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Abstract – Honey bee colonies are threatened by different stress factors around the world. Considerable efforts are
being devoted to understanding honey bee defences to confront different kinds of stress factors. Despite the
importance of honey bee hemocytes in resisting disease, detailed information about their role in response to
challenge is still scarce. This manuscript combines the results obtained in studies which focused on the cellular
defences of Apis mellifera , aiming to show how the understanding of the cellular components of the immune system
is central to developing new strategies to enhance bees’ fitness.

Apismellifera / honey bee / hemocytes / immune system

1. INTRODUCTION

The recent decline in managed honey bee pop-
ulations has attained scientific, ecological and
economic concern. It has been attributed to the
combination of several honey bee stresses such as
parasites, pathogens (including virus, bacteria,
etc.), pesticides and nutritional deficiencies due
to habitat fragmentation among others (Martin et
al. 2012; Neumann et al. 2012; Wagoner et al.
2013; Alaux et al. 2014; Steinmann et al. 2015). It
has been also proposed that the diseases caused by
infectious agents generate a major selective pres-
sure on honey bees. By this mean, chronic in-
creases in individual mortality and morbidity
may lead directly to hive collapse or cause long-

term reductions in hive-level fitness due to pro-
ductivity loss (Jefferson et al. 2013).

Lately, the increased mortality and colony loss
of honey bees have been linked to an impaired
immune competence (Gätschenberger et al. 2013;
Alaux et al. 2014; Steinmann et al. 2015). Thus,
the study of Apis mellifera immune system has
become a key research topic in the last years in
view of the fact that it could provide basic infor-
mation to better understand how honey bees de-
fend themselves against parasites and pathogens.

Insects have a well-developed innate immune
system comprised of humoral and cellular re-
sponses (Strand 2008). Humoral defences refer to
soluble effector molecules such as antimicrobial
peptides, complement-like proteins and enzymatic
cascades that regulate melanin formation and
clotting. Cellular immunity is comprised by cell-
mediated responses like phagocytosis, nodulation,
encapsulation and wound closure (Strand 2008;
Marmaras and Lampropoulou 2009). Particularly,
social insects can defend themselves through their
innate immune system, but they have also
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developed group-level strategies to prevent disease
transmission (Alaux et al. 2012; Wilson-Rich et al.
2009). This so-called social immunity relies main-
ly on behavioural responses to infection. Wilson-
Rich et al. introduced the term ‘antiseptic behav-
iour’ that includes activities performed by bees
such as grooming, hygienic behaviour, undertak-
ing, avoidance, glandular secretions and use of
resins in the nest. Differences between individuals
and species in these immune parameters can reflect
differences in infection risk, life expectancy and
biological function (Schmid et al. 2008).

Hemocytes (blood cells) and the (prophenol-)
phenoloxidase (proPO) system constitute the imme-
diate response of the innate immune system in in-
sects (Schmid et al. 2008; Schmid-Hempel 2005;
Eleftherianos andRevenis 2011). Indeed, hemocytes
are the primary mediators of cell-mediated immuni-
ty (Marmaras and Lampropoulou 2009) because the
elimination of organisms entering the insect hemo-
coel requires that hemocytes be able to recognize
and respond to the invading species (Clark et al.
1997). When recognizing a surface as foreign, he-
mocytes quickly transform from resting non-
adherent cells into activated adherent cells that first
adhere as a monolayer or as foci to the foreign
surface (Nardi et al. 2006). After non-self recogni-
tion, the response of the insect hemocytes is to
‘spread’ (Gillespie and Kanost 1997). If the foreign
agent is small, this spreading ability promotes parti-
cle phagocytosis, while larger foreign objects (or
many small foreign objects together) would be sub-
ject to nodulation or encapsulation owing to the
cooperative action of a number of hemocytes
(Eleftherianos et al. 2009). Nodulation is an insect
cellular defence reaction responsible for clearing
large numbers of bacterial cells from circulation in
response to infection (Horohov and Dunn 1983). In
most insects, multicellular parasites and other for-
eign targets entering the hemocoel are eliminated by
cellular encapsulation (Strand 2008). In this sense,
inhibiting hemocyte spreading is a common strategy
employed by many entomopathogens (Dean et al.
2004). This implies that such changes in hemocyte
behaviour are major components of insect defence
(Eleftherianos et al. 2009).

Given the worldwide concern of maintaining
healthy populations of pollinators, the study of cel-
lular immunity in honey bees has surprisingly

received little attention (Marringa et al. 2014). even
though several relevant studies have addressed hu-
moral andmolecular approaches (Evans et al. 2006)
and social immunity (Wilson-Rich et al. 2009). The
study of A. mellifera cellular immunity has been
discontinued for many years. A few works
concerning honey bee hemocytes characterization
and the effects of Varroa destructor parasitism on
A. mellifera blood cells are currently available
(Price and Ratcliffe 1974; Fluri et al. 1977; Van
Steenkiste et al. 1988; Wienand and Madel 1988;
Beisser et al. 1990; de Graaf et al. 2002; Sapcaliu et
al. 2009). Therefore, strategies to monitor the
hemocytes subsets which could contribute to a bet-
ter understanding of the effect of pathogens in
colony failure are in urgent need (Marringa et al.
2014).

Hemocyte analysis in honey bees should become
the focus of priority in research and allow answers
to questions posed by honey bee decline. This
manuscript centres on new approaches regarding
cellular immunity of A. mellifera and provides a
summary of the literature pertaining to the hemo-
cytes of the western honey bee. The aim is to
contribute with a useful collection of results and
perspectives about resistance to diseases deduced
through the analysis of the bees’ host defence cells.
Given the fact that the activation of themelanisation
system results from the cooperative action of hu-
moral and cellular defences during wound healing,
encapsulation and nodulation (Markus et al. 2005;
Marmaras and Lampropoulou 2009; Eleftherianos
and Revenis 2011). the melanogenesis response is
taken into account in this review. The key role
reported for natural occurring compounds in A.
mellifera cellular responses is also described with
possible application in the field to help bees con-
front different stress factors such as diseases, pesti-
cides and winter through an improved nutritional
quality. By doing so, we aim to highlight the rele-
vance of studding A. mellifera immunity at a cellu-
lar level.

2. WHAT IS IT KNOWN ABOUT A.
MELLIFERA’S HEMOCYTIC
RESPONSE?

Holometabolous insects undergo drastic mor-
phological and physiological changes throughout
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their development. In these insects, the cellular
elements in the larval hemolymph may differ sig-
nificantly from those present in the adult (Schmid
et al. 2008;Wilson-Rich et al. 2008;Manfredini et
al. 2008; Negri et al. 2013, 2014a, b and 2015).

A. mellifera represents an ideal organism for
the study of the changes in the immune system
associated to ontogeny because it combines a
holometabolous development within a eusocial
caste system (Schmid et al. 2008; Wilson-Rich et
al. 2008; Laughton et al. 2011). This has been
supported by a large number of studies on A.
mellifera (Schmid et al. 2008; Wilson-Rich et al.
2008; Laughton et al. 2011; Negri et al. 2013,
2014a, b, 2015).

Regarding particularly the cellular defence,
Wilson-Rich et al. (2008) measured the number
of hemocytes in hemolymph and the encapsula-
tion response, across four developmental stages:
larvae, pupae, nurses and foragers. The authors
found that honey bee brood has more hemocytes
than adults do, being larvae and pupae the two
stages with the highest total hemocyte counts.
However, no difference in encapsulation
r e sponse was accoun t ed fo r be tween
developmental stages. In another study, Schmid
et al. (2008) worked with immunologically naive
workers, queens and drones and stated that, in all
three adult phenotypes, hemocyte number contin-
uously decreased with age, evidencing that reduc-
tion of hemocyte in foragers is not worker-specific
but represents a general phenomenon occurring in
all honey bee adult phenotypes.

In 2001, Bedick et al. reported that nodulation
reactions might not occur in honey bee foragers
upon infection. Most recently, Gätschenberger et
al. (2013) examined the immune strength of hon-
ey bees across all developmental stages and found
that newly emerged adult worker bees and drones
were able to activate the hemocytic responses they
analysed. They pointed out that the number of
viable bacteria circulating in the hemolymph of
challenged bees declined rapidly after the injec-
tion of the bacteria (Escherichia coli ) coinciding
with a rapid increase in detectable melanised nod-
ules. They postulated that this could be attributed
to a constitutively active cellular immune re-
sponse comprising mainly phagocytosis and
nodulation. This means that the observation

accounted for by Bedick et al. (2001) cannot be
fully supported because Gätschenberger et al.
(2013) detected nodules in the hemocoel of forag-
er bees as well as in 9-day old hive bees 24-h post-
injection with bacteria at a reduced amount as
compared to newly emerged worker bees.
However, Gätschenberger et al. (2013) also
showed that honey bee workers of increasing
age lost their capacity to produce visible nodules,
culminating in the complete absence of nodulation
reactions in winter bees.

Worker and drone larvae are well prepared to
cope with bacterial infections that invade the he-
mocoel, but the formation of nodules might be
impaired (Gätschenberger et al . 2013).
Presumably, bacteria could be cleared from larvae
hemolymph through phagocytosis. However, con-
siderable efforts are needed to better understand
this mechanism in larvae.

Honey bee pupae contain a high concentration
of hemocytes throughout their development
(Gätschenberger et al. 2013). However, worker
and drone pupae were completely unable to acti-
vate cellular defence reactions upon artificial bac-
terial challenge (Gätschenberger et al. 2013). This
absence of immune reaction in pupae could not be
explained by these authors.

In 2014, Negri et al. (2014a) presented new
data concerning the cellular immune response of
A. mellifera fifth instar larvae (L5) and newly
emerged workers (W). These authors described
that hemocytes from A. mellifera L5 and W
displayed different appearance and yielded behav-
ioural differences regarding attachment and
spreading in vitro. Clearly, the metamorphosis
between these two ontogenic stages played a key
part on A. mellifera cellular immune defence.
Nevertheless, hemocytes extracted from L5 and
W exhibited strong similarities with respect to
their general (multicellular) behavioural pattern.
After comparing their results with previous re-
ports of hemocytic behaviour in other insect spe-
cies, these authors proposed that the different
hemocyte types found in L5 larvae and adults
were granulocytes and plasmatocytes denoting a
multi-hemocytic response related to an
encapsulation-like process (Negri et al. 2014a).

Recently, a new work has reported a rapid
method for examining honey bee hemocyte
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profiles (Marringa et al. 2014). The authors used
flow cytometry accompanied with microscopic
analyses to describe the cellular components and
particles present in hemolymph of adult honey
bees representing a step forward from a previous
work conducted by De Graaf et al. (2002). De
Graaf et al. (2002) distinguished low fluorescent
granular cells and two kinds of strong fluorescent
plasmatocytes: plasmatocytes 1 stained all over
their surface and plasmatocytes 2 with a rather
dotted appearance. Prohaemocytes were not
stained at all. Marringa et al. (2014) found perme-
abilized cells, plasmatocytes and acellular parti-
cles. Similarly to Negri et al. (2014a). Marringa et
al. (2014) postulated that bee hemocytes seemed to
display a molecular ligature for binding to other
cells or surfaces, and through this mechanism, a
functional role in response to pathogens or wound
healing. These authors also observed that the
smears of bee hemolymph sometimes showed he-
mocyte aggregation, involving abundant numbers
of permeabilized cells as well as some
plasmatocytes. Interestingly, as it was pointed out
by Negri et al. (2014a). Marringa et al. (2014) also
related this cellular aggregation to an encapsulation
process basing their suggestion on Pseudoplusia
includens description by Pech and Strand 1995,
1996 and 2000; Lavine and Strand 2001.

3. THE IMPORTANCE OF WORKING
W I T H A . M E L L I F E R A
HEMOCYTES: HONEY BEES ’
CELLULAR RESPONSES
TO DIFFERENT THREATS

The importance of working with A. mellifera
hemocytes could be exemplified with recently
published results demonstrating the relevance of
cellular immunity in the bees’ response to con-
front important threats such as V. destructor par-
asitism, nutrition deficiencies through habitat
fragmentation, pesticide poisoning and the nega-
tive effects of winter season in temperate climates
and viruses (Alaux et al. 2010a; Martin et al.
2012; Cousin et al. 2013; Steinmann et al.
2015). This section integrates the results obtained
by different authors within the biological context
in order to understand the significance of the data
discussed (Figure 1). We suggest that the relevant

results provided below support the development
of new strategies to help beekeepers to control
field stress.

Without treatment, a colony of A. mellifera
infested with V. destructor dies within 1 to 3 years
(Rosenkranz et al. 2010; Dietemann et al. 2012).
A satisfactory solution to its control has not been
described as of yet, and it has become clear that
the development of enduring sustainable control
measures will not occur unless a better under-
standing of the fundamental biology of the para-
site is reached (Rosenkranz et al. 2010;
Dietemann et al. 2012). The fact that a special
chapter was devoted to V. destructor in the
‘COLOSS BEEBOOK ’ evidences the relevance
of developing a standardized methodology to ful-
ly comprehend this parasite affecting honey bees
(Dietemann et al. 2013a). Alternative methods are
in line with the principles of integrated pest man-
agement and have been extensively applied
worldwide to enhance the chances for colony
survival and ensure residue-free hive products
(Rosenkranz et al. 2010; Dietemann et al. 2012).
The most promising options are based on biolog-
ical control using pheromones, hormones, patho-
gens, predators or antagonists (Rosenkranz et al.
2010; Dietemann et al. 2012).

Marringa et al. (2014) have recently provided
some results that indicate that Varroa mite burden
may influence hemocyte profiles in honey bees,
thus evidencing that honey bees’ cellular immune
system responds to mite’s parasitism (Figure 1).

Varroa mites (Varroa spp.) feed on the hemo-
lymph of developing and adult bees (Rosenkranz
et al. 2010). The mother mite creates a hole in the
cuticle of the pupa and secretes anticoagulant
factors to diminish the wound healing response
of the host so that the mite nymphs can feed
through the open wound. This single ‘feeding
zone’ created by the mother mite is part of ‘paren-
tal care’ and it is of vital importance to reproduc-
tion success, since the soft chelicerae of the
nymphal stages cannot perforate the pupal cuticle
and the male’s chelicerae are modified for sperm
transfer (Rosenkranz et al. 2010; Richards et al.
2011). All this clearly reflects the importance of
wounding in V. destructor reproduction.

The statements above come to show that the
study of A. mellifera hemocytes is crucial, since

P. NEGRI et al.



these cells (accompanied for the activation of the
melanisation process) are the main actors in the
wound healing and encapsulation responses of A.
mellifera (Figure 1).

Through a series of correlative reports, Negri et
al. (2012, 2013 and 2014b) demonstrated that
nitric oxide (NO) plays a role in signalling during
the wound healing and encapsulation responses,
including the activation of melanin formation and
the recognition of a foreign surface. Interestingly,
the same authors reported that abscisic acid
(ABA), a naturally occurring compound in honey
bees (Lipp 1990; Negri et al. 2015) that induces
NO production in animal cells (Bruzzone et al.
2007; Tossi et al. 2012). also participates in the
cellular responses of A. mellifera and enhances
the wound healing response in larvae after being
parasitized with V. destructor (Negri et al. 2015)

(Figure 1). This means that ABA helped bees to
revert the anticoagulant effects reported for the
mite’s saliva (Richards et al. 2011).

The alteration of bee foraging areas due to the
current intensification of agriculture and land-
scape changes could provide deficient nutrition
and, therefore, affect honey bee populations (Di
Pasquale et al. 2013). The importance of nutrition
on honey bees’ health has been clearly demon-
strated and become a topic of concern (Alaux et al.
2010a, 2011). This is further supported by bee-
keepers who are ranking poor nutrition and star-
vation as two of the main reasons for colony loss
(Di Pasquale et al. 2013). Therefore, studying the
relationship between nutrient availability and bee
health could help to better understand the current
bee losses observed at a global level (Alaux et al.
2010a; Di Pasquale et al. 2013). The studies on

Figure 1. Schematic summary of the cellular immune responses reported in Apis mellifera triggered upon different
kind of stresses. NO nitric oxide. ABA abscisic acid. The related stresses and cellular responses are connected
through arrows of the same colour. Full arrows refer to stresses or cellular responses considered to be strongly
supported by literature. Dotted arrows refer to possible or indirect relationships between stresses and/or cellular
responses. The numbers indicate references supporting each stress and/or cellular responses in A. mellifera
illustrated here. 1 Negri et al. 2014a. 2 Negri et al. 2013. 3 Negri et al. 2014b. 4 Negri et al. 2015. 5 Negri et
al. 2012. 6 Bedick et al. 2001. 7 Gätschenberger et al. 2013. 8 Martin et al. 2012. 9 Steinmann et al. 2015. 10
Cousin et al. 2013. 11 Marringa et al. 2014. 12 Alaux et al. 2010a. 13 Aurori et al. 2014.
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the cellular response ofA. mellifera byNegri et al.
(2015) also demonstrated that ABA could work as
a new natural supplement to be used by bee-
keepers to confront A. mellifera’s stresses. The
relevance of the results relies on the strategy used
by these authors to treat bees with ABA,
supplementing bee hives with ABA-containing
syrup (sucrose syrup) in the field. This enhanced
the bees’ immune system which was reflected at
an individual and colony level, adding further
evidence on the importance of nutrition in the
bees’ immune fitness (Negri et al. 2015).

Another important stress factor honey bees
confront is intoxication with pesticides (Alaux et
al. 2010b; Gregorc and Ellis 2011; Boncristiani et
al. 2012; Cousin et al. 2013). These chemical
compounds have extremely deleterious effects
on bees’ physiology (Gregorc and Ellis 2011).
The cellular immune responses are believed to
play an important part in defending insects from
pesticide poisoning (James and Xub 2012; Cousin
et al. 2013). Recently, Cousin et al. (2013) report-
ed that exposure to very low concentrations of
Paraquat induced size changes in honey bee larvae
oenocytes. These authors published results dem-
onstrating that the effects of Paraquat could be the
cause of the characteristic oxidative stress pro-
duced by this pesticide. Interestingly, it has been
reported that ABA, a molecule that enhances cel-
lular responses of A. mellifera , also helps adult
bees to tolerate higher doses of two different or-
ganic pesticides that produce oxidative stress in
insect’s physiology (Negri et al. 2015). The au-
thors demonstrated that the supplementation of
bees’ diet with ABA increased the catalase activ-
ity of newly emerged worker bees. Thus, the
augmented tolerance to pesticides observed corre-
lates with an enhanced antioxidant and cellular
aptitude (Negri et al. 2015). In 2013, Mao et al.
provided evidence that p -coumaric acid induced
the expression of detoxification genes in A.
mellifera , enhancing bee tolerance to pesticides
(Mao et al. 2013). Like ABA, p -coumaric acid is
a natural compound present in pollen and honey.
Indeed, its effects on the bees’ cellular immune
responses are also worth analysing.

Most of the recent major losses of managed
honey bee colonies have occurred during winter,
thereby suggesting that winter bees may have a

compromised immune function and higher sus-
ceptibility to diseases (Gätschenberger et al.
2013; Steinmann et al. 2015). However, most
studies on honey bee immunity have placed their
emphasis on summer bees, while the immunity of
winter bees remains to be properly explained
(Steinmann et al. 2015).

The number of winter worker bees is key when
it comes to evaluating colony fitness because they
develop several important activities during the
winter season such as thermoregulation, queen
attendance, brood rearing and sporadic cleansing
flights outside the hive (Gätschenberger et al.
2013). It is reasonable to assume that winter bees
are well prepared to combat any microbial attack
they may encounter. Winter bees do not hibernate
but rather remain in a cluster inside the hive
mainly engaged in thermoregulation producing
heat by shivering with their flight muscles
(Stabentheiner et al. 2003). This heat production
is a highly energy-consuming process and relies
mostly on honey reserves in a bee colony (Tautz
2008).

Recently, interesting results reported by
Steinmann et al. (2015) have reflected that high
loads of deforming wing virus (DWV) in winter
are associated with a reduced expression of the
genes involved in the cellular immune response
and physiological activity. These findings are con-
sistent with the hypothesis that sustains that the
downregulation of the energetically costly im-
mune system and physiological activity under
adverse winter conditions may be a strategy to
save energy and increase overwintering survival
even at the expense of increased risk of virus
infection. The authors hypothesized that a physi-
ological adaptation of winter bees to increase win-
ter survival is related to an overall decrease in
physiological activity, including downregulation
of the energetically expensive immune system,
which results in increased susceptibility to patho-
gens (Steinmann et al. 2015).

In addition, winter bees have high titters of
vitellogenin which is produced and secreted by
the fat body, and is thought to protect bees from
oxidative cellular damage in addition to other
multiple functions (Seehuus et al. 2006).
Furthermore, winter bees have an enlarged fat
body with a high content of lipids, glycogen and
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proteins and feature a large number of hemocytes
(Fluri et al. 1977).

Considering the need for an efficient cellular
and humoral immune response in the winter bees
detailed above, the results obtained from ABA-
supplemented hives by Negri et al. (2015) repre-
sent data of high relevance. Interestingly, these
authors reported that ABA enhanced hemocytic
responses and the antioxidant aptitude of worker
bees and that the beneficial effects of this mole-
cule were also evidenced at a colony level: ABA-
supplemented hives ended the winter season with
full adult populations (worker winter bees) while
the control ones reduced the number of bees to
less than half (Negri et al. 2015).

4. CONCLUDING REMARKS
AND PERSPECTIVES

This manuscript provides an in-depth summary
of the literature on honey bee immunity and resis-
tance to disease (Figure 1). As far as honey bees’
defensive mechanisms are concerned, the under-
standing of cellular immunity could provide new
views on their responses to the biotic and abiotic
challenges that threaten their survival. This review
evidences that cellular immunity studies contrib-
ute with useful information to design new strate-
gies to be applied by beekeepers worldwide to
confront the different stresses affecting A.
mellifera .

We would like to underline once again the need
to carry out further studies on cellular responses
against bacteria and virus. There is still scarce
information on specific cellular reactions to bac-
teria and viruses (Azzami et al. 2012; Steinmann
et al. 2015). Researchers should go deeper into the
study of the cellular responses used by honey bees
to confront these pathogens.

A new methodical development to address the
factors underlying globally observed bee losses is in
urgent need. Advances in this subject are necessary
for the development of field, semi-field and labora-
tory standard testing methods (Hendriksma et al.
2011; Dietemann et al. 2012; Alaux et al. 2014). In
this sense, hard work is being directed towards the
standardization of laboratory protocols in order to
diminish the undesirable variability in the results
worldwide (Hendriksma et al. 2011; Boughton et al.

2011). Recently, a compilation of suitable method-
ologies standardized to study many aspects related
to honey bees in the field and in the laboratory has
been published under the name of ‘The COLOSS
BEEBOOK’ (Dietemann et al. 2013b, c). However,
a compilation of the current assays and techniques
available to measure cellular immune defence in A.
mellifera was not included, perhaps due to the scant
information available on this subject matter. In this
regard, we believe that research groups around the
globe should join their efforts and interact to devel-
op and standardize more methodologies suitable for
the study of A. mellifera cellular defences.

The way in which insects recognize abiotic tar-
gets remains a topic of pressing concern (Davies
and Preston 1985; Mandato et al. 1996; Tojo et al.
2000). Molecules like calcium or eicosanoids have
been reported to participate in hemocyte spreading
after non-self recognition (Mandato et al. 1996;
Tojo et al. 2000). Recently, it has been documented
that NO acts as a signallingmolecule during the first
steps of hemocyte activation after non-self recogni-
tion and in the wound healing/encapsulation re-
sponse (Negri et al. 2013 and 2014b). Owing to
its nature, NO could either act as a second messen-
ger within each hemocyte or as a signal between
contiguous cells (Nappi and Christensen 2005;
Davies and Dow 2009; Hillyer and Estévez-Lao
2010). Thus, the free radical NO should be consid-
ered as a key molecule (Rivero 2006) involved in
the immune activation of A. mellifera hemocytes,
and the connections between NO and other signal
molecules like ABA, calcium or eicosanoids could
be the platform for future research work on insect
immunology.
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