001).

Acknowledgments. This work has been partly funded

by an Agence Nationale de la Recherche Grant VULN-

008-01 PICREVAT. This research has been also funded

by EU-FP7 Grant CLARIS (coordinator: Jean-Philippe

Boulanger) andwe thank alsoCaroline Phan (SupAGRO,

Dijon, France), who participated in the surveys. We

thank Junín and San Justo farmers for their collabora-
tion during this research, as well as INTA Rafaela

TABLE 6. Correlation (3100) between observed and hindcast yields of soybean in Junín and San Justo. The highest correlation for each
set of predictor and location is emphasized in bold. The hindcast is made through cross-validated regression using mean length of dry spell
(DRYM) in November and rainfall received during wet days in the 90% percentile (Q90) in February–March or rainfall amounts in

November and February–March (RA). Four different regressions are tested: linear without interaction, linear with interaction, quadratic

without interaction, and quadratic with interaction.

Linear 2 interaction Linear 1 interaction Quadratic 2 interaction Quadratic 1 interaction

Junín DRYM 1 Q90 47 39 63 61

Junín RA 41 37 29 231

San Justo DRYM 1 Q90 60 56 56 50

San Justo RA 42 38 40 36
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APPENDIX

Quadratic Function

Most of the statistical analyses are based on regression

with interannual variation of yield as predictand (5Y)

and climatic variables (annual and 61-day running

average, or sum, of rainfall amount, mean length of dry

spell, temperature anomalies etc.) as predictors (5X).

Note that X and Y are expressed as anomalies re-

latively to their respective long-term means. In case

of yields, the mean is the varying low-pass filtered

(cutoff 5 20 yr) variation to take into account the

general increase all along the period. The farmers’

perceptions, scaling drought and flood as major ad-

verse climatic events (see section 3), could be ideally

represented by a second-order polynomial function

including a quadratic term. The quadratic function

without interaction using a single predictor has the

following form:

Y 0 5 a1X1 a2X
2 1 b , (A1)

where a1 is the linear term, a2 is the quadratic term, and

b is the constant term. Additional terms could be in-

cluded to describe the linear and quadratic interaction(s)

between multiple predictors. The overall quality of

the model is evaluated with the ‘‘explained’’ variance

of the predictand by the predictor(s) (i.e., the squared

linear correlation, R2, between Y and Y 0). This is

tested against the null hypothesis that the variations of

X does not explain those of Y using an F test. The

significance of quadratic and linear terms against the

null hypothesis that they equal zero is tested using

a Student’s t test. If a1 is zero and a2 significantly dif-

ferent from zero, the regression could be illustrated

graphically by a parabola whose axis of symmetry is

parallel to the axis of the predictand. If a2 is signifi-

cantly negative, yields are maximized for near-normal

climatic conditions while the largest negative and

positive climatic anomalies are associated with the

worst yields. The case with a2 significantly positive

(i.e., lowest yields associated to near-normal climate

anomalies) never happens in this study. If a2 is zero and

a1 significantly different from zero, it means a linear re-

lationship between yields and climatic conditions, which

is represented graphically by a straight line. Any mixed

graphical shape between a parabola and a straight line

would be associated with both a1 and a2 significantly

different from zero.
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