
On Application of Theory of Distributions to Static

and Dynamic Analysis of Cracked Beams

Ricardo Oscar Grossi*,‡ and Javier Leandro Ra®o†,§

*INIQUI-CONICET, Facultad de Ingenier�{a

Universidad Nacional de Salta
Avenida Bolivia 5150, Salta

Rep�ublica Argentina

†Grupo de Mec�anica Computacional

Facultad Regional Delta
Universidad Tecnol�ogica Nacional

San Mart�{n 1171, 2804 Campana, Argentina
‡grossiro@unsa.edu.ar
§jraffo@frd.utn.edu.ar

Received 8 May 2015

Accepted 10 November 2015
Published 28 March 2016

This paper presents a rigorous study on the static and dynamic behavior of beams a®ected by

cracks. The theory of distributions developed by Laurent Schwartz1 is adopted as it is partic-
ularly suitable for the treatment of discontinuities in functions for the de°ection and derivatives

of the beam. Thus, this paper presents a contribution towards the understanding and appli-

cation of the theory of distributions to the static and dynamic behavior of structural elements

a®ected by cracks. A simple, computationally e±cient and accurate algorithm is developed for
the problems of concern. Numerical results are presented for beams with two cracks. The

algorithms developed for beams with discontinuities are obtained in a rigorous framework for

static and vibration problems.
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1. Introduction

In the past years, the static and dynamic analysis of structural beams and frames

with single or multiple concentrated damages has received considerable treatment.

Such a topic is of great engineering interest since the presence of concentrated cracks

may drastically change the behavior of the beams or frames, due to alternations in

the continuity of the physical and geometrical properties. For this reason, the e®ect

of concentrated cracks has been widely studied. Several models for describing the

variation of °exural sti®ness of the beams in the vicinity of damages have been

implemented, classi¯ed as the direct and inverse problems. The direct problems have
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been addressed by formulating the mechanical models of the beam containing the

damages. Several works belonging to this class will be cited below. The inverse

problems have been solved with the detection of position and severity of the

damage by using either static or dynamic tests. Various method for the identi¯cation

of damage have been developed by Morassi,2,3 Caddemi and Morassi,4,5 Narkis6 and

Vestroni and Cappechi.7,8

The e®ect of concentrated damages on the °exural sti®ness in the vicinity of a

crack has been modeled as an equivalent rotational spring connecting two segments

of the damaged beam. The model containing an elastically restrained hinge, with

rotational sti®ness dependent on the extent of the damage, proved to be accurate

within certain limits, and has extensively been used. In this popular model, the

sti®ness of the rotational restraint rc is determined by relating the local °exibility

to the strain energy concentrated in the vicinity of the crack through the principle

of fracture mechanics and is given by

rc ¼ C f=
a

h

� �
; f

a

h

� �
¼
XN
k¼0

dk
a

h

� �
k
;

where h denotes the height of the cross-section of the beam and a the depth of the

crack. The above expressions can be found in several papers with di®erent values of

the parameters C; dk and N : It is not possible to give a detailed account because of

the great amount of information, so without the claim of being exhaustive, in this

paper only some references will be cited. Ostachowicz and Krawczuk9 and Farghaly10

modeled the crack as a continuous °exibility using the displacement ¯eld in the

vicinity of the crack modeled by the fracture mechanics methods. Dimarogonas11

presented a state of the art review with particular reference to dynamics. Chondros

et al.12 developed a continuous cracked beam vibration theory for the lateral vi-

bration of cracked Euler–Bernoulli beams with single-edge or double-edge open

cracks. The crack was also modeled as a continuous °exibility using the displacement

¯eld in the vicinity of the damage, found by the fracture mechanics methods. Shifrin

and Ruotolo13 presented a new method for evaluating the natural frequencies of a

beam with an arbitrary number of cracks. The method was based on the use of

massless rotational springs to represent the cracks and, as a main feature, it leads to a

system of N þ 2 linear equations for a beam with N cracks. Fernandez–Saez and

Navarro14 presented an analytical approach for analysing the fundamental frequency

of cracked Euler–Bernoulli beams in bending vibration. The in°uence of the crack

was represented by an elastic rotational spring connecting the two segments of the

beam at the cracked section. Li15,16 presented a model of massless rotational springs

adopted for analysing the free vibrations of multi-step uniform and nonuniforms

beams, with an arbitrary number of cracks and concentrated masses. Binici17 pro-

posed a method to determine the eigenfrequency changes of axially loaded beams

where cracks were modeled as rotational springs. Loya et al.18 presented exact and

perturbative solutions for the natural frequencies of vibration of cracked Timoshenko

R. O. Grossi & J. L. Ra®o

1550073-2

In
t. 

J.
 S

tr
. S

ta
b.

 D
yn

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

IO
W

A
 o

n 
04

/2
9/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



beams. In this work the beam was modeled as two segments connected by two

springs, one extensional and the other rotational. Lellep and Kraav19 analysed the

in°uence of cracks on the stability of beams by the method of distributed line spring.

Batihan and Kadioglu20 determined analytical solutions for the transverse vibrations

of cracked beams attached to various types of elastic foundations.

Regarding the mathematical tools, the Dirac's delta function has been extensively

used to obtain representations of point loads and singularities in a variety of

structural problems. Nevertheless, analytical formulations currently available for

these problems are not completely satisfactory in terms of rigorous formulation and

computational e±ciency or in terms of physical consistency. Engineers increasingly

used techniques of mathematical analysis adopting heuristics procedures. As early as

in 1919, the problem of de°ection of beams with discontinuous loading conditions has

been treated by a method introduced by Macaulay,21 consisting of the use of a

bracket notation to take into account the discontinuities. This method was gener-

alized to two-dimensional problems. Later, Wittrick22 analysed beams with lateral

loads and circular plates with axisymmetric lateral loads. Mahig23 applied the

method for rectangular plates under a point load and for circular plates with axi-

symmetric loading. Conway24 extended the use of the method to solving two-

dimensional problems governed by partial di®erential equations considering long

rectangular plates and concentric circular plates subjected to a normal concentrated

load. Selek and Conway25 applied Macaulay's method to obtain the exact solutions

of three point loaded plate problems. Falsone26 extended Macaulay's method to the

cases in which discontinuous external loads are applied, giving discontinuities on

displacements and rotations.

It is remarkable that all these works present heuristics formulations and these

approaches require some caution due to the involved mathematical subtleties.

Macaulay's method is, in essence, an exposure with meaning given over the bracket

notation, typically of the form ½x� c�n; where if the argument within the bracket is

negative, the term is ignored, while if the argument is positive, it is unaltered. All the

generalized functions used in Macaulay's method are the Dirac's delta function and

its generalized derivatives and integrals. The Dirac's delta function is commonly

de¯ned by means of properties, such as:

�ðx� cÞ ¼ 0; if x 6¼ c;Z b

a

�ðx� cÞdx ¼ 0; if c 62 ½a; b�;
1 if c 2 ½a; b�;

�
Z 1

�1
�ðx� cÞuðxÞdx ¼ uðcÞ;

where u is a su±ciently smooth function. Engineers and physicists have used this

function with success, but it must be noted that the de¯nition is not rigorous

since the above properties are contradictory. In consequence, the use of Macaulay's

method leads to analyticalmanipulations which are confusing and notmathematically

On Application of Theory of Distributions

1550073-3

In
t. 

J.
 S

tr
. S

ta
b.

 D
yn

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

IO
W

A
 o

n 
04

/2
9/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



precise. Nevertheless, the distribution theory developed by Laurent Schwartz,1

provides rigorous justi¯cations for these common formal mathematical manipula-

tions published in the engineering literature.

Belonging to the stream of rigorous mathematical research several important

papers have been presented, which provide interesting results based on adoption of

the theory of distributions. Yavari et al.27–30 made use of the distribution theory in

the integration procedure, providing a formulation of the governing di®erential

equations over a unique integration domain. But these authors introduced the

auxiliary beam method, to avoid ¯nding the solution of a di®erential equation in the

space of distributions, and instead solved another di®erential equation in the space of

classical functions. This procedure also requires the enforcement of a single transition

condition at each singularity. Wang and Qiao31 analysed the vibration of beams

in the presence of any type of discontinuity expressing the modal displacement

function of the entire beam with N discontinuities by means of a single function

through the use of distributions. The Laplace transform method was used to solve

the corresponding di®erential equations.

Bernoulli beams under static loads in presence of discontinuities in the curvature

and in the slope functions have been studied by Biondi and Caddemi.32 They

considered the theory of distributions to propose an integration procedure

over a unique integration domain without enforcement of continuity conditions. A

nontrivial generalization to multiple di®erent singularities was proposed by these

authors.33

Exact closed-form solutions, for both static and dynamic problems for beams

a®ected by multiple damages, have been obtained by Caddemi and Cali�o.34–36 The

model adopted by these researchers implies a representation of the singularities by

suitable Dirac's delta distributions in the beam's °exural rigidity. However, this

approach implies the use of a product of two distributions operation not allowed by

the classical distribution theory. In order to give some mathematical meaning to a

di®erential equation that involves the product of two Dirac's delta distributions, a

de¯nition for this operation should be adopted. This question was treated by

Bagarello37,38 who introduced a de¯nition of the product of two Dirac's delta dis-

tributions. This new product has been used by Caddemi and Cali�o in the above cited

works.

Caddemi and Morassi39 demonstrated that the formulation and solution of the

bending problem for multi-cracked beams can be included in the classical formalism

of the theory of distributions. Stankovik and Atanakovik40 analysed linear discon-

tinuous di®erential equations which correspond to important problems in mechanics

and determined the corresponding weak solutions. Hormann and Oparnica41 proved

that a di®erential equation governing the transversal displacement function of beams

with jump discontinuous coe±cients cannot possess a distributional solution if the

solution shows a jump at the same cross section. Palmieri and Cicirello42 demon-

strated that analytical formulations currently available for the use of Dirac's delta
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functions in the problem of cracked beams under static loads is not completely

satisfactory in terms of physical consistency.

It must be noted that the classical method for solving problems in presence of

concentrated cracks in beams, relies on the integration of the governing di®erential

equations between singularities and on the enforcement of the transition conditions

at those points where the singularities occur. If many discontinuities are present

along the beam, this procedure turns out to be inadequate. The sub-division of the

beam into sub-beams between two subsequent cracks, requires the enforcement of

four continuity conditions at each point where a crack is located. In consequence, for

a beam with N cracks, the statical problem requires the resolution of a system of

4ðN þ 1Þ algebraic equations and in the case of free vibrations, the characteristic

equation relies on the solution of a determinant of order 4ðN þ 1Þ. Clearly, this
traditional procedure is analytically and computationally ine±cient. Consequently,

studies aimed at providing integration procedures able to treat singularities more

e±ciently have been proposed, as those based on the theory of distributions which

have been described above.

In civil and mechanical engineering, there are many types of additional elements

such as rotational and translational springs, elastically restrained hinges, spring

roller supports, etc. Each of these devices implies di®erent kinds of discontinuities,

such as jump discontinuities in slope, de°ection, bending moment, shear force, etc.

The theory of distributions is particularly suited to analysing beams with an arbi-

trary type of discontinuities located at di®erent points. The jump of a function

located at a point c allows obtaining the distributional derivative as the sum of the

classical derivative (in an interval excluding the point c) plus a measure of mass given

by the jump, concentrated at c: In consequence, through successive di®erentiations

the corresponding di®erential equations are obtained. In this procedure the rigorous

de¯nition of product of an in¯nitely di®erentiable function and a distribution is

used.43,44 This approach, which allows the direct application of the distributions

theory and provides a better understanding of the mathematical manipulations, is

applied in the present paper.

One feature of this work is to present an application of the Hamilton's principle

for the derivation of the corresponding boundary value problem. A relevant product

of this procedure is the determination of the transition conditions and the jumps

introduced in the involved functions by intermediate additional elements. Boundary

conditions are also included, but these are well known and are listed in several

textbooks.45,46 It is also the purpose of the present paper to provide the di®erential

equations and the corresponding solutions in the distributional framework.

This paper is organized in the following way. In Sec. 2 the governing di®erential

equations, the boundary conditions and the transition conditions, are obtained.

In Sec. 3 the jump discontinuities involved in the transitions conditions are deter-

mined. In Sec. 4, a general di®erential equation in the framework of the theory

of distributions is obtained. In Sec. 5 several particular cases and intermediate
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attachments are analysed. In Sec. 6 numerical results are presented. Veri¯cations

and numerical applications are also included. Finally, Sec. 7 contains the conclusions

of this paper.

2. The Variation of the Energy Functional

Let us consider the beam of length l, which has elastically restrained ends and has an

internal device which includes several elastic restraints. Particularly it allows a

vertical displacement or the action of a hinge elastically restrained against rotation,

as shown in Fig. 1. For convenience of formulation, only one discontinuity point at

x ¼ c is considered on the beam. This formulation is easily extended to a beam with

multiple discontinuity points as is demonstrated in Sec. 5.3.

The beam system is made up of two di®erent spans, which correspond to the

intervals ½0; c� and ½c; l� respectively, with the variable mass per unit length and

variable °exural rigidity of the ith span denoted as �iAi and EiIi, respectively. It is

also assumed that the ends are elastically restrained against rotation and translation

characterised respectively by the spring constants ri and ti, i ¼ 1; 2: The device

located at the intermediate point c has rotational restraints characterised by the

spring constants r12 and rc, and translational restraints characterised by the spring

constants t12 and tc. Adopting the values of the parameters ri and ti, i ¼ 1; 2; all the

possible combinations of classical end conditions, (i.e.: clamped, pinned, sliding and

free) can be generated. On the other hand, adopting the appropriate values of the

parameters rc; r12; tc and t12, di®erent constraints on the point x ¼ c can be gener-

ated. It is supposed that the mentioned device has an internal shear guide to simulate

a discontinuity in the de°ection function.

In order to analyse the transverse planar displacement of the system under study,

we suppose that the vertical position of the beam at any time t is described by the

function:

u ¼ uðx; tÞ; x 2 ½0; l�; t � 0:

It is well known that at time t the kinetic energy of the beam can be expressed as

Tb ¼
1

2

X2
i¼1

Z
Gi

miðxÞ
@u

@t
ðx; tÞ

� �
2

dx; ð1Þ

where G1 ¼ ð0; cÞ, G2 ¼ ðc; lÞ, miðxÞ ¼ �iðxÞAiðxÞ, i ¼ 1; 2.

12r

1t

1r

u

x
2t

2r

12tct

cr

Fig. 1. Mechanical system under study.
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The total potential energy due to the elastic deformation of the mechanical

system is given by

Ep ¼
1

2

X2
i¼1

Z
Gi

eiðxÞ
@ 2u

@x2
ðx; tÞ

 !
2

dxþ r1
@u

@x
ð0þ

; tÞ
� �

2

þ rc
@u

@x
ðc�; tÞ

� �
2

(

þ t1u
2ð0þ; tÞ þ tcu

2ðc�; tÞ þ r12
@u

@x
ðcþ; tÞ � @u

@x
ðc�; tÞ

� �
2

þ t12ðuðcþ; tÞ � uðc�; tÞÞ2 þ r2
@u

@x
ðl�; tÞ

� �
2

þ t2u
2ðl�; tÞ

�
; ð2Þ

where eiðxÞ ¼ EiðxÞIiðxÞ, i ¼ 1; 2. The notations 0þ; c�; cþ and l� imply the use of

lateral limits and lateral derivatives. It can be observed that the strain energy due to

the rotational restraint of coe±cient rc, is computed by means of the expression

0:5rcð@u=@xÞ2 evaluated at ðc�; tÞ, which implies that the spring is connected at the

right end of the span which corresponds to the interval ½0; c� and is connected to a ¯xed
wall. On the other hand, the strain energy corresponding to the rotational restraint

of the internal hinge is computed by 0:5r12ðð@u=@xÞðcþ; tÞ � ð@u=@xÞðc�; tÞÞ2;
which implies that the spring is connected at right end of the ¯rst span and at the

left end of the second span. The same situation is valid for the translational restraints

respectively characterized by the coe±cients tc and t12.

The potential energy of an external load q ¼ qðx; tÞ is given by

Eq ¼
Z
G

qðx; tÞuðx; tÞdx; G ¼ ð0; lÞ: ð3Þ

Hamilton's principle requires that between times ta and tb, at which the positions are

known, the motion will make stationary the action integral F ðuÞ ¼ R tb
ta
Ldt on the

space of admissible functions,47 where the Lagrangian L is given by L ¼ Tb � U , and

U ¼ Ep þ Eq. In consequence by using Eqs. (1) to (3), the energy functional to be

considered is given by

F ðuÞ ¼ 1

2

Z tb

ta

X2
i¼1

Z
Gi

miðxÞ
@u

@t
ðx; tÞ

� �
2

� eiðxÞ
@ 2u

@x2 ðx; tÞ
 !

2
 !"

� 2

Z
G

qðx; tÞuðx; tÞdx
�
dt� 1

2
r1

@u

@x
ð0þ

; tÞ
� �

2

þ rc
@u

@x
ðc�; tÞ

� �
2

�

þ t1u
2ð0þ; tÞ þ tcu

2ðc�; tÞ þ r12
@u

@x
ðcþ; tÞ � @u

@x
ðc�; tÞ

� �
2

þ t12ðuðcþ; tÞ � uðc�; tÞÞ2 þ r2
@u

@x
ðl�; tÞ

� �
2

þ t2u
2ðl�; tÞ

�
: ð4Þ

The variation �I of a functional is a straightforward generalization of the de¯-

nition of the directional derivative of a real valued function de¯ned on a subset of Rn.

The stationary condition for the functional given by Eq. (4) requires that

�F ðu; vÞ ¼ 0; 8 v 2 Da; ð5Þ
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where �F ðu; vÞ is the ¯rst variation of F at u in the direction v and Da is the space of

admissible directions at u for the spaceD of admissible functions.48,49 Unfortunately,

the presence of a jump in the de°ection function u at the point c leads to an integrand

which includes the square of the derivative of a distribution. For this reason it is not

possible to specify regularity assumptions of the functions involved in the functional

(4) for the application of the techniques of calculus of variations. Nevertheless, it is

possible to obtain the corresponding boundary value problem without discussing the

regularity of the functions involved in the variational procedure by applying the

techniques of calculus of variations with condition (5) in heuristic form. In this

manner the following boundary value problem is obtained

@ 2

@x2
eiðxÞ

@ 2u

@x2
ðx; tÞ

� �
þmiðxÞ

@ 2u

@t2
ðx; tÞ ¼ qiðx; tÞ; 8 x 2 Gi; i ¼ 1; 2; ð6Þ

r1
@u

@x
ð0þ; tÞ ¼ eð0þÞ @

2u

@x2
ð0þ; tÞ; ð7Þ

t1uð0þ; tÞ ¼ � @

@x
eð0þÞ @

2u

@x2
ð0þ; tÞ

� �
; ð8Þ

r12
@u

@x
ðcþ; tÞ � @u

@x
ðc�; tÞ

� �
� rc

@u

@x
ðc�; tÞ ¼ eðc�Þ @

2u

@x2
ðc�; tÞ; ð9Þ

r12
@u

@x
ðcþ; tÞ � @u

@x
ðc�; tÞ

� �
¼ eðcþÞ @

2u

@x2
ðcþ; tÞ; ð10Þ

t12ðuðcþ; tÞ � uðc�; tÞÞ ¼ � @

@x
eðc�Þ @

2u

@x2
ðc�; tÞ

� �
þ tcuðc�; tÞ; ð11Þ

t12ðuðcþ; tÞ � uðc�; tÞÞ ¼ � @

@x
eðcþÞ @

2u

@x2
ðcþ; tÞ

� �
; ð12Þ

r2
@u

@x
ðl�; tÞ ¼ �eðl�Þ @

2u

@x2
ðl�; tÞ; ð13Þ

t2uðl�; tÞ ¼
@

@x
eðl�Þ @

2u

@x2
ðl�; tÞ

� �
; t � 0: ð14Þ

3. Derivation of Jump Functions

The presence of the considered internal elastic restraints generates discontinuities in

the de°ection function u and some or all of its derivatives @ ku=@xk, k ¼ 1; 2; 3; and

for this reason, in the application of the distribution theory it is essential to deter-

mine all the jumps occurring in the involved functions. So, it is convenient to de¯ne a

function sðfÞ that determines the jump of another function f, at a certain point c and

is given by

sðfÞ : G ! R; sðfÞðcÞ ¼ fðcþÞ � fðc�Þ; G � R; c 2 G: ð15Þ

R. O. Grossi & J. L. Ra®o
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It is well known that for a di®erential equation of order 2m; the boundary conditions

containing the function u and derivatives of this function of orders not greater than

m� 1; are called stable or geometric and those containing derivatives of orders

higher than m� 1; are called unstable or natural.50,51

Since the domain of work of the problem of the beam described above is given by

G ¼ ð0; lÞ and this is an open interval in the space R, the boundary @G is given by the

points 0 and l: Consequently, the point c is an interior point of G and the equations

formulated at x ¼ c can be called transition conditions. In what follows we extend

the above classi¯cation of boundary conditions to the transition conditions that are

given by Eqs. (9) to (12).

The function given by Eq. (15) allows expressing the jumps involved in the

transition conditions in Eqs. (9) to (12) as follows:

sðuÞðc; tÞ ¼ � 1

t12

@

@x
eðc�Þ @

2u

@x2
ðc�; tÞ

� �
þ tc

t12
uðc�; tÞ; ð16Þ

s
@u

@x

� �
ðc; tÞ ¼ eðc�Þ

r12

@ 2u

@x2
ðc�; tÞ þ rc

r12

@u

@x
ðc�; tÞ; ð17Þ

sðuÞðc; tÞ ¼ � 1

t12

@

@x
eðcþÞ @

2u

@x2
ðcþ; tÞ

� �
; ð18Þ

s
@u

@x

� �
ðc; tÞ ¼ eðcþÞ

r12

@ 2u

@x2
ðcþ; tÞ: ð19Þ

Let us consider the bending moment and the shear force, given respectively by the

functions:

M ¼ e
@ 2u

@x2
and V ¼ @

@x
e
@ 2u

@x2

� �
:

If Eq. (9) is subtracted from Eq. (10), we have

sðMÞðc; tÞ ¼ rc
@u

@x
ðc�; tÞ: ð20Þ

Finally, if Eq. (11) is subtracted from Eq. (12), we have

sðV Þðc; tÞ ¼ �tcuðc�; tÞ: ð21Þ

4. The Di®erential Equation in the Framework of Distributions

Now it is possible to reformulate the boundary value problem (6)–(14) in the

distributional framework. The purpose is to introduce the jump conditions at x ¼ c

within the di®erential equation which governs the deformation of the beam. Before

presenting the di®erential equations derivation, we recall brie°y some preliminary

results.43,44
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Let G be an open set in R. A distribution ~f is a continuous linear functional

~f : DðGÞ ! R;

where DðGÞ denotes the space of test functions. The space of all distributions is

denoted by D 0ðGÞ. The Dirac's delta \function" � can now be rigorously de¯ned as

the distribution �c 2 D 0ðGÞ; given by

�cð’Þ ¼ ’ðcÞ; 8’ 2 DðGÞ:

Let the function f 2 C 1ð�Þ where � ¼ G� fcg, c 2 G and suppose that f has a jump

discontinuity at x ¼ c, where limx!c�fðxÞ and limx!cþfðxÞ exist and are ¯nite.

Suppose also that the classical derivative of f in � is a bounded function in �. Then,

the derivative of f in the sense of distributions is denoted by ~f
0
, and is given by

~f
0ðxÞ ¼ f 0ðxÞ þ sðfÞðcÞ�ðx� cÞ ð22Þ

where f 0 denotes the classical derivative of f in �, �ðx� cÞ denotes the Dirac's delta

distribution and sðfÞðcÞ is given by Eq. (15).

Finally, we recall the de¯nition of the product of a distribution and a function. Let

the distribution be ~f 2 D 0ðGÞ and the in¯nitely di®erentiable function � 2 C1ðGÞ.
Then the product of � and ~f is a distribution � ~f given by

h� ~f ; ’i ¼ h ~f ; �’i; 8’ 2 DðGÞ;

where h ~f ; ’i denotes the application of the distribution ~f to the test function ’.

In the following, since functions of one or two variables will be used, a mixed

notation of derivatives is adopted. If the function u; which describes the vertical

position of the beam, and its derivatives @ ku=@xk, k ¼ 1; 2; 3 have a jump discon-

tinuity at x ¼ c; the ¯rst distributional derivative can be obtained by using Eq. (22),

so we have

~@u

@x
ðx; tÞ ¼ @u

@x
ðx; tÞ þ sðuÞðc; tÞ�ðx� cÞ; ð23Þ

where @u=@x is de¯ned 8 ðx; tÞ 2 �� ½0;T � for some ¯xed time T > 0 and

� ¼ G� fcg ¼ ð0; cÞ [ ðc; lÞ; G ¼ ð0; lÞ:
It can be observed that the derivative @u=@x is de¯ned 8x 2 ð0; cÞ and 8 x 2 ðc; lÞ,
but is unde¯ned at x ¼ c: Taking the derivative with respect to x of Eq. (23),

multiplying by e 2 C1ðGÞ and using the distributional properties of � and � 0, we
have43,44

eðxÞ
~@ 2u

@x2
ðx; tÞ ¼ eðxÞ @

2u

@x2
ðx; tÞ þ sðuÞðc; tÞeðcÞ� 0ðx� cÞ

�sðuÞðc; tÞe 0ðcÞ�ðx� cÞ þ sð@u=@xÞðc; tÞeðcÞ�ðx� cÞ:

R. O. Grossi & J. L. Ra®o
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Taking two more derivatives we get

~@ 2

@x2
eðxÞ

~@ 2u

@x2
ðx; tÞ

 !
¼ @ 2

@x2
eðxÞ @

2u

@x2
ðx; tÞ

� �
þ eðcÞsðuÞðc; tÞ� 000ðx� cÞ

� sðuÞðc; tÞe 0ðcÞ� 00ðx� cÞ þ eðcÞs @u

@x

� �
ðc; tÞ� 00ðx� cÞ

þ sðMÞðc; tÞ� 0ðx� cÞ þ sðV Þðc; tÞ�ðx� cÞ; ð24Þ

where the derivative @ 2

@x 2 ðe @ 2u
@x2Þ is de¯ned 8 ðx; tÞ 2 �� ½0;T �: Finally, by substitut-

ing Eq. (24) into Eq. (6) we have

~@ 2

@x2
eðxÞ

~@ 2u

@x2
ðx; tÞ

 !
þmðxÞ @

2u

@t2
ðx; tÞ

¼ qðx; tÞ þ eðcÞsðuÞðc; tÞ� 000ðx� cÞ � sðuÞðc; tÞe 0ðcÞ� 00ðx� cÞ

þ eðcÞs @u

@x

� �
ðc; tÞ� 00ðx� cÞ þ sðMÞðc; tÞ� 0ðx� cÞ þ sðV Þðc; tÞ�ðx� cÞ: ð25Þ

The preceding equation coincides in a particular case with that obtained by Wang

and Quiao.31 It should be noted that according to Eq. (6), the functions e;m and q

are respectively given by

eðxÞ ¼ e1ðxÞ; 8x 2 ð0; cÞ;
e2ðxÞ; 8x 2 ðc; lÞ;

�
mðxÞ ¼ m1ðxÞ; 8 x 2 ð0; cÞ;

m2ðxÞ; 8 x 2 ðc; lÞ;
�

and

qðx; tÞ ¼ q1ðx; tÞ; 8 x 2 ð0; cÞ;
q2ðx; tÞ; 8 x 2 ðc; lÞ:

�

The functions m and q must be continuous, but according to the above de¯nition of

product of a function and a distribution, the function emust be in the space C1ð0; lÞ.
Since Eq. (25) involves distributional derivatives, it must be included in the space of

distributions D 0ð0; lÞ:

5. Analysis of Particular Cases

5.1. Free vibration

The di®erential equation that describes the free vibration of the beam is derived by

assuming q � 0, in Eq. (25) and in the case:

eðxÞ ¼ EI; mðxÞ ¼ �A; 8x 2 ½0; l�;
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the di®erential equation reduces to

~@ 4u

@x4
ðx; tÞ þ �A

EI

@ 2u

@t2
ðx; tÞ

¼ sðuÞðc; tÞ� 000ðx� cÞ þ s
@u

@x

� �
ðc; tÞ� 00ðx� cÞ

þ s
@ 2u

@x2

� �
ðc; tÞ� 0ðx� cÞ þ s

@ 3u

@x3

� �
ðc; tÞ�ðx� cÞ in D 0ð0; lÞ: ð26Þ

It should be noted that the preceding equation coincides with the one obtained by

Wang and Quiao.31

For the beam under free vibration, the variable separation method can be used. In

accordance we adopt

uðx; tÞ ¼ wðxÞ cos!t;
where w ¼ wðxÞ denotes the modal displacement of the beam and ! the natural

circular frequency. It is easy to demonstrate that for k ¼ 0; 1; 2; 3 we have

s
@ ku

@xk

� �
ðc; tÞ ¼ sðwðkÞÞðcÞ cos!t;

so Eq. (26) reduces to

~d 4w

dx4
ðxÞ � �A!2

EI
wðxÞ ¼ sðwÞðcÞ� 000ðx� cÞ þ sðw 0ÞðcÞ� 00ðx� cÞ

þ sðw 00ÞðcÞ� 0ðx� cÞ þ sðw 000ÞðcÞ�ðx� cÞ in D 0ð0; lÞ: ð27Þ

5.2. Statical behavior

Let us consider the statical behavior of the mechanical system described, when a load

q ¼ qðxÞ, which causes a transverse de°ection u ¼ uðxÞ; is applied. The governing

di®erential equation is given by

~d 2

dx2
eðxÞ

~d 2w

dx2
uðxÞ

 !
¼ qðxÞ þ eðcÞsðuÞðcÞ� 000ðx� cÞ

� sðuÞðcÞe 0ðcÞ� 00ðx� cÞ þ eðcÞsðu 0ÞðcÞ� 00ðx� cÞ
þ sðeu 00ÞðcÞ� 0ðx� cÞ þ sððeu 00Þ 0ÞðcÞ�ðx� cÞ in D 0ð0; lÞ:

ð28Þ
In the case eðxÞ ¼ EI, 8x 2 ½0; l� the above equation reduces to

~d 4w

dx4
ðxÞ ¼ qðxÞ

EI
þ sðuÞðcÞ� 000ðx� cÞ þ sðu 0ÞðcÞ� 00ðx� cÞ

þ sðu 00ÞðcÞ� 0ðx� cÞ þ sðu 000ÞðcÞ�ðx� cÞ in D 0ð0; lÞ: ð29Þ

R. O. Grossi & J. L. Ra®o
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5.3. Generalization

The above procedure can be generalized to beams with a ¯nite number Nc of cracks

located at the points ci. In this case the di®erential Eq. (27) can be expressed as

~d 4w

dx4
ðxÞ � �A!2

EI
wðxÞ ¼

XNc

i¼1

X3
k¼0

sðwðkÞÞðciÞ� ð3�kÞðx� ciÞ in D 0ð0; lÞ:

In the same manner the di®erential Eq. (29) can be expressed as

~d 4w

dx4
ðxÞ ¼ qðxÞ

EI
þ
XNc

i¼1

X3
k¼0

sðwðkÞÞðciÞ� ð3�kÞðx� ciÞ in D 0ð0; lÞ:

5.4. Intermediate attachments

Equation (25) was obtained assuming that the function u; which describes the ver-

tical position of the beam, and its derivatives @ ku=@xk, k ¼ 1; 2; 3 have a jump

discontinuity at x ¼ c: These discontinuities are induced by di®erent attachments. It

is possible to generate several particular cases by adopting the appropriate param-

eter values of the general restraint device described in Sec. 2. Thus, Eqs. (16) to (21)

and other situations can be generated by substituting values or limiting values of the

restraint parameters rc; r12; tc and t12; into the transition conditions in Eqs. (9)–(12).

5.4.1. Elastic rotational restraint connected to a ¯xed wall

The presence of a rotational restraint at x ¼ c is generated by adopting r12 ! 1,

t12 ! 1, tc ¼ 0 and 0 < rc < 1, in Eqs. (9)–(12). Substituting the condition t12 !
1 in Eq. (12) and r12 ! 1 in Eq. (10) leads to the continuity conditions

uðc�; tÞ ¼ uðcþ; tÞ; ð30Þ
@u

@x
ðc�; tÞ ¼ @u

@x
ðcþ; tÞ: ð31Þ

These equations imply that in this case, there is no internal hinge and the articu-

lation is perfectly rigid. Finally, the condition 0 < rc < 1 implies the existence of a

rotational spring connected to the beam and to a ¯xed wall.

Substituting Eq. (10) into Eq. (9) leads to

rc
@u

@x
ðc�; tÞ ¼ eðcþÞ @

2u

@x2
ðcþ; tÞ � eðc�Þ @

2u

@x2
ðc�; tÞ; ð32Þ

which coincides with Eq (20). If we let rc ! 1 in Eq. (32) and Eq. (31) is used, we

have the geometric transition condition

@u

@x
ðc�; tÞ ¼ @u

@x
ðcþ; tÞ ¼ 0:

On Application of Theory of Distributions
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5.4.2. Elastic traslational restraint connected to a ¯xed wall

The presence of a traslational restraint al x ¼ c is generated by adopting r12 ! 1,

t12 ! 1, rc ¼ 0, 0 < tc < 1 in Eqs. (9)–(12). An analogous analysis to that used

in the previous case, leads to

tcuðc�; tÞ ¼
@

@x
eðc�Þ @

2u

@x2
ðc�; tÞ

� �
� @

@x
eðcþÞ @

2u

@x2
ðcþ; tÞ

� �
; ð33Þ

which coincides with Eq. (21). If we let tc ! 1 in Eq. (33) and Eq. (30) is used, we

have the geometric transition condition

uðc�; tÞ ¼ uðcþ; tÞ ¼ 0:

5.4.3. Elastic rotational restraint connected at two points of the beam

The presence of this kind of restraint at x ¼ c is generated by adopting rc ¼ 0; t12 !
1; tc ¼ 0; 0 < r12 < 1 in Eqs. (9)–(12). In this case we obtain

r12
@u

@x
ðcþ; tÞ � @u

@x
ðc�; tÞ

� �
¼ eðc�Þ @

2u

@x2
ðc�; tÞ ¼ eðcþÞ @

2u

@x2
ðcþ; tÞ; ð34Þ

which coincides with Eq. (19). This case can be modeled by an internal hinge elas-

tically restrained against rotation. If we let r12 ! 0 in Eq. (34), the natural transition

condition is obtained

@ 2u

@x2
ðc�; tÞ ¼ @ 2u

@x2
ðcþ; tÞ ¼ 0;

which corresponds to a free internal hinge and the articulation is perfect.

5.4.4. Elastic translational restraint ¯xed at two points of the beam

The presence of this kind of restraint at x ¼ c is generated by adopting rc ¼ 0,

r12 ¼ 0, tc ¼ 0, 0 < t12 < 1 in Eqs. (9)–(12). This elastic restraint introduces a

discontinuity of de°ection at x ¼ c and from Eqs. (11) and (12) we have

t12ðuðcþ; tÞ � uðc�; tÞÞ ¼ � @

@x
eðc�Þ @

2u

@x2
ðc�; tÞ

� �
¼ � @

@x
eðcþÞ @

2u

@x2
ðcþ; tÞ

� �
;

ð35Þ
which coincides with Eq. (18). Now if we let t12 ! 0 in Eq. (35) we have a case of a

free internal shear guide and the natural transition condition

@

@x
eðc�Þ @

2u

@x2
ðc�; tÞ

� �
¼ @

@x
eðcþÞ @

2u

@x2
ðcþ; tÞ

� �
¼ 0:

Following this procedure, all the transition conditions for the most relevant situa-

tions which arise from combination of the above considered cases, can be obtained.
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6. Numerical Results

For the beam in free transverse vibrations, we consider Eq. (27), i.e.

~d 4w

dx4
ðxÞ � �A!2

EI
wðxÞ ¼ sðwÞðcÞ� 000ðx� cÞ þ sðw 0ÞðcÞ� 00ðx� cÞ

þ sðw 00ÞðcÞ� 0ðx� cÞ þ sðw 000ÞðcÞ�ðx� cÞ in D 0ð0; lÞ: ð36Þ

In the case of the generally restrained beam described previously, the corresponding

boundary conditions are given by Eqs. (7), (8), (13) and (14) with uðx; tÞ replaced by

wðxÞ: The equation in Eq. (36) can be solved by representing the solution as

w ¼ wh þ wp, where wh denotes the general solution of the homogeneous equation

and wp denotes a particular solution of Eq. (36). The solution of the homogeneous

equation for Eq. (36) is the well-known linear combination

whðxÞ ¼ c1 coshð�xÞ þ c2 sinhð�xÞ þ c3 cosð�xÞ þ c4 sinð�xÞ;

where �4 ¼ �A!2=EI and the constants ci are determined by the boundary condi-

tions at x ¼ 0 and x ¼ l: The particular solution of Eq. (36) can be obtained by

assuming

wpðxÞ ¼ vðxÞHðx� cÞ; ð37Þ

where Hðx� cÞ is the well-known Heaviside function and v is unknown. This func-

tion can be obtained by substituting Eq. (37) and its derivatives into Eq. (36) and

equating the coe±cients of H; �; � 0; � 00 and � 000 on both sides of the equation. This

procedure leads to an initial value problem for v which can be solved by the method

commonly known in the classical di®erential equations theory. For instance, let us

consider the di®erential equation

~d 4w

dx4
ðxÞ � �4wðxÞ ¼ sðw 0ÞðcÞ� 00ðx� cÞ in D 0ð0; lÞ: ð38Þ

The substitution of (37) and its derivatives into Eq. (38) and equating the coe±-

cients of H; �; � 0; � 00 and � 000 on both sides of the equation leads to

wpðxÞ ¼ vðxÞHðx� cÞ;

vðxÞ ¼ sðw 0ÞðcÞ
2�

ðsinhð�ðx� cÞÞ þ sinð�ðx� cÞÞÞ:

Table 1 also includes the particular solutions corresponding to di®erent cases

analysed in Sec. 4. In this table the following notation is used:

v1ðxÞ ¼
1

2
ðcoshð�xÞ þ cosð�xÞÞ; v2ðxÞ ¼

1

2�
ðsinhð�xÞ þ sinð�xÞÞ;

v3ðxÞ ¼
1

2�2
ðcoshð�xÞ � cosð�xÞÞ; v4ðxÞ ¼

1

2�3
ðsinhð�xÞ � sinð�xÞÞ;
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and

LðwÞ ¼
~d 4w

dx4
ðxÞ � �4wðxÞ:

In order to establish the accuracy and applicability of the approach developed,

numerical results were computed for a cantilevered beam for which the reference

values are available in the literature. The results were obtained by introducing two

cracks at two locations of the cantilevered beam, as shown in Fig. 2, and compared

with the uncracked condition.

The values of the frequency parameters

�i ¼
�A

EI
!2

i

� �
1=4

;

were obtained with the classical bisection method. Then, the ratios between the ¯rst

three natural frequencies of the cracked and uncracked beam were calculated, i.e.
��i=�i; i ¼ 1; 2; 3; where ��i and �i are the frequency coe±cients of the cracked and

uncracked beam, respectively. The ¯rst crack location is given by c1 ¼ 0:15, whereas

the second crack position c2 varies in the interval ½0; 1�. The cracks severities are

given by the ratios �i ¼ ai=h; where ai is the depth of the ith crack and h is the height

of the rectangular cross-section of the beam. In all cases the following values have

been adopted:

�1 ¼ a1=h ¼ 0:1 and �2 ¼ a2=h ¼ 0:1; 0:2 and 0:3:

Table 1. Jump functions, di®erential equations and particular solutions.

Device Jump Di®erential equation Particular solution

12tu
x

� EI
t12

d 3w
dx3 ðc�Þ LðwÞ ¼ sðwÞðcÞ� 000ðx� cÞ wpðxÞ ¼ sðwÞðcÞv1ðx� cÞHðx� cÞ

12ru
x

EI
r12

d 2w
dx2 ðc�Þ LðwÞ ¼ sðw 0ÞðcÞ� 00ðx� cÞ wpðxÞ ¼ sðw 0ÞðcÞv2ðx� cÞHðx� cÞ

cru
x

rc
EI

dw
dx ðc�Þ LðwÞ ¼ sðw 00ÞðcÞ� 0ðx� cÞ wpðxÞ ¼ sðw 00ÞðcÞv3ðx� cÞHðx� cÞ

ct

u
x

� tc
EI wðc�Þ LðwÞ ¼ sðw 000ÞðcÞ�ðx� cÞ wpðxÞ ¼ sðw 000ÞðcÞv4ðx� cÞHðx� cÞ
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By using the method developed in the present paper, numerical computations have

been carried out and results were compared with those given by Shifrin and Ruo-

tolo.13 The graphics in Figs. 3, 4 and 5, where continuous and discontinuous lines

denote results of this study, show quite close agreement with those obtained by

Shifrin and Ruotolo.13

Additionally, new numerical results were generated for a beam with one end and

an intermediate point elastically restrained. Table 2 lists the values of the ¯rst six

frequency parameters ��
i for a beam with one end elastically restrained against

rotation, the other end simply supported, and the intermediate point c� ¼ 0:4

restrained by a spring with elastic constant r12.

In Table 2 di®erent values of the rotational restriction R1 ¼ r1l=ðEIÞ are con-

sidered. The remaining parameters are given by

Rc ¼ rcl=ðEIÞ; R12 ¼ r12l=ðEIÞ; R2 ¼ r2l=ðEIÞ; T1 ¼ t1l
3=ðEIÞ;

x
1c

l

u

1η 2η

2c

Fig. 2. Cantilevered beam with two cracks. �i ¼ ai=h; i ¼ 1; 2:

1 1/λ λ

2c

Fig. 3. Comparison of ¯rst frequency coe±cients ��1=�1 of a cantilevered beam with two cracks, c1 ¼ 0:15,

�1 ¼ 0:1 and ---- �2 ¼ 0:1, – – �2 ¼ 0:2, ––– �2 ¼ 0:3; � Shifrin and Ruotolo.13
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Tc ¼ tcl
3=ðEIÞ, T12 ¼ t12l

3=ðEIÞ and T2 ¼ t2l
3=ðEIÞ: The frequency parameters are

de¯ned as

��
i ¼

�A

EI
!2

i

� �
1=4

l;

with the following values adopted:

Rc ¼ R2 ¼ Tc ¼ 0; T1 ¼ T2 ¼ T12 ¼ 1; R12 ¼ 10 and c� ¼ c=l ¼ 0:4:

2c

2 2/λ λ

Fig. 4. Comparison of the second frequency coe±cients ��2=�2 of a cantilevered beam with two cracks,

c1 ¼ 0:15, �1 ¼ 0:1 and ---- �2 ¼ 0:1, – – �2 ¼ 0:2, ––– �2 ¼ 0:3; � Shifrin and Ruotolo.13

2c

3 3/λ λ

Fig. 5. Comparison of third frequency coe±cients ��3=�3 of a cantilevered beam with two cracks, c1 ¼ 0:15,

�1 ¼ 0:1 and ---- �2 ¼ 0:1, – – �2 ¼ 0:2, ––– �2 ¼ 0:3; � Shifrin and Ruotolo.13
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7. Conclusions

In this work, the application of the theory of distributions to the statical

and dynamical behavior of beams a®ected by cracks has been presented. The

damage has been implemented in the form of a crack modeled by a constrained

intermediate point and an internal device which allows a vertical displacement

a®ected by a translational restraint and a hinge elastically restrained against

rotation.

Hamilton's principle has been applied to obtaining the transition conditions and

particularly the analytical expressions of the jumps of the involved functions. The

governing di®erential equations of an Euler–Bernoulli beam with jump dis-

continuities in the de°ection function u and its derivatives @ ku=@xk; k ¼ 1; 2; 3; have

been derived in the space of distributions D 0ð0; lÞ.
One of the contributions of this work is that if o®ers a more clear understanding of

the mathematical description of the beam problem considered. Thus, a formulation

and solution of the statical problem and the free vibration problem of a beam with

multiple cracks has been treated in the realm of the theory of distributions. In

consequence, a simple, computationally e±cient and accurate algorithm has been

developed for the mentioned problems. Although numerical results are presented for

beams with two cracks, the algorithm developed is applicable for any number of

cracks.
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Table 2. First six frequency parameters ��
i for a beam with one end elastically

restrained against rotation, the other end simply supported, and the intermediate

point c� ¼ 0:4; elastically restrained.

Rc ¼ R2 ¼ Tc ¼ 0;T1 ¼ T2 ¼ T12 ¼ 1 and R12 ¼ 10:

Modal sequence

R1 1 2 3 4 5 6

0 3.013049 6.193163 9.290986 12.164007 15.707963 18.282046

0.001 3.013230 6.193233 9.291050 12.164040 15.707995 18.282078

0.01 3.014851 6.193861 9.291629 12.164336 15.708281 18.282365

0.1 3.030712 6.200089 9.297378 12.167284 15.711134 18.285227

1 3.161077 6.256958 9.351570 12.195671 15.738551 18.313171

10 3.589833 6.543086 9.680792 12.396958 15.931375 18.534957

100 3.831665 6.809479 10.098501 12.761689 16.275231 19.082064

1000 3.867617 6.858169 10.187538 12.862797 16.368142 19.273845

1 3.871807 6.864013 10.198452 12.875891 16.380044 19.299903
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