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Abstract

Recent financial crises posed a number of questions. The most salient

were related to the cogency of derivatives and other sophisticated hedging

instruments. One claim is that all those instruments rely heavily on the

assumption that events in the world are guided by normal distributions

while, instead, all the evidence shows that they actually follow fat-tailed

power laws. Our conjecture is that it is the very financial architecture

that engenders extreme events. Not on purpose but just because of its

complexity. That is, the system has an internal connection structure that

is able to propagate and enhance initially small disturbances. The final

outcome ends up not being correlated with its triggering event. To support

this claim, we appeal to the intuition drawn from the behavior of social

networks. Most of the interesting cases constitute scale-free structures.

In particular, we contend, those that arise from strategic decisions of the

agents.

1 Introduction

The structure of the financial system, particularly the network of financial en-
tities and agents as well as the ensuing structure of debts and obligations of
all the parties involved in financial transactions are usually jointly deemed as
constituting the architecture of the system (Eichengreen 2000).1 Its main par-
ticipants are banks, stock exchanges, private investors, governments, etc. The
first financial structures, banks, arose as a way of making a more efficient use
of resources in societies in which agents had different time schedules for the use
of their money assets. But in the last two centuries the financial architecture
became a fundamental component of the economy of modern nations, and more
recently of the global economy (Burton and Brown 2009).

From bank deposits to credit default swaps, the financial instruments in-
volve two parties, one lending some resources and the other borrowing them.
Interestingly, the last decades showed a continuous growth of the length of
the chains of liability, with different forms of insurance against negative events
added as a protection for lenders. New and more complicated instruments arose
to distribute both potential premiums as well as obligations among even un-
suspecting individuals (like pensioners or owners of current accounts). While

1This characterization combines the institutional and regulatory infrastructure (which for

some purists is the only component that should be called “architecture”) with the intermedi-

ation structure.
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in many cases a lender of last resort exists (usually governments bailing out
institutions in trouble, but also supranational entities), in others cascades of
defaulted debts can ensue, hitting all the firms and individuals in the complex
chains of obligations (Kindleberger and Aliber 2011). So, for instance, in 2007,
defaults on loan mortgages impacted on pension funds, insurance companies,
mutual funds, etc. giving raise to the worst economic crisis since the 1930s.

The outbreak of this financial crisis posed a number of puzzling questions.
Besides the search for whom to blame, some theoretical questions arose. The
most salient were related to the cogency of derivatives and other sophisticated
hedging instruments. A popular account of why they seem to be flawed appeared
in Nassim Nicholas Taleb’s “The Black Swan” (2007). There, Taleb claims that
all those instruments rely heavily on the assumption that events in the world
are guided by normal distributions while, instead, all the evidence shows that
they actually follow fat-tailed power laws.

While this hypothesis explains why the financial instruments were not able to
cover the title owners from a cascade of negative shocks and their consequences
(Elliot et al. 2014), it requires further examination (Karimi and Raddant 2014).
The underlying mechanism that generates events obeying power laws must be
better understood, before engaging in the design of new regulation and preven-
tion policies.

Our conjecture is that it is the very financial architecture that engenders
extreme events. Not on purpose but just because of its complexity. That is,
the system has an internal connection structure that is able to propagate and
enhance initially small disturbances. The final outcome ends up not being cor-
related with its triggering event.

To support this claim, we appeal to the intuition drawn from the behavior
of social networks. Most of the interesting cases constitute scale-free structures.
In particular, we contend, those that arise from strategic decisions of the agents.

On the other hand, it has been shown that random disturbances in such
networks start multiplicative branching processes that generate flows obeying
to power laws. This is precisely the core of our argument.

In this paper we will abstract away all the specific details of the financial
architecture and see it as a directed graph in which each node is able to bor-
row from the nodes to which it accesses and lend to the nodes from which it
is acceded. Each node is identified with an agent, which is endowed with some
amount of a good that can be transferred from and to other agents. By es-
tablishing links to other agents she can gain access to the goods held by them,
but she has to pay a fee to establish those links. The strategic goal of each
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rational agent is to maximize the access to the resources held by the others,
at the lowest cost possible. Nash equilibria yield the structures from which no
individual agent can deviate to increase her benefit.

One of the most influential approaches in the literature has been to con-
ceive the social structure as a network that may arise from random interactions
among individuals. Changes in the probability of encounters may lead to drastic
changes in the final structure that obtains. In mathematics this is a well-known
result, that originates in Erdös and Renyi groundbreaking study on random
graphs (1959). They showed that if the average number of links established by
any agent is slightly increased in a small neighborhood of 1, a complete discon-
nected graph becomes a completely connected one. Newman et al. (2001) have
generalized this result for generic probability distributions, showing that inter-
mediate phase transitions exist, at which new components arise in the graph.

We reproduce a similar result, but here it arises from the intentional behavior
of rational agents. Unlike in the case of random connections, “mavens”, i.e.
agents sought for connection, tend to appear. This gives these networks a
distinctive scale-free structure.

Consider now a given Nash network. A random shock on a node will follow
the already established connections, to fulfill this new request of resources. If
this demand surpasses the amount of resources available in the node, it will
request, in turn, this difference from its providers. Depending on the stored
amounts and the connections, the initial shock might die out quite soon or it
might propagate through large portions of the network.

We will prove that if the network has a number of relatively important
players and the others are able to pay the fee to attach to them, the network
will show all possible behaviors in the propagation of shocks. In particular, the
generation, albeit with a rather low probability, of extreme events.

The organization of the paper is as follows. In section 2 we briefly discuss the
financial network of liabilities (the financial architecture) and how a crisis may
ensue, triggering a chain of losses of wealth. In section 3 we formalize this in the
framework of equilibria networks. In section 4 we characterize the architecture
that may arise when resources are unevenly distributed and the richest nodes
act as mavens. We will show that the structure of this network is scale-free. In
Section 5, we will analyze the multiplicative branching processes engendered by
random shocks and see that the theoretical distribution of perturbations follows
a power law.
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2 The Financial Architecture and Minskyan Crises

A schematic description of how a contemporary financial system works is as
follows. Consider an individual or firm who intends to make an investment,
say to buy a house in the former case or to incorporate new technology in the
latter. Instead of using savings they borrow loans from banks (maybe from more
than one). Banks, in turn use the savings from final lenders. Borrowers pay
back their debts (with some premium) which increases the assets of the banks,
which in turn yield a higher premium on the securities. Final lenders receive
them, increasing their wealth. But that constitutes a virtuous circle in which
more patient agents (lenders) are rewarded by more impatient ones (borrowers),
who may use the loans to increase their own wealth. On the contrary, if a
borrower fails to repay the loan, he goes bankrupt (eventually becoming subject
to foreclosure). The bank in turn writes down the loan and accounts it as a
loss. If enough borrowers default their debts, the bank itself goes bankrupt,
transferring the losses to the final lenders that see their savings diminished.
The circle of loss of wealth, maybe started by a worse market situation, leads
to a chain of defaults.

The actual financial architecture is far more complicated. Banks, at least in
the developed world, have created a number of financial instruments backed on
the loans given to borrowers (Elton et al. 2014). They are sold to mutual funds,
pension systems and banks abroad. The same scheme as above works here, only
that it is much more complicated, since in turn these instruments are used as
collateral for other (“derivative”) instruments, that are in turn sold to other
financial institutions, etc. On the other hand, governments and supranational
financial institutions provide lending of last resort to some of those financial
institutions (particularly banks). Again, if this works well, wealth is created at
the borrowing side, which is used to repay the debts and the proceeds go all
trough the chain of obligations to primary and secondary lenders (i.e. the ones
that securitize the loans as well as those that get those loans as collateral).

Hyman Minsky (1986) described the value of stocks of this system in terms
of the balance sheet of all the entities involved. Minsky analyzed the onset of
crises in which credit finances the acquisition of assets, which are at first more
valuable than the securities used to provide the funds. But then, those assets
loss value (like when a housing bubble bursts) increasing the debt and increasing
the number of defaults. A massive loss of wealth ensues.2 The question that

2For a more complete presentation of the views of Minsky on this matter, see the first two

essays in Fazzari and Papadimitriou (2015).
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remains is what is the probability of such a Minskyan crisis.
To analyze this, we will formalize this idea of a financial architecture in

which the balance sheet of every involved party is affected. Once a contract
is established between two agents, one a lender and the other a borrower, if
the latter defaults his obligation, triggers a variation in the balance sheet of the
lender, in which the loss is seen as being “borrowed” by the other party. In turn,
a variation in the balance sheet of the lender, is equivalent to her being able to
lend more (think of a bank with an increased amount of deposits, looking after
potential borrowers). In any case the simple representation in the next section
is able to capture the main features of the financial architecture and the onset
of financial crises.

The novelty of our approach is the mix between the strategic behavior dis-
played in the emergence of the network and the multiplicative process that
ensues after a random shock affects one of its nodes. The literature on Econo-
physics has also analyzed similar phenomena but with other approaches. So for
instance Hawkins (2011) has described a similar Minsky-like crisis (see section
2). Di Guilmi et al (2008) focus on similar borrowing relation among firms while
Lee et al . (2011) center their attention on the topology of the network of rela-
tions as a source of economic crises. In many ways our approach complements,
albeit covering a partially different ground, these important contributions.

3 Equilibrium Networks

We focus on a static model of a network formation with complete information
where our solution concepts are Nash-type equilibria. Our theoretical model is
based on a seminal paper in the field of network formation by Bala and Goyal
(2000). They characterize and provide a constructive proof of the existence
of Nash equilibrium under the assumption of homogeneous costs and benefits
through the players. In their model players can link unilaterally (without re-
quiring the consent of the partner). The distinctive feature of this approach it
its emphasis on individual incentives in shaping the networking decisions (Goyal
(2007: ch. 7)). The formation of a link is expensive and only the player who
forms the link pays this cost. Players can form direct links, but can also be con-
nected indirectly with other players. As linking evolve a fairly complex structure
of connections may emerges. We conceive this network as a representation of
the global financial architecture.

Let N = (1, . . . , n) be a set of agents. To avoid trivial results we will always
assume that n ≥ 3. If i and j are two typical members of N , a link among them,
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without intermediaries, originated by i and ending in j will be represented as
ij. The interpretation of ij is that i establishes a contact with j that allows i to
partner with j as well as connect to j’s network of contacts. Each agent i ∈ N
has some resources of her own, Ii ∈ ℜ+, (i.e. represented as a nonnegative
real number). i can have access to more wealth by forming links with other
agents who can lend her extra resources. The formation of links is costly but
we will assume that a link ij has a fixed cost c. For simplicity, we assume that
l : N ×N → Z+, i.e. that the length of each link is a non-negative integer and
that lij = lji (each i is trivially connected to itself through a link of length 0).

The agents will try to maximize the utility of the resources available to them
as well as to minimize the cost of connecting to other agents. In order to do
this, they will be endowed with a set of strategies. Each strategy for i ∈ N is
a (n− 1)-dimensional vector gi = ⟨gi,1, . . . , gi,i−1, gi,i+1 . . . gi,n⟩ where each gi,j ,
for j ̸= i, is either 0 or 1. This is interpreted as meaning that i establishes a
direct link with j if gi,j = 1 while if gi,j = 0 there is no such direct link. The
set of all i’s strategies is denoted as Gi. We restrict our analysis to only pure
strategies, and so |Gi| = 2n−1. Finally, G = G1 × . . . × Gn denotes the set of
strategy profiles in the interaction among the agents in N .

The existence of a direct link ij indicates an asymmetric partnership between
i and j. That is, gi,j = 1 indicates that i establishes a link with j that permits
i to access to j’s resources but no viceversa (the symmetry between i and j is
restored if also gj,i = 1). Structures with this feature are called one-way flow
networks.

In one-way flow networks a strategy profile can be represented as a directed
graph g = (g1 . . . gn) over N . That is, in the directed graph the elements of N
are the nodes while any established link like gi,j = 1 is represented by an arrow
beginning in j with its head pointing to i. That is, arrowheads always point
toward the agent who establishes the link.

We define Ngi = {k ∈ N |gi,k = 1} as the set of agents to whom i establishes
a direct link according to her strategy gi. We say that there exists a path from
j to i according to g ∈ G if there exists a sequence of different agents j0 . . . jm
(with i = j0 and j = jm) such that gj0,j1 = . . . = gjm−1,jm = 1. In other words,
given the joint strategy g, we have that j1 ∈ Ngj0 , j2 ∈ Ngj1 , . . ., jm ∈ Ngjm−1 .
The length of the path from j = jm to i = j0, denoted as j →g i, is the sum
of the lengths of links in the path,

∑m−1
j=0 lj(j+1). Notice that a direct link is a

path of length 1.

We denote the set of agents accessed (directly and otherwise) by i as N i;g =
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{k ∈ N |k →g i} ∪ {i}. We include i in N i;g to indicate that i knows her
own valuation through a link, of length 0, from i to herself. Let µi : G →
{0, . . . , n× (n− 1)} be the number of links in all paths that end in i, originated
by agents in N i;g under any given joint strategy: µi(g) =

∑
(j,k)∈Li;g ljk, where

Li,g={(j, k) ∈ N ×N : gj,k = 1, and ∃l ∈ N i;g and l→g i with j, k ∈ l→g i}.

Let Πi : G→ R be i’s payoff function:

Πi(g) ≡
∑

j∈Ni;g

Ij − cµi(g)

where c is the cost of establishing each link. That is, i’s payoff is just the
sum of all the resources that can be accessed by her, less the total cost of the
paths reaching her that are established according to g. The intuition here is
that i gets a payoff from accessing to more resources but at the same time she
has to pay a “fee” for each of the links on the paths to the sources of information.

For each g ∈ G, agent i obtains a structure N i;g and her payoff depends
critically on the type of directed graph that corresponds to N i;g. The goal of a
rational agent is to get as much information as possible traversing the shortest
possible paths.

Given a network g ∈ G, let g−i be the directed graph obtained by removing
all of agent i’s direct links. Then, g can be written as g = gi ⊕ g−i where ⊕
indicates that g is formed by the union of the links of gi and those in g−i. A
strategy gi is said the best response of agent i to g−i if

Πi(gi ⊕ g−i) ≥ Πi(g
′
i ⊕ g−i)

for all g
′
i ∈ Gi.

The set of best responses to g−i is BRi(g−i). A network g = ⟨g1, . . . , gn⟩
is said to be a Nash network if for each i, gi ∈ BRi(g−i) i.e. if g (as a joint
strategy) is a Nash equilibrium.

Given a network g, a set C ⊂ N is called a component of g if for every pair
of agents i and j in C (i ̸= j) we have that j ∈ N i;g and i ∈ N j;g. Furthermore,
there does not exist C

′
, C ⊂ C

′
for which this is true. A component C it said

to be minimal if C is not a component anymore once a link gi,j = 1 between
two agents i and j in C is cut off, i.e. if gi,j = 0.
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A network g is said to be connected if it supports a single component. If
that component is minimal, g is minimally connected. A network that is not
connected is disconnected.

Then, we have:

Lemma 1 A strict Nash network is empty if for each i, Ii < c. If, instead, for
each i, Ii is larger than the cost of accessing i from every j ̸= i, the strict Nash
network is minimally connected.

Proof: See Appendix.

Let us note that the topology of the minimally connected Nash network is
called the “wheel”. That is, each node is connected just to one node. But this
case arises only if the costs are almost zero, or if the amount of resources of each
agent are large.

For intermediary cases we have:

Proposition 1 If, for not every i, Ii > c, the strict Nash network has n directed
edges.

Proof: See Appendix.

Example 1 Consider a group of five agents, N = {A,B,C,D,E}, such that
the information owned by them is: IA = 2, IB = 1.8, IC = 2.1, ID = 0.5 and
IE = 0.5. Under a connection cost c = 1.8, Figure 1 shows one of the possible
equilibrium structures that can arise.

4 A Scale-free Architecture

A directed graph, corresponding to a Nash equilibrium g∗, can be fully de-
scribed by means of its Laplacian matrix L(g∗) = D(g∗) − A(g∗). It obtains
as the difference between the degree matrix D(g∗) and the adjacency matrix
A(g∗). D(g∗) is a diagonal n × n matrix, in which for each i, the ii entry is∑

{j:g∗
i,j
̸=0} lij . A(g∗) is a n × n matrix in which each entry ij is lij if g∗ij = 1

and 0 otherwise.

The main properties of L(g∗) are (Mohar 1991),(Wu 2005):

• The eigenvalues of L(g∗), λ1, λ2, . . . , λn have all non-negative real parts.
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Figure 1: Example 1: Equilibrium network of 5 nodes with the different endow-
ments

• Furthermore, Re(λ1) ≤ Re(λ2) ≤ . . . ≤ Re(λn) are such |{k : Re(λk) =
0}| is the number of undirected3 components of g∗.

• In the case that g∗ is an empty network, Re(λk) = 0 for every k = 1, . . . , n,
while if g∗ is connected, Re(λk) > 0 for k = 2, . . . , n.

Now consider the space Hn of the Laplacian matrices of directed graphs with
n nodes and distances given by {lij}i,j=1,...,n. It can be endowed with a partial
order ≼, such that Li, Lii ∈ Hn are such that Li ≼ Lii iff all the eigenvalues of
Lii − Li have non-negative real parts. That is, Lii − Li corresponds to a direct
graph (not necessarily to an equilibrium). This, in turn means that the graph
corresponding to Lii includes the undirected edges of Li as a subgraph.

We can define a transformation t : N ∪{0}×I → I, where N is the class of
natural numbers, defined as follows:

• For any distribution of resources I, I = t(0, I).

• For k ≥ 1, t(k+1, I) = I ′ such that I ′ is a distribution of resources with a
Nash graph, g∗(I ′) that includes all the links in the Nash graph of t(k, I).
Furthermore, t(k + 1, I) yields a Nash graph that strictly includes the
graph of t(k, I).4 Otherwise, if no such graph exists, t(k + 1, I) ∈ t(k, I).

We have that:
3That is, the components that obtain by disregarding the direction of edges.
4It is immediate that t is a correspondence, since there might exist several minimal graphs

in this condition.
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Theorem 1 Consider distributions I1 and I2 in the conditions of Lemma 1
and the transformation t. Then, there exist two parameters k̄, k̃ ∈ N such that
k̄ < k̃ and for k ≤ k̄, t(k, I1) yields an empty network, while for k ≥ k̃, t(k, I1)
is a minimally connected network.

Proof: See Appendix.

An important feature of each of the chains determined by t is that each one
will be determined by the nodes that receive heavier demands of connection.
This is expressed in the concept of eigenvector centrality, which should not be
confused with the mere number of links pointed towards the central nodes. More
broadly, it indicates their relative importance. To determine the centrality of
each node, we have to consider the lowest non-zero eigenvalue of the Laplacian
matrix and compute the corresponding eigenvector. Formally, given an equi-
librium g∗, and the family of eigenvalues of L(g∗), Re(λ1) ≤ Re(λ2) ≤ . . . ≤
Re(λn), let k be the least such that Re(λk) > 0. Then let {x̄j}j≥k be the
eigenvectors corresponding to positive eigenvalues (Newman 2008). Then, the
centrality of the i node is 1∑

j≥k
x̄j

i

.

Formally, we have the following result:

Proposition 2 For each chain of resource distributions between I1 and I2 in-
duced by t, the critical parameters {km}n

m=1 that determine the transition from
Nash graphs with m+1 components to Nash graphs with m components, are as-
sociated with different centrality values for different values of m. These values
will be such that the centrality of nodes decreases in each transition.

Proof: See Appendix.

This analysis is of static nature. We assume that changes in the distribution
of resources do not trigger flows over the links. For each transition the central
nodes will play the role of “mavens”, i.e. highly connected individuals that fa-
cilitate the connection between agents that were separated under the previous
distribution. Since the undirected subgraphs underlying the components are all
minimal spanning trees, a transition implies that one node (a maven) receives
a large number of links while the others receive only a few.

Let us consider the distribution of degrees of the nodes. That is, for each i,
let dkm

i be the number of agents to which i is connected in the Nash network
corresponding to parameter km. It is easy to see that mavens will have a large
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degree, while the rest of the nodes will have a low degree. If n→∞, the degree
of mavens would grow without bound. That is, the Nash network would be
scale-free.

If we fix a parameter k > k̃, such that the Nash network is not a wheel,
we have an architecture in which there are powerful players (the mavens) and
the rest, who try to connect to them. In what follows, the architecture will be
denoted Gk while the number of cases in which a generic node i has a degree j
(dk

i = j) is d(j). We have that:

Proposition 3 For k > k̃, d(j) =
(
n−nc

j−1

)
V Rn−nc+1−j

nc−1 .5

Proof: See Appendix.

Example 2 Consider the same nodes, information values and connection cost
as in Example1. The degree of node C can be either 1, 2 or 3. In Figure 2
all the cases in which these degrees obtain are exhibited. It can be seen that
for d(1) the number of cases is

(
2
0

)
V R2

2 = 4, while d(2) =
(
2
1

)
V R1

2 = 4 and
d(3) =

(
2
2

)
V R0

2 = 1.

Figure 2: Example 2

For any given node, d(j) is distributed according a power law:

Theorem 2 For a large n, in Gk we have that

d(j) ∼ j−τ .

where τ are the odds6 that any node i is such that Ii < c.

5Where
(

m
p

)
indicates the number of p-combinations out of a set of m elements, while V Rm

p

is the number of variations with repetition of p elements chosen from a set of m elements.
6That is, the probability of the event over the probability of the complementary event.

12



Figure 3: Example 2: Degree(C)= 1

Figure 4: Example 2: Degree(C)= 1

Figure 5: Example 2: Degree(C)= 1

Proof: See Appendix.

Two extreme cases are worth considering. One is when θ∗ = 0, i.e. when no
node has information enough to make it worth a connection. Since then τ →∞
this means that only the empty network will be obtained. On the contrary,
when θ∗ = 1, τ = 0, indicating that all the nodes will be part of the Nash
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Figure 6: Example 2: Degree(C)= 2

Figure 7: Example 2: Degree(C)= 2

Figure 8: Example 2: Degree(C)= 2

Figure 9: Example 2: Degree(C)= 2

network. Both results recast Lemma 1.
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Figure 10: Example 2: Degree(C)= 3

Figure 11: Structure of the Federal Reserve Payment Systems (Sorämaki et al.
2007). Reproduced with permission.

5 The Origin of Extreme Events

Suppose that in Gk one node i receives a shock, meaning a variation of the value
of Ii. Given the links held by i with other agents, if the shock is negative and
now Ii < c, she might borrow from its potential lender the resources needed to
recover the loss. Alternatively, if the shock is positive and previously Ii < c, i
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may get enough resources to attract new potential borrowers. In the former case,
any agent j that became a lender of i, can borrow the extra units transferred
to i from its own lender, etc. The only constraint on this process it that no
loops are allowed, since they would imply that nodes previously ‘bailed out’ will
have in turn to bail out other nodes.7 The multiplicative effect of this process
may either die out immediately (if the node can satisfy the request with its
own resources) or propagate through the network. Notice that no matter the
sign of the shock, a new structure Gk′ may appear. If the shock is negative
the disturbance propagates through the links in Gk leaving some of them with
resources below c and leading to a new network structure, while if the shock is
positive, the node may become attractive, yielding Gk′ as a result.

Example 3 Consider the network in Figure 3, with the same nodes and values
as in Example1. Suppose that node D receives a negative shock of −1. Then,
it has to borrow 1 from its lender, B, in order to return to its previous state.
Now IB becomes 0.8. B, in turn, will request 1 from C, which leaves C with 0.1.
Then C requests 1 from A. And the process ends there (otherwise A would ask 1
from the previously bailed out B), with all the nodes with original values, except
A that has now only 1, which implies that it will be left out of the wheel and
the new topology represented in Figure 4 arises (A remains being a potential
borrower from B). In the process four nodes have been affected: D,B,C,A.

Figure 12: Example 3

On the other hand, suppose a positive shock of 1.3, again to D. Then, D
will become part of the wheel (a possible resulting structure is shown in Figure
5).

Consider s the number of resources displaced due to a shock σ to node i. So,
if the shock is negative, there will exist a path k1, k2, . . . , ks, where k1 = i, such
that for j = 1 to j = s − 1, σ + Ikj < c and either ks is such that σ + Iks ≥ c

7In the real world a bankrupt company is not allowed to lend to another one.
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Figure 13: Example 3

Figure 14: Example 3

or ks has a direct link to a kj in the path (j < s). Of course, the length of the
path (i.e. the size of the disturbance generated by σ) is s.

If the shock of σ to i is positive and σ + Ii ≥ c, s = nσ + 1, where nσ is
the is the number of links that are established to i.8. Otherwise, if σ > 0 but
σ + Ii < c, s = 1.

Let p(s) be the probability that a shock generates a displacement of size s.
Our main claim is that

p(s) ∼ s−γ .

Consider qm the probability that a shock to a node generates a tree with m
branches. This probability is given by:

qm =
m d(m)∑

j j d(j)
1
m

i.e. the proportion of cases in which the disturbance may affect a node through
one of m links, multiplied by the probability that the node will get a value below
than c (if the shock is negative) or the probability that any nodes attracted to
it has a value below than c (if the shock is positive).

From Theorem 2 we have:

qm ∼ m−τ

∑
j j

1−τ
∼ m−τ

ζ(1− τ)

8Since Nc decreases now to Nc \ {i}, nσ ranges between 1 and n − nc
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where ζ(·) is Riemann’s zeta function.
To derive an expression for p(s) we consider, given complex numbers x and

y, its generating function P(x) =
∑∞

s=1 p(s)x
s and a generating function for qm

as Q(y) =
∑∞

m=1 qmy
m. Then, we have that (Otter, 1949):

P(ω) = ωQ(P(ω))

Then we have:

Proposition 4 For τ ∈ (2, 3), γ = 1−θ
2θ−1 such that p(s) ∼ s−γ .

Proof: See Appendix.

Figure 11 shows the log-log representation of the degree distribution of the
Federal Reserve Wire Network, which follows a power law. In log-log scale the
power law function is a straight line with scope 2.111. The degree distribution
resulting from this estimation is scale free, with a power law analogous to the
form proposed by Proposition 4.

6 Discussion

The abstract features of our presentation should not hide the initial purpose
we stated in the Introduction. The financial architecture (Gk in our formalism)
reflects the basic feature of financial systems: it consists of an organized scheme
in which richer entities lend money to less well endowed ones. The links, in turn,
reflect the contracts that may arise between borrowers and lenders, including
the payment of fees for the use of the financial resources.

Shocks represent sudden increases or decreases of wealth that have impact
on other entities in the system. Agents connected to the one who received the
shock may either borrow or lend to her. The propagation of the shock proceeds
through the network, yielding either small overall effects or (with much less
probability), a high impact on the entire system. These effects are Taleb’s black
swans. In particular, huge financial crises may arise in this way, starting from
innocent-looking changes in wealth in some sectors of the economy.

The calls for more regulation or state intervention should take into account
that all depends on the architecture of the system. If it is scale-free, shocks will
propagate following a power law, which in turn may engender extreme events.
Thus, if prudential regulation must be enacted to avoid this kind of crisis (in
Minsky’s sense), the key resides in restricting the scale-free structure and not
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so much in separating roles of banks (commerce and investment).9 The key for
doing this consists in detecting the “mavens” and then limiting their degree in
the network. This will reduce their participation in the chains of propagation
of defaults and thus, cascades of bankruptcies may be contained, instead of
affecting the entire architecture.
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8 Appendix

Proof of Lemma 1: Let us consider Πi : G→ ℜ+, for each i ∈ N . If we show
that there exists a unique (up to isomorphism) g∗ ∈ G that maximizes Πi for
each i, given that the others choose g∗−i we would establish that there exists only
one Nash equilibrium in the game.

On the other hand, since given two joint strategies g and g
′
, Πi(g) ≥ Πi(g

′
)

iff the corresponding graphs N i;g and N i,g
′

are such that:
∑

j∈Ni;g

Ij −
∑

j∈Ni;g′

Ij ≥ c(µi(g)− µi(g
′
))

it follows that for every i the corresponding payoff should be:

Πi(g∗) =
∑

j∈N
i;g∗−i
>c

Ij − cµ̄i(g∗)

where N
i;g∗−i

>c = {j : Ij > cµ̄i(i →gi;g∗−i
j)} ∪ {i}. Here µ̄i(j →gi;g∗−i

)i is the
shortest length of a path from j to i, for any gi while keeping fixed g∗−i. In turn,
µ̄i(g∗) is

∑
(j,k)∈GLi;g∗ ljk, for GLi;g∗ , the class of shortest paths between i and

any other node in N i;g∗ .

Proof of Proposition 1: Let us consider the class of nodes with infor-
mation at least as valuable as the cost of connection: Nc = {i ∈ N : Ii ≥ c}.
By a straightforward application of Lemma 1, restricted to Nc, we have that Nc

constitutes a wheel (i.e. with |Nc| directed edges). On the other hand, all nodes
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in N \ Nc will connect to one of the nodes in Nc getting access to all of them
(|N \Nc| directed edges). So, in total, we have |N |+ |N \Nc| = n directed edges
in the graph.

Proof of Theorem 1: First of all, notice that t determines an increasing
sequence in Hn. This is immediate from the fact that t(k, I) yields a class of
information distributions such that the corresponding Nash graphs all have the
undirected Nash graph of I as a subgraph. This in turn means that the Laplacian
matrixes will verify that LI ≼ Lt(k,I).

Since the number of eigenvalues with zero real part of a Laplacian is the
number of components of its graph, and LI ≼ Lt(k,I) it follows that, since a
graph corresponding to t(k, I) keeps the links of the graph for I, the number of
components in t(k, I) has to be greater or equal than the amount of components
for I. Then, the number of eigenvalues with zero real part must either remain
the same or decrease from LI to Lt(k,I).

Therefore, t(0, I1) yields the empty network, with the maximal number of
components. So, trivially, k̄ = 0 since for any k > 0, t(k, I1) has already at
least one link among two nodes. On the other hand, considering the ordering
among Laplacian matrixes, there must exist LI2

, corresponding to I2. It is clear
that I2∈t(k, I1) for some k, since the minimally connected graph for I2 includes
the empty graph as subgraph. Take k̃ as the minimal k that verifies that the in-
formation distribution supports a minimally connected graph. It follows that for
every k > k̃, t(k, I1) will also be an information distribution that corresponds
to a minimally connected graph.

Proof of Proposition 2: Consider two critical values km and km−1. They
will be associated to eigenvalues {λm

j }n
j=1 and {λm−1

j }n
j=1, respectively. No-

tice that since the real parts of the eigenvalues are ordered, Re(λm
m−1) = 0 and

Re(λm
m) > 0. In turn, Re(λm−1

m−2) = 0 while Re(λm−1
m−1) > 0. Therefore, the

corresponding least non-zero eigenvalues are Re(λm
m) > 0 and Re(λm−1

m−1) > 0
and the corresponding eigenvectors are different. The centrality of nodes will
differ acordingly. But even so, notice that, since each Nash graph contains the
undirected Nash graph of the previous stage in the chain, if the number of com-
ponents becomes reduced from m to m − 1 is because two components become
linked. That is because some nodes acquire enough information to makes them
central for the two previous components.
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Proof of Proposition 3: Consider the class of nodes with information at
least as valuable as the cost of connection: Nc = {i ∈ N : Ii ≥ c}. Recall
that the cardinality of N is n and let |Nc| = nc. Then, the degree of each
i ∈ Nc can range from 1 to n − nc + 1. This is a straightforward consequence
of Proposition 1: since the members of Nc will form a wheel, one of them will
connect to i while any subset of N \Nc might connect also to i.

Proof of Theorem 2: Let us now consider a fixed node i∗ ∈ Nc (nodes in
N \Nc have degree 0). For any given degree j of i∗, n− nc + 1− j elements of
N \ Nc will be assigned to the rest of nc − 1 nodes in the wheel (V Rn−nc+1−j

nc−1

possibilities), while j − 1 (one connection among the j edges comes from Nc)
elements from among n− nc may be assigned to i∗(a number

(
n−nc

j−i

)
of cases).

That is, d(j) =
(
n−nc

j−1

)
V Rn−nc+1−j

nc−1 .

Consider a fixed node i∗ ∈ Nc (nodes in N \ Nc have degree 0). The num-
ber of cases in which i∗ can have a degree j, according to Proposition 3, is(
n−nc

j−1

)
V Rn−nc+1−j

nc−1 . For a large n this expression can be approximated by:

Γ(M − 1 + j)
Γ(M)Γ(j − 1)

(n− j −M)M

where M = n− nc + 1− j and therefore n− nc = M − 1 + j and nc − 1 = n−
M − j. Taking logarithmic derivatives (where ψ0 is Gauss’ digamma function)
we obtain:

ψ0(M−1+j)−ψ0(j−1)− M

n− j −M
=

M−1+j−1∑

k=1

1
k
−

j−1−1∑

k=1

1
k
− M

n− j −M
=

=
M−1+j−1∑

k=j−1

1
k
− M

n− j −M

To obtain τ we multiply this expression by −j. That is:

τ ∼ −
M−1+j−1∑

k=j−1

j

k
+

jM

n− j −M

To assess the value of τ we find a lower and an upper bound, by taking the
lowest and highest terms in

∑M−1+j−1
k=j−1

j
k and eliminating M :

τ− ∼ −j(n− nc − j)
j − 1

+
j(n− nc − j)

nc − 1
+

j

nc − 1
=

=
j

j − 1
(j − nc)

n− nc − j

nc − 1
+

j

nc − 1
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and

τ− ∼ −j(n− nc − j)
n− nc − 1

+
j(n− nc − j)

nc − 1
+

j

nc − 1
=

=
j

nc − 1
(n− 2nc)

n− nc − j

n+ nc − 1
+

j

nc − 1

For large values of n and nc, nc ∼ nc. Furthermore, large values of j imply
that j ∼ n− nc. Therefore, τ−, τ− → n−nc

nc
. That is, τ ∼ n−nc

nc
.

By taking, for large n, nc = θ∗n, where θ∗ is the probability that a given
node i ∈ Nc, we have that τ ∼ 1−θ∗

θ∗ , i.e. the odds of the event ‘i /∈ Nc’.

Proof of Proposition 4: For s large and ω ∼ 1, we find an asymptotic
behavior for p(s) (Goh et al., 2003, eq. (7)):

p(s) ∼ a(τ)s
−τ

τ−1

where a(τ) =
−(

Γ(τ−1)
ζ(1−τ) )

1
τ−1

Γ( 1
τ−1 )

. Then, since τ = 1−θ
θ we have that s

−τ
τ−1 = s

−(1−θ)
2−θ .
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Highlights

• A model of network formation that engenders scale-free structures is proposed.

• Nodes are rational lenders or borrowers and links are financial transactions. 

• Shocks represent sudden increases or decreases of wealth. 

• They propagate on the system yielding small overall effects.

• However, with smaller probability, they impact the entire system.


